单目视觉定位中SURF算法参数的优化
- 格式:pdf
- 大小:293.17 KB
- 文档页数:4
机器视觉中基于SURF算法的目标识别研究第一章:引言随着计算机技术的不断发展,机器视觉技术逐渐应用于各种领域。
其中,目标识别是机器视觉技术的重要应用之一,可以在自动控制、工业制造、军事等领域中发挥重要作用。
在目标识别中,特征点检测和匹配是关键技术。
SURF算法是一种快速有效的特征点检测和匹配算法,已经得到广泛应用。
本文将介绍机器视觉中基于SURF算法的目标识别研究,具体包括SURF算法原理、SURF算法在目标识别中的应用及其优劣势分析、SURF算法在实际系统中的应用及其发展趋势等。
第二章:SURF算法原理SURF算法是加速稳健特征(Speeded Up Robust Feature)的缩写。
它是基于尺度空间理论的特征点检测和匹配算法。
SURF算法主要包括三个步骤:尺度空间构建、特征点检测和特征描述。
尺度空间构建是指先将原始图像进行高斯滤波,得到不同尺度下的图像金字塔,然后通过差分的方式得到尺度不变的DoG (Difference of Gaussian)图像组。
特征点检测是指在DoG图像组中检测出极值点,SURF算法中采用的是Hessian矩阵。
特征描述是指在检测到的特征点周围的邻域内,计算一组具有较强区分度的局部特征描述子,SURF算法中采用的是基于积分图像的Haar小波特征描述子。
第三章:SURF算法在目标识别中的应用及其优劣势分析SURF算法在目标识别中的应用主要包括两个方面:特征点检测和匹配。
特征点检测是指在图像中寻找具有独特性、稳定性和可重复性的特征点,SURF算法对尺度空间建立和特征点检测都有良好的性能,能够有效地检测到目标物体中的关键点。
匹配是指在两个图像中寻找相似的特征点,SURF算法具有较高的匹配准确率和速度,能够实现快速准确地目标匹配。
但是,SURF算法也存在一些不足之处,比如对图像旋转、缩放、变形等变化不够鲁棒,需要额外的操作来进行补偿。
第四章:SURF算法在实际系统中的应用及其发展趋势SURF算法在实际系统中的应用非常广泛,例如在工业机器人、自动驾驶、安防监控等领域中都得到了应用。
改进SURF算法的特征提取与匹配方法研究
赵腾飞;辛大欣;华瑾
【期刊名称】《机械与电子》
【年(卷),期】2017(035)009
【摘要】针对门把手图像特征点提取与匹配对快速性和准确性的要求,提出一种改进SURF算法.该算法主要对图像较平滑区域难以提取出大量信息点的问题进行改进.增加了边缘检测算法,得到图像边缘信息后进行形态学处理,并通过膨胀运算和开运算后获得门把手图像边缘区域信息并提取出关键点,进而获得较多特征明显的信息.改进SURF算法和原始SURF算法相比,在平滑区域能够较好提取出特征点,匹配准确率也有明显的提升,并且增强了算法的实时性.
【总页数】4页(P77-80)
【作者】赵腾飞;辛大欣;华瑾
【作者单位】西安工业大学电子信息工程学院,陕西西安710021;西安工业大学电子信息工程学院,陕西西安710021;西安工业大学电子信息工程学院,陕西西安710021
【正文语种】中文
【中图分类】TP39
【相关文献】
1.基于改进SURF算法的工件图像特征匹配 [J], 张强;韩松奇;于微波
2.基于SURF算法的无坐标矿山空间位置匹配方法研究 [J], 杨雪
3.基于SURF算法的绿色作物特征提取与图像匹配方法 [J], 张志斌;赵帅领;罗锡文;魏凤岐
4.改进的SURF算法在图像匹配中的应用 [J], 黄春凤; 刘守山; 别治峰; 许广会
5.基于ROI提取和改进SURF算法的图像匹配方法研究 [J], 田杰;徐忠民
因版权原因,仅展示原文概要,查看原文内容请购买。
SURF算法在小尺寸图像拼接中参数配置的优化周宇浩崴;应忍冬;蒋乐天【摘要】在图像拼接领域,SURF算法因其出众的时效性和鲁棒性,有着十分广泛的应用。
针对SURF算法中特征点提取和描述过程中参数固定,对侧重点不同的图像拼接应用存在变通性较差的问题,提出了从窗口滤波器权值,特征点周围子区域的选择以及子区域内Haar小波变换的采样点范围三方面进行参数配置优化。
针对目前主流的流媒体尺寸图像,利用控制变量法在不同的SURF参数配置下,对算法的时效性、准确性和鲁棒性等性能进行了分析;通过特征点匹配率和特征点匹配效率的比较,给出了SURF算法参数的选择策略。
仿真结果表明该策略可以有效提高SURF算法在图像拼接中的运算速度和准确性,丰富算法在实时领域的应用。
%In the field of image stitching, SURF algorithm is widely used for its excellent real-time procedure and robust. Due to the fixed parameter settings in interest point detection and description, the adjustability of SURF algorithm to different applying situation is relatively weak. In order to improve the range of SURF application, this paper looks into three aspects in the algorithm:the weight of box filter, the sub-region selection and the Haar wavelet sampling point range within the sub-region. In comparing the real-time quality, the stitching accuracy and the robust quality of the algorithm, the experiments using variable control method propose a parameter setting strategy based on small scale image which is widely used in nowadays stream media. In analyzing the interest points match rate and efficiency, the strategies proposed in characterizing the algorithm can extend the use of SURF in real-time field.【期刊名称】《计算机工程与应用》【年(卷),期】2013(000)019【总页数】5页(P191-195)【关键词】加速鲁棒特征(SURF)算法;图像拼接;小尺寸图像;参数配置;特征点匹配;窗口滤波器;特征点子区域【作者】周宇浩崴;应忍冬;蒋乐天【作者单位】上海交通大学电子工程系,上海200240;上海交通大学电子工程系,上海 200240;上海交通大学电子工程系,上海 200240【正文语种】中文【中图分类】TP391图像拼接分为直接拼接和融合技术,在目前融合技术中主要分为基于灰度信息和基于特征信息两种模式。
改进SURF算法在图像汉字识别中的应用孟伟;钟娜【摘要】针对复杂背景下汉字匹配准确率较低的问题,提出一种改进的SURF算法。
该算法利用灰度分级的字符分割方法,先进行灰度分割增强图像的对比度,采用灰度分级树将图像中的所有像素处理为树的模式进行计算,根据灰度分级确定主节点,根据主节点的级别所对应的灰度值对图像进行分割。
同时,根据汉字结构的特殊性,取消了SURF算法的旋转不变性。
实验结果表明,与未使用改进的SURF 算法相比,对图像质量较差的文本图像,改进的SURF算法能有效地提高其匹配的准确率。
%Aiming at the low matching accuracy of Chinese characters, an improved algorithm of SURF is presented. The algorithm is based on gradation character segmentation. Contrast of image is enhanced by using gray level segmentation, and then with the gray level classification tree, all pixels in the image are processed to the tree model. According to the gray level classification, the main node is determined. Grey level corresponding to the main node level is used in image segmentation. According to the particularity of Chinese characters, the rotation invariance of SURF algorithm is cancelled. Experimental results show that the improved algorithm can improve the matching accuracy effectively, especially for text image of poor quality.【期刊名称】《计算机工程与应用》【年(卷),期】2015(000)012【总页数】5页(P156-160)【关键词】复杂背景;汉字匹配;快速鲁棒特征(SURF)算法;灰度分级;字符分割【作者】孟伟;钟娜【作者单位】北京林业大学信息学院,北京 100083;北京首钢自动化信息技术有限公司,北京 100043【正文语种】中文【中图分类】TP3911 引言近年来,汉字识别一直是模式识别等相关领域内长期的研究热点[1]。
surf算法代码-回复什么是Surf算法Surf算法(Speeded Up Robust Features)是一种用于图像特征检测和描述的计算机视觉算法。
它是在2006年由Herbert Bay等人提出的,旨在提高图像处理中的特征点检测与匹配的速度和准确性。
Surf算法在计算机视觉和图像处理领域中得到广泛应用,它的主要目标是在图像中找到稳定且唯一的局部特征点。
Surf算法的步骤1. 尺度空间构建:Surf算法在图像中使用多尺度空间来有效地检测特征点。
它通过不断模糊图像,并计算模糊后的图像与原始图像的差异来构建多尺度空间。
算法使用一个高斯滤波器来进行图像模糊,并通过逐渐增加滤波器的方差来构建不同尺度下的图像。
这样做的目的是使得算法能够在不同尺度下检测到特征点,而不受图像缩放的影响。
2. 关键点检测:在构建好尺度空间后,Surf算法会在每个尺度中检测关键点。
关键点是那些在图像中具有稳定尺度和位置,并且对缩放、旋转和光照变化具有不变性的点。
Surf算法使用Hessian矩阵来检测关键点。
Hessian矩阵是一个用于测量图像局部变化的矩阵,在Surf算法中,它被用来检测图像中的高强度点。
3. 关键点定位:在检测到关键点后,Surf算法会对关键点进行精确定位。
它使用一个Haar 小波响应来定位关键点的位置和方向。
Haar小波是一种多尺度基函数,它能够识别出图像中的边缘和纹理特征。
Surf算法利用Haar小波响应来定位出关键点的具体位置和方向,以便后续的特征描述步骤。
4. 特征描述:在完成关键点定位后,Surf算法会对每个关键点进行描述,以便后续的特征匹配。
Surf算法使用了一种叫做加速权重积分(Fast Hessian)的方法来生成特征描述子。
特征描述子是一个向量,它能够描述关键点周围区域的结构和纹理信息。
Surf算法会通过计算关键点周围区域的灰度变化来生成特征描述子。
5. 特征点匹配:在完成特征描述后,Surf算法会使用一种叫做KD树的数据结构来进行特征点的匹配。
SURF算法在图像处理中的应用SURF算法是一种被广泛应用于计算机视觉领域的算法,其全称是Speeded Up Robust Features。
它是一种特征提取算法,可以在图像中检测出具有特殊性质的关键点,并生成具有鲁棒性的特征描述子。
这些特征可以用于识别相似的图像,比较相似度,并在图像配准、图像跟踪、三维重建等领域中发挥重要作用。
本文将探讨SURF算法在图像处理中的应用。
一、 SURF算法的原理SURF算法是基于SIFT算法的一种改进,它的主要优势在于速度更快、鲁棒性更强。
下面简单介绍SURF算法的原理。
1. 尺度空间构建SURF算法首先对原始图像进行尺度变换,通过高斯金字塔来构建尺度空间。
尺度空间的不同层次可以检测到不同大小的特征。
通过不同层次检测的关键点可以估计出原始图像中的关键点,这个过程被称为尺度空间极值点检测。
2. 关键点定位在尺度空间中,SURF算法通过Hessian矩阵的行列式求解得到图像局部极值点位置,这些点是具有高强度、对光照变化鲁棒等性质的关键点。
3. 方向确定为了使SURF算法对旋转和光照变化更加鲁棒,需要为每个关键点确定一个主方向,这个方向是在关键点周围采用Hessian矩阵主方向确定的。
4. 特征描述为了描述关键点的局部特征,SURF算法使用了一种统计学上的方法,即将关键点周围的区域分解成小的子区域,每个子区域在水平和竖直方向上计算Haar小波变换,形成特征向量。
这些特征向量组成的特征描述子具有鲁棒性,可以用来评估关键点的稳定性。
5. 特征匹配在进行图像匹配时,SURF算法使用了一种快速的近似最近邻搜索方法,称为快速最近邻搜索(FLANN)。
它可以在大规模的特征库中快速找到与查询特征最相似的特征。
二、 SURF算法可以被广泛应用于图像处理中,下面介绍一些应用领域。
1. 图像配准SURF算法可以被用来匹配两幅图像之间的关键点,通过计算两幅图像中关键点的相似度来实现图像配准。
SURF算法⼀、原理:Sift算法的优点是特征稳定,对旋转、尺度变换、亮度保持不变性,对视⾓变换、噪声也有⼀定程度的稳定性;缺点是实时性不⾼,并且对于边缘光滑⽬标的特征点提取能⼒较弱。
Surf(Speeded Up Robust Features)改进了特征的提取和描述⽅式,⽤⼀种更为⾼效的⽅式完成特征的提取和描述。
⼆、Surf实现流程如下:1. 构建Hessian(⿊塞矩阵),⽣成所有的兴趣点,⽤于特征的提取⿊塞矩阵(Hessian Matrix)是⼀个多元函数的⼆阶偏导数构成的⽅阵,描述了函数的局部曲率。
由德国数学家Ludwin Otto Hessian于19世纪提出。
surf构造的⾦字塔图像与sift有很⼤不同,Sift采⽤的是DOG图像,⽽surf采⽤的是Hessian矩阵⾏列式近似值图像。
Hessian矩阵是Surf算法的核⼼,构建Hessian矩阵的⽬的是为了⽣成图像稳定的边缘点(突变点),为下⽂的特征提取做好基础。
每⼀个像素点都可以求出⼀个Hessian矩阵。
Hessian矩阵的判别式为:当Hessian矩阵的判别式取得局部极⼤值时,判定当前点是⽐周围邻域内其他点更亮或更暗的点,由此来定位关键点的位置。
在SURF算法中,图像像素l(x,y)即为函数值f(x,y)。
但是由于我们的特征点需要具备尺度⽆关性,所以在进⾏Hessian矩阵构造前,需要对其进⾏⾼斯滤波,选⽤⼆阶标准⾼斯函数作为滤波器。
H矩阵的三个矩阵元素L_xx, L_xy, L_yy从⽽计算出H矩阵:Surf使⽤了盒式滤波器来近似替代⾼斯滤波器,提⾼运算速度。
盒式滤波器(Boxfilter)对图像的滤波转化成计算图像上不同区域间像素和的加减运算问题,只需要简单⼏次查找积分图就可以完成。
每个像素的Hessian矩阵⾏列式的近似值:2. 构建尺度空间同Sift⼀样,Surf的尺度空间也是由O组L层组成,不同的是,Sift中下⼀组图像的尺⼨是上⼀组的⼀半,同⼀组间图像尺⼨⼀样,但是所使⽤的⾼斯模糊系数逐渐增⼤;⽽在Surf中,不同组间图像的尺⼨都是⼀致的,但不同组间使⽤的盒式滤波器的模板尺⼨逐渐增⼤,同⼀组间不同层间使⽤相同尺⼨的滤波器,但是滤波器的模糊系数逐渐增⼤。
视觉定位的关键参数一、视觉特征提取视觉定位的第一个关键参数是视觉特征。
视觉特征是从图像中提取出来的一些能够代表图像内容的信息,例如边缘、角点、纹理等。
常用的视觉特征提取算法包括SIFT、SURF和ORB等。
这些算法可以通过对图像进行滤波、边缘检测和兴趣点提取等操作,得到一组稳定的特征点。
二、特征匹配与跟踪特征匹配与跟踪是视觉定位的第二个关键参数。
在视觉定位中,需要将当前图像中提取的特征点与参考图像中的特征点进行匹配,从而确定当前图像在参考图像中的位置。
常用的特征匹配算法有FLANN、RANSAC等。
这些算法可以通过计算特征点之间的距离和相似度,找到最佳的匹配点,并通过随机采样一致性算法来排除错误匹配。
三、相机内外参数校准相机内外参数校准是视觉定位的第三个关键参数。
相机内参数是指相机自身的参数,例如焦距、畸变系数等;相机外参数是指相机在世界坐标系中的位置和朝向。
在视觉定位中,需要对相机的内外参数进行准确的校准,以保证定位的精确性。
常用的相机校准算法有张正友标定法和Tsai标定法等。
四、地图构建与更新地图构建与更新是视觉定位的第四个关键参数。
在视觉定位中,需要建立一个参考地图,用于对当前图像进行位置估计。
地图可以通过激光雷达、摄像头和惯性导航等多种传感器进行构建。
同时,随着环境的变化,地图也需要进行更新,以适应位置变化和新的特征点。
五、定位算法与优化定位算法与优化是视觉定位的第五个关键参数。
在视觉定位中,需要根据特征匹配结果和地图信息,计算当前图像在世界坐标系中的位置和方向。
常用的定位算法有基于特征匹配的PnP算法、基于滤波器的扩展卡尔曼滤波算法等。
同时,为了提高定位的精度和鲁棒性,还可以采用优化算法,例如非线性最小二乘法和粒子滤波器等。
六、实时性与鲁棒性实时性与鲁棒性是视觉定位的最后两个关键参数。
在实际应用中,视觉定位需要具备较高的实时性,即能够在短时间内完成图像处理和定位计算。
同时,视觉定位还需要具备较好的鲁棒性,即能够在复杂环境中稳定地进行定位。
视觉定位系统的精度优化方法分析视觉定位系统是一种通过摄像机感知环境来确定位置和姿态的技术。
它在许多领域得到广泛应用,例如无人驾驶、机器人导航和增强现实等。
视觉定位系统的主要目标是提高定位的精度和稳定性,以便实现准确的位置感知和导航。
在视觉定位系统中,精度优化是关键的挑战之一。
下面将介绍几种常用的视觉定位系统精度优化方法。
1. 特征提取与匹配:特征提取是视觉定位系统的基础。
通过提取场景中的关键特征点(如角点、边缘等),可以更好地描述环境,并在后续的定位过程中进行匹配。
在特征匹配过程中,通常使用描述子(如SIFT、SURF、ORB等)来计算特征点的特征向量,并利用特征向量进行匹配。
为了提高匹配的准确性和鲁棒性,可以使用一些优化方法,如基于关系图的匹配算法、RANSAC算法等。
2. 路标选择与辨识:路标是视觉定位系统中的重要参考,它们可以提供可靠的地标信息用于定位。
在路标选择过程中,可以考虑一些关键因素,如特征的可靠性、视野范围内的路标密度等。
为了辨识路标,可以使用基于几何形状或视觉特征的方法进行识别。
例如,可以使用模板匹配、图像分割和机器学习等方法来识别和辨别路标。
3. 姿态估计与滤波:姿态估计是视觉定位系统中关键的一步,它用于确定相机的旋转和平移矩阵,从而获得准确的位置信息。
姿态估计可以通过解决外点问题来实现,即使用多个匹配点来计算旋转矩阵,并使用RANSAC算法剔除外点。
为了提高估计的稳定性和精度,可以采用滤波算法,如卡尔曼滤波、扩展卡尔曼滤波等。
4. 外部信息融合:除了摄像机的视觉信息外,还可以引入其他传感器的数据来提高定位的精度。
例如,可以利用惯性测量单元(IMU)来提供陀螺仪和加速度计的数据,以补偿姿态估计中的漂移误差。
此外,还可以利用全球定位系统(GPS)来提供位置验证和校正。
通过将多个传感器的数据进行融合,可以有效地提高视觉定位系统的精度和鲁棒性。
5. 校准与精度评估:校准是保证视觉定位系统精度的关键。