该区主要成煤时代为二叠纪和晚第三纪
- 格式:ppt
- 大小:2.70 MB
- 文档页数:38
煤的地质年代geological ages of coalmei de diz加niall(lai 煤的地质年代(geol呼eal ages诚coal) 指煤层形成的年代。
它可根据含煤地层中的古生物化石特征和成煤植物特征,采用放射性同位素测定法和煤层、地层对比法等确定。
附表为参照1989年国际地质科学联合会(ICS)的地球地层表列出的煤的地质年代表。
表中给出了煤的年龄值、相应的生物演化过程、形成的主要煤种以及中国主要成煤期。
煤的生成受植物演化、古气候、古地理、古地壳构造运动诸因素制约。
繁茂的植物、温暖潮湿的气候、低洼平坦的地形煤的地质年代表于以及缓慢下沉的地壳运动对成煤有利。
在晚古生代的石炭纪和二叠纪、中生代的侏罗纪和白里纪、新生代中的第三纪均具备上述成煤条件,是世界重要成煤期。
而石炭纪和二叠纪、侏罗纪和第三纪则是中国重要成煤期。
在元古代地层中发现有菌藻植物形成的煤,这种煤在中国南方的早古生代地层中分布较广,称为石煤,有一定的利用价值。
石炭纪和二叠纪成煤的主要煤种是烟煤,其次是无烟煤。
在此时期,中国南北方都有重要煤层生成,特别是北方的石炭纪和二叠纪煤田是中国重要的炼焦用煤基地。
侏罗纪成煤的煤种主要是揭煤和低煤化度烟煤,也有中煤化度烟煤,常含有厚煤层或巨厚煤层。
第三纪成煤的主要煤种是褐煤和长焰煤。
地质年代表年代单位年代符号各纪年数(百万年)距今年数(百万年)主要现象华南赋煤区二叠系含煤地层在杭州-鹰潭-赣州-韶关-北海一线以南的东南地层分区,二叠系含煤地层主要形成于早二叠世晚期,在闽西南、粤东、粤中称童子岩组,在浙西称礼贤组,在赣东一带称上绕组。
在连云港-合肥-九江-株州-百色一线以南的江南地层分区,二叠系含煤地层主要为海陆交互相的龙潭组,其次是以碳酸盐为主的合山组。
在龙门山-洱海-哀牢山一线以东、秦岭-大别山以南的扬子地层分区,上二叠统含煤地层以碳酸盐沉积为主的称吴家坪组,以海陆交互相为主的称龙潭组和汪家寨组,以玄武岩屑为主的陆相沉积称宣威组。
1中国不同时代形成的煤和地区分布之间的关系?煤是由植物经过复杂的作用形成的,而植物为了适应环境生存,植物界形成了不同的部落,出现植物分区,为成煤提供了丰富的物质基础。
所以,形成了我国地史上的聚煤期有14个,其中早石炭世、晚石炭世-早二叠世、晚二叠世、晚三叠世、早-中侏罗世、早白垩世和第三纪为主要聚煤期。
在这7个主要聚煤期中,以晚石炭世-早二叠世、晚二叠世、早-中侏罗世和早白垩世4个聚煤期更为重要,相应煤系地层中赋存的煤炭资源占我国煤炭资源总量的98%以上,煤层气资源占我国煤层气资源总量的99.5%以上。
1、主要聚煤期含煤地层分布晚石炭世至早二叠世晚石炭世至早二叠世的聚煤作用在我国北方形成海陆交互相石炭-二叠系含煤地层,主要赋存在华北赋煤区,含煤面积80万km2,构成了我国最主要的煤层气聚气区,即华北聚气区。
该区大地构造单元为华北地台的主体部分,地理分布范围西起贺兰山-六盘山,东临勃海和黄海,北起阴山-燕山,南到秦岭-大别山,包括了北京、天津、山东、河北、山西、河南、内蒙南部、辽宁南部、甘肃东部、宁夏东部、陕西大部、江苏北部和安徽北部的广大地区。
在华北赋煤区内,还广泛发育了早-中侏罗世含煤盆地,并见零星上三叠统和第三系含煤地层分布。
晚二叠世晚二叠世聚煤作用在我国南方十分强烈,含煤地层广泛分布于秦岭-大别山以南、龙门山-大雪山-哀牢山以东的华南赋煤区内,构成了我国华南煤层气聚气区。
该区大地构造单元属扬子地台和华南褶皱系,地理分布范围包括西南、中南、华东和华南的12个省区。
华南赋煤区内除有以龙潭组为代表的上二叠统含煤地层外,还有上石炭统、上三叠统-下侏罗统、第三系等含煤地层分布。
下-中侏罗统下-中侏罗统含煤地层主要分布在西北赋煤区,在华北赋煤区的分布也较为广泛。
西北赋煤区由塔里木地台、天山-兴蒙褶皱系西部天山段和秦祁昆仑褶皱带、祁连褶皱带、西秦岭褶皱带等大地构造单元组成,地理分布范围包括秦岭-昆仑山一线以北、贺兰山-六盘一线以西的新疆、青海、甘肃、宁夏等省区的全部或大部。
地质界的口诀,最后一个绝了!地质年代表口诀记忆法新生早晚三四纪,六千万年喜山期;中生白垩侏叠三,燕山印支两亿年;古生二叠石炭泥,志留奥陶寒武系;震旦青白蓟长城,海西加东到晋宁。
注:1、新生代分第四纪和早第三纪、晚第三纪,构造动力属喜山期,时间从6500 万年开始。
2、中生代从2.5 亿年开始,属燕山、印支两期,燕山期包括白垩纪、侏罗纪和三叠纪的一部,印支期全在三叠纪内。
3、古生代分为早晚,二叠纪、石炭纪、泥盆纪属晚古生代,属海西期;志留纪、奥陶纪、寒武纪在早生代,属加里东期;震旦纪、青白口、蓟县、长城纪在元古代,震旦属加里东期,其余属晋宁期。
地质年代单位&年代地层单位地质年代单位:宙-代-纪-世-期和时年代地层单位:宇-界-系-统-阶-时间带冥古宙,四十六(亿年)地球一片灰蒙蒙太古宙,三十八主要分布在北华片、片麻岩火山岩五台运动花岗嵌元古宙,二十五宙分古中新三代滹沱长(城)蓟(县)青白口(纪)震旦纪,荒诞极无脊椎动物找裸替显生宙,五亿七宙分三代古、中、新古生代,好繁盛大量化石在地层寒武奥陶和志留海生无脊水中游鱼类生在泥盆里石炭二叠水陆栖中生代,两亿五秦祁昆仑画条弧南方为海北为陆侏罗纪,爬着行地上霸主是恐龙白垩纪,环境恶恐龙菊石全绝灭新生代,三、四纪哺乳动物盖被子台湾喜马被海淹二百万年(前)褶成山事过不久人出现不过暂把地球看岩浆岩矿物共生规律二氧化硅定共生金硅氧化不相容不足变木多发光过剩结晶成石英莫氏硬度计一滑二石三方解四莹五磷六正长七英八黄九刚玉向斜背斜向斜成山,背斜成谷,逢沟必断,有沟必火岩石滑石方,莹磷长,石英黄玉刚金刚中华大地构造歌中华厚壳小块集,罗迪尼亚另聚齐。
喜马拉雅冈底斯,羌塘兴凯属泛非。
西域地块多迁移,亲近中朝变扬子。
东西排列转南北,陆块滑动数千里。
天山印支碰撞多,偏安欧亚东南翼。
东移陆壳坐洋幔,东亚逆转燕山期。
拼合碰撞冈底斯,缩短顺转白垩纪。
太平洋底西俯冲,背斜走滑造油藏。
第23卷第5期煤炭学报V ol.23N o.5 1998年10月JOURNAL OF CH INA COAL SOCIETY Oct.1998中国的含煤岩系变形分区曹代勇(中国矿业大学北京校区)景玉龙邱广忠张德民王永(中国煤田地质总局)摘要从煤炭资源评价和开发角度,提出煤系变形分区的概念,讨论了华北、华南、东北和西北等四大主要聚煤区煤系变形分区的基本特征.我国大陆范围内的煤系变形分区组合可分为两种基本类型:¹以稳定/地台0为基底的同心环带结构;º以构造活动带为基底的平行条带结构.受中国大陆岩石圈地球动力学格局控制,煤系变形分区的平面展布划分为东部北东向改造区、西部北西向改造区和中部过渡带.关键词煤系变形分区煤田构造改造板内变形中图分类号P542在适宜的古构造、古地理、古气候和古植物条件下发育起来的聚煤盆地,经历了地质演化历程中地壳运动和构造作用的改造,被分割为不同类型、不同面积的煤田或含煤区,充填于聚煤盆地中的含煤岩系,则发生不同程度的构造变形,形成现今千姿百态的煤田构造样式.中国煤田地质的一个显著特点,就是聚煤盆地构造类型的多样化、煤系后期改造明显、煤田构造样式丰富.我国煤田地质工作者很早就注意到构造作用对煤矿床形成和形变过程的全面控制,逐渐形成/构造控煤0的概念[1];70年代,煤田地质工作者应用地质力学理论,提出了构造体系控煤的观点[2]. 80年代以来,随着当代构造地质理论的发展和新技术手段的应用,相继对逆冲推覆、伸展滑覆、反转构造等煤系后期改造形式[3~7]进行了大量的研究./八五0期间开展的全国第三次煤田预测,系统总结了我国煤系的改造特征,在此基础上,本文从资源评价开发角度,提出/煤系变形分区0的概念.我国煤田地质工作者根据聚煤作用特点,划分出华北、东北、西北、华南、滇藏等五大聚煤区或六大聚煤区(包括沿海和台湾省)[8].在长期实践中形成的这一区划,同时也具有构造赋煤单元的涵义,反映了含煤岩系的改造(构造演化、赋存状况)特征,体现了大地构造格局对煤盆地形成和形变的一级控制.煤系变形分区则是在构造赋煤单元的框架内,着重从煤系改造角度所进行的二级划分,其依据主要包括:煤系具有相似的主体构造样式、经历了大致相同的构造演化历程、即同时代的煤系的赋存状况相似.变形分区的划分,在很大程度上决定了煤系开发利用的价值和难易程度,因而对我国煤炭资源开发的战略布局,具有重要的实际意义.1华北聚煤区煤系变形分区特征111大地构造背景及煤系发育华北聚煤区系指天山)兴蒙褶皱系阴山造山带以南、秦祁昆褶皱系秦岭)大别山造山带以北、贺兰山)六盘山以东的大华北和东北南部地区,与作为华北古大陆板块主体的华北地台的范围相当.本区煤炭资源十分丰富,占全国资源量的53%,煤炭产量居各聚煤区首位.区内广泛发育石炭-二叠纪煤系,收稿日期:1997-07-15450煤炭学报1998年第23卷其次为西部和北部的早、中侏罗世煤系,鄂尔多斯盆地的晚三叠世煤系和东部沿海的第三纪褐煤.华北地台经历了中奥陶世至早石炭世长期隆起剥蚀之后,再度沉降,发育统一的巨型克拉通内坳陷盆地,接受了稳定的晚古生代海陆交互相含煤岩系沉积[2].海西运动末期,天山)兴蒙褶皱系崛起,盆地基底抬升,海水由北向南逐渐退出,过渡为晚二叠世陆相盆地,晚古生代聚煤作用结束.华北古板块与华南古板块于中生代早期由东向西逐步完成全面碰撞对接,构成统一的中国大陆板块主体,晚古生代煤系由此开始改造分化过程.早、中侏罗世的古地形与今天相反,东高西低,以太古界陆核为基底的鄂尔多斯地块继承性地发育大型波状坳陷,以始生代裂陷槽为基底的燕辽地区则发育中、小型坳陷,接受了早、中侏罗世陆相含煤沉积.印支运动是中国大陆地质演化的重大转折,中国东部由此进入滨太平洋构造域的演化阶段[9],华北地台发生解体,相继经历了中生代板内挤压变形阶段和新生代活动大陆边缘伸展变形阶段.前一阶段,挤压变形强度由东向西递减,影响可达山西地块[10];新生代伸展变形则主要发育于太行山以东.中生代以来中国西部板块运动的影响仅限于聚煤区西缘和南缘.112煤系变形的基本特征及变形分区华北地台被构造活动带所环绕,受基底性质、周缘活动带和区域力源的控制,含煤岩系变形存在较大差异,具明显的变形分区特征,总体呈不对称的环带结构,变形性质和变形强度由边缘向内部递变.可分为强挤压的外环带、弱挤压的中环带和伸展变形的内环区.外环带由地台北缘挤压变形带、地台西缘挤压变形带、地台南缘挤压变形带和东南缘徐淮弧形推覆带所构成.外环带煤田构造复杂、变形强烈,构造样式以逆冲断层和推覆为主,组成了长达3000km 的华北聚煤区周缘逆冲推覆构造带[11].煤田逆冲推覆构造多与外侧造山带深层次的推覆构造有关,共同组成指向地台内部的楔形逆冲系.反映了周缘造山带对板内构造变形的影响.中环带包括华北北部京唐地区诸煤田、鄂尔多斯盆地和山西地块,以及华北南部豫淮含煤区.该带以弱挤压变形为特征,构造样式差异较大.北中环与西中环以褶皱变形为主,煤系连续性较好,尤其是西中环鄂尔多斯煤盆地主体部分的晚古生代煤系和早、中侏罗世煤系保存完整,褶皱宽缓、断裂稀少,总体为向西缓倾的单斜[12],构造简单.而南中环豫淮含煤区则在宽缓褶皱基础上,叠加发育了滑、推覆构造[4,13].内环区指太行山以东、郯庐断裂以西的华北平原区和鲁西地区,以新生代伸展构造格局为特征.华北平原主体部分属于渤海湾裂陷盆地范畴,煤系深埋于北北东向展布的中生代末至早第三纪断陷之中.鲁西地区晚古生代煤系呈条带状保存于北西西向地堑盆地之中,控煤构造样式以正断层为主.2华南聚煤区煤系变形分区特征211大地构造背景及煤系发育华南聚煤区范围由秦岭)大别山以南、龙门山)大雪山以东,至东南沿海.晚二叠世煤系全区发育,其次为晚三叠世煤系,第三纪煤系则局限于西南部滇东一带,煤炭资源量约占全国的6%.华南聚煤区与华南古大陆板块范围相当,其基底由扬子地台、华南加里东褶皱系和印支)南海地台拼合而成.晚古生代,扬子地台主体为陆表浅海-近海环境,海水进退转换期间发育较稳定的海陆交互相含煤岩系;华南褶皱系则在泥盆纪至早二叠纪裂陷基底上叠加了大型复杂坳陷盆地,煤系沉积-构造分异作用明显.华南晚三叠世煤系分为东南部湘赣粤残余海湾-山间盆地和西部四川大型内陆盆地等两个分离的沉积区.燕山运动以来,华南聚煤区东南部卷入环太平洋活动大陆边缘构造域,东南沿海中生代闽浙火山岩带是亚洲大陆东缘燕山造山带的一部分,反映了太平洋板块与亚洲板块的强烈作用,由此产生的北西-南东向挤压应力向大陆内部传递,使印支旋回中的褶皱-推覆变形进一步加强,并以深层次拆离控制下的广泛的浅层逆冲-推覆作用为特征.212 煤系变形基本特征及变形分区华南古板块处于特提斯构造域与环太平洋构造域的交汇部位,盖层构造变形比较复杂,扬子地台与华南褶皱系基底结构性质的不同,导致煤系后期变形呈现较大差异.与华北地台相似,扬子地台煤系变形具有近似同心环带结构的基本特点;但该地台以晋宁期变质岩系为基底,固结程度较华北地台差,故煤系变形强度相对较大,塑性变形特征较明显,以挤压构造样式为主.上扬子四川盆地变质基底发育完整,构成扬子地台盖层变形分带的稳定核心,川中地区以宽缓的穹隆构造、短轴状褶皱变形和断层稀疏为特征[14].由此向周边,煤系变形强度递增.由于区域构造格局和地球动力学环境的差异,变形环带北西侧窄、东南侧宽,呈不对称的闭合环带结构.沿反时针方向,分别由扬子地台北缘逆冲带、川西龙门山逆冲带、滇东压扭褶皱带和雪峰山褶皱逆冲推覆带所组成.华南褶皱系的基底为前泥盆纪浅变质岩系,其构造活动性大于扬子地台;晚古生代以来,经历多次挤压与拉张等不同构造机制的交替作用,煤系变形十分复杂.闽、湘、赣地区以/红绸舞状褶皱0的形象比喻而著称.煤田推覆和滑覆构造全面发育,几乎没有强弱应变的环境之分,并以构造叠加为特色;煤田滑脱构造分类中最复杂的两类)))滑褶推复杂叠加型和滑推多次复杂叠加型滑脱构造)))均发育于华南褶皱系范围内[5].就整个华南聚煤区而言,构造变形强度和岩浆活动强度均有由板内向板缘递增的趋势,煤田构造格局明显受区域性隆起和坳陷的控制.由东南沿海中生代闽浙火山岩带向西北扬子地台,一系列北东-北北东向大型隆起和坳陷相间排列:闽西南)粤东坳陷、武夷山隆起、浙西)赣东坳陷、武功)云开隆起、赣中)湘南坳陷、九岭隆起、湘中坳陷、至扬子地台东南缘的雪峰隆起.上述隆起多与深层次拆离作用有关,晚古生代煤系保存在基底隆起之间的坳陷之中,逆冲推覆与滑覆由隆起指向坳陷,北东-北北东向展布的条带状变形分区规律性明显.3 西北聚煤区煤系变形分区特征西北聚煤区指贺兰山)六盘山以西、昆仑)秦岭以北的广大地区.本区以早、中侏罗世煤系为主体,其次在塔里木地台北部库车坳陷发育有晚三叠世煤系,石炭-二叠纪煤系零星分布于祁连山区,本区煤炭资源占全国资源总量的33%.西北聚煤区面积大,跨越天山)兴蒙褶皱系、塔里木地台、秦祁昆褶皱系等不同的一级大地构造单元,聚煤作用和煤系的后期改造各具特色.311 天山)兴蒙褶皱系及其中间地块煤系变形特征和变形分区近年来西北地区大地构造研究进展表明,天山)兴蒙褶皱系内的准噶尔盆地和吐哈盆地等中、新生代盆地具有前寒武系结晶基底,可能是早古生代从哈萨克斯坦古板块分裂至古天山洋中的微大陆(地体),于海西期完成陆-陆碰撞,进入板内构造演化阶段.夹持于天山褶皱带与阿尔泰褶皱带和额尔齐斯褶皱带之间的准噶尔盆地,规模大、地台性质较显著.以该盆地为核心,早、中侏罗世煤系的后期变形呈现有规律的递变.盆地南侧天山褶皱带和盆地北侧阿尔泰褶皱带和额尔齐斯褶皱带内的含煤盆地多以海西期褶皱为基底,原形盆地属山间断陷型,是褶皱带后造山期伸展[15]的产物.成盆后期的构造反转,产生由盆缘指向盆内的逆冲断裂,盆地呈狭长带状,与造山带走向一致.准噶尔盆地的早、中侏罗世煤系变形则具有/地台型0规律,变形分区为近似同心的环带结构,由盆缘向盆内,变形强度递减.准噶尔盆地西北缘、南缘和东北缘均被中、新生代逆冲褶皱带所围绕,形成一条强挤压变形环带,中生代煤系不同程度地受指向盆内的逆冲推覆和褶皱变形451第5期 曹代勇等:中国的含煤岩系变形分区452煤炭学报1998年第23卷改造.盆地中部的基本构造格局是在缓波状起伏基础上的断块组合,主体构造线方向为近东西向(北东东向和北西西向),张性和压性断裂并存,中生代煤系构造变形较微弱.312塔里木地台煤系变形基本特征及变形分区塔里木盆地作为以地台为基底的上叠盆地,中生代煤系变形的基本特征与华北、扬子地台上的晚古生代煤系和准噶尔盆地的中生代煤系相似,总的规律是地台边缘为较复杂的挤压变形带,地台内部构造简单.含煤盆地的变形规律是/陡边平底0,即边缘存在着逆冲挤压变形,造成煤系地层直立或者倒转,向盆内短距离内即过渡为舒缓波状起伏或地层近水平的断块组合.根据有限的煤田资料,塔里木地台早、中侏罗世煤系变形分区可划分出地台北缘逆冲断裂带、地台南缘与西南缘逆冲断裂带、地台东南缘阿尔金走滑断裂带(以块断为特征).地台内部仅塔北坳陷罗布泊预测区保存大面积连续的早、中侏罗世煤系,但埋深均超过2000m,据石油勘探资料,后期改造较轻微.4东北聚煤区煤系变形分区特征411大地构造背景及煤系发育东北聚煤区指北纬40b以北、东经110b以东的我国东北和内蒙东部.本区煤炭资源量约占全国的8%,以晚侏罗至早白垩世内陆含煤碎屑沉积而著称,东部的三江)穆棱河地区则发育了中国唯一的晚中生代近海型煤系,早第三纪煤系主要充填于沿北北东向展布的小型断陷盆地中.东北聚煤区以兴蒙褶皱系及其中间地块为基底,印支运动以后卷入滨太平洋活动大陆边缘,燕山运动早、中期以在区域挤压应力场控制下形成北北东-南南西走向的压性构造形迹为特征,中生代晚期,中国东部大地构造演化进入东亚大陆边缘裂解阶段,早期北西-南东向挤压应力场逐步被拉张应力场所取代.李思田等(1988)认为,东北亚晚中生代断陷盆地系是晚侏罗至早白垩世期间区域应力场由左行压剪转化为右行张剪过程中裂陷作用的产物[16].在东北聚煤区,以晚侏罗世早、中期兴安岭群(含义县组)火山岩系的形成是裂陷作用的第一阶段,以充填晚侏罗至下白世煤系为代表的大量中、小型断陷盆地形成是裂陷作用的第二阶段.本区由西向东可划分为大兴安岭西坡盆地群、松辽盆地群和东部盆地群等三大盆地群.412煤系变形基本特征及变形分区东北聚煤区煤盆地的直接基底多数是具脆性变形行为的火山岩系,煤系所经历的后期改造主要是控煤断裂的继承性活动,以断裂断块运动为特征,构造样式以由铲式正断层控制的箕状断陷和堑垒组合为主.板缘构造活动的影响东强西弱,由西向东,大兴安岭西坡盆地群、松辽盆地群和东部盆地群等三大盆地群中,煤系的改造具逐步增强的趋势.东带北部的三江)穆棱河盆地群中出现向北西扩展逆冲断层和轴面南东倾的斜歪褶皱等挤压构造样式,松辽盆地以东沿依兰)伊通断裂带和抚顺)密山断裂带发育的早第三系拉分裂陷盆地多数亦在晚喜山期发生正反转[6],而西带(大兴安岭以西)海拉尔盆地群和霍林河)二连盆地群仍保存了成盆期的伸展构造格局.5结论和讨论中国大陆由众多稳定地块和活动带镶嵌而成,具有显著的非均匀性.从煤盆地的后期改造和煤系赋存条件角度,可分出两大类基本赋煤大地构造单元:(1)克拉通或类克拉通(地台或古大陆板块主体部分),具稳定的结晶基底,发育巨型或大型波状坳陷,聚煤作用稳定连续;煤系的后期改造弱至中等,以具环带结构的变形分区为特征,变形强度由边缘向盆内递减,主体部分煤系保存完好,往往形成具有工业价值的大型和特大型煤田,如华北鄂尔多斯盆地和华南四川盆地等.(2)构造活动带,即地槽、地洼或大陆边缘,煤系基底活动性大,煤盆地以带状坳陷(晚古生代至早中生代)和断陷(中、新生代)为主,沉积-构造分异明显,聚煤作用规模和强度差别较大,煤系的后期改造通常较强烈,以平行条带结构的变形分区为特征,变形强度具有明显的方向性,如华南聚煤区东部.中国大陆自晚古生代以来,相继经历了古亚洲地球动力学体系、太平洋地球动力学体系和特提斯地球动力学体系的作用.大陆构造演化的非均匀性和多旋回性,导致煤系变形分区呈现复杂而又有序的总体面貌.与中国大陆岩石圈结构构造基本格局相似[17],煤系变形分区组合可分为三大区域:(1)大兴安岭)太行山)武陵山以东,煤系后期改造显著且多样化,秦岭)大别山以南以挤压背景为主,华北和东北则以伸展背景为主.煤系变形分区以北东-北北东向展布、平行排列的条带结构组合为基本格局,变形幅度和强度由东向西递减.(2)贺兰山)龙门山以西,煤田构造格局以挤压体制为特色,煤系变形分区组合呈北西-北西西-北北西弧形展布,变形强度向北递减.煤系变形分区组合由滇藏聚煤区的平行条带结构转换为西北聚煤区多中心的环带结构.(3)大兴安岭)太行山)武陵山与贺兰山)龙门山之间的南北向过渡带,地壳结构稳定,煤盆地演化以继承性为特征,鄂尔多斯盆地和四川盆地煤系变形分区具有典型的/地台型0同心环带结构.煤炭是我国的第一能源,我国煤炭资源成矿期多、煤系分布面积广、煤田勘探程度高,为其他矿种所少见,且煤系主要分布于板内.因此,划分煤系变形分区、总结煤系变形基本规律,不仅对于煤炭资源评价和开发具有战略指导意义,而且也不失为研究我国板内构造变形的一个良好窗口.参考文献1 黄克兴,夏玉成.构造控煤概论.北京:煤炭出版社,1991.1~82 韩德馨,杨 起主编.中国煤田地质学(下册).北京:煤炭工业出版社,1980.409~4133 曹代勇,王昌贤.河南省西部煤田新生代断块掀斜运动.煤炭学报,1988,13(3):26~314 王桂梁,曹代勇,姜 波主编.华北南部逆冲推覆伸展滑覆和重力滑动构造.徐州:中国矿业大学出版社,19925 王文杰、王 信主编.中国东部煤田推覆、滑脱构造与找煤研究.徐州:中国矿业大学出版社,19936 云 武,王桂梁,荆惠林.依兰-伊通裂谷反转构造的特征.断裂构造分形模型和反转构造研究新发展.徐州:中国矿业大学出版社,1994.81~907 莽东鸿,杨丙中,林增品等.中国煤盆地构造.北京:地质出版社,1994.12~258 王熙真,朱榔如,王 杰.中国煤田的形成与分布.北京:科学出版社,1992.69~709 黄汲清,任纪舜,姜春发等.中国大地构造及其演化.北京:科学出版社,1980.111~11310 曹代勇,关英斌,张杰林等.沁水煤田东部构造特征研究.重庆:重庆大学出版社,1996.116~11711 曹代勇,高文泰,王昌贤.华北聚煤区南缘(豫皖)逆冲推覆构造带.中国矿业大学学报,1991(1):28~3512 王双明主编.鄂尔多斯盆地聚煤规律及煤炭资源评价.北京:煤炭工业出版社,1996.90~13313 河南煤田地质公司.河南省晚古生代聚煤规律.武汉:中国地质大学出版社,1991.141~19514 王小川主编.黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律.重庆:重庆大学出版社,1996.217~22015 Serann M ,M alavieill J (ed).Special issue:Late o rogenic extension.T ectonophysics,1994,238(1~4):7~916 李思田主编.断陷盆地分析与煤聚集规律.北京:地质出版社,1988.300~30417 马杏垣主编.中国岩石圈动力学纲要.北京:地质出版社,1987作者简介曹代勇,男,教授.1990年于中国矿业大学北京研究生部获博士学位,现从事煤田和油气地质的教学和科研工作.出版5华北南部逆冲推覆伸展滑覆和重力滑动构造6和5沁水煤田东部构造特征研究6等专著3部,发表学术论文40余篇.北京市海淀区中国矿业大学北京校区,邮政编码:100083.453第5期 曹代勇等:中国的含煤岩系变形分区454煤炭学报1998年第23卷ZONING OF DEFORMATIO N OF CO AL MEASURES IN CHINACao Daiyong(Beij ing Camp us,China Univ ersity of M ining and Technology)Jing Yulong Qiu Guang zhong Zhang Dem in Wang Yong(China National Ad ministr ation of Coal Geology)Abstract A concept of dividing the deformation of coal measures in China into zones is given from the v iew point of evaluation and ex ploitation of coal resources.The basic characteristics of deformation of coal measures in four coal accumulation areas,namely in North China,South China,Northeast China and North-w est China is discussed.T he deformation zones of coal measures in the m ainland fall into tw o basic types,¹the concentric ring structures based on a stable basement of platform;ºthe parallel strip structures based on the tectonic active belts.Controlled by the geo-dynamic framew ork of the continental lithosphere,the plane distribution of the deformation in China can be divided into three parts:the NE-SW trending reformation zone of the eastern part,the NW-SE trending reformation zone of the western part,and the stable zone of middle transitional part.Keywords coal measures,deformation zoning,coal field structure,reformation,intraplate deformation简评5复杂条件下围岩稳定性与岩体动态施工力学6一书该书是作者将自己数十年来在岩石力学方面的科研工作成果的基础上撰写而成的专著.主要内容是复杂地质或工程条件下地下工程开挖支护稳定性的理论研究与工程应用问题.该书重点研究的复杂条件,其一是指具有断续性节理的较硬岩类;其二是指具有流变特性的较软岩类.这些条件下的开挖支护问题都是地下工程中难度很大且尚无专论的课题.值得指出,对前者,作者是通过模型试验取得基本规律,在理论研究后提出了几种适于断续节理岩体的先进分析方法,并给出了工程应用实例,还得到了验证;对后者,作者系统地提出了软岩巷道变形的力学机制、支护对策及优化设计途径与方法.这些内容已分别在国际知名刊物上发表过.这是该书最具有创意和特色的部分之一.因为目前国内外尚未有如此系统而全面(包括试验、分析方法及工程应用)地研讨这一类问题的著作.该书的第二个主要创新点,是指出了复杂地质条件下大型地下工程施工是与施工过程密切相关的,并提出了新的学科方向,即/岩体动态施工力学0及其基本原理;同时进一步运用先进的数学方法(如动态规划、人工智能)作为分析工具,形成了一个较完整的方法系统;还结合重大地下工程实例做了应用分析.结果显示,用它已得到十分显著的经济和安全效益.这在国际上具有首创意义,并有重大的实用意义.书中还提出了一系列不同力学模型的二维和三维位移观测反分析方法和应用实例,理论和实际结合紧密.在锚固机理研究方面,提出了一种适用于软岩支护的新的倾斜交叉锚固方法,经试验和应用证明能有效地提高围岩强度并控制其变形量;在巷道支护设计方面,提出了施工监控与反馈设计方法等.这也是一个突出的创新点.上述几方面的成果都已达到国际领先的水平.(中国工程院院士:刘天泉)。
煤的地质年代geological ages of coalmei de diz加niall(lai 煤的地质年代(geol呼eal ages诚coal) 指煤层形成的年代。
它可根据含煤地层中的古生物化石特征和成煤植物特征,采用放射性同位素测定法和煤层、地层对比法等确定。
附表为参照1989年国际地质科学联合会(ICS)的地球地层表列出的煤的地质年代表。
表中给出了煤的年龄值、相应的生物演化过程、形成的主要煤种以及中国主要成煤期。
煤的生成受植物演化、古气候、古地理、古地壳构造运动诸因素制约。
繁茂的植物、温暖潮湿的气候、低洼平坦的地形煤的地质年代表于以及缓慢下沉的地壳运动对成煤有利。
在晚古生代的石炭纪和二叠纪、中生代的侏罗纪和白里纪、新生代中的第三纪均具备上述成煤条件,是世界重要成煤期。
而石炭纪和二叠纪、侏罗纪和第三纪则是中国重要成煤期。
在元古代地层中发现有菌藻植物形成的煤,这种煤在中国南方的早古生代地层中分布较广,称为石煤,有一定的利用价值。
石炭纪和二叠纪成煤的主要煤种是烟煤,其次是无烟煤。
在此时期,中国南北方都有重要煤层生成,特别是北方的石炭纪和二叠纪煤田是中国重要的炼焦用煤基地。
侏罗纪成煤的煤种主要是揭煤和低煤化度烟煤,也有中煤化度烟煤,常含有厚煤层或巨厚煤层。
第三纪成煤的主要煤种是褐煤和长焰煤。
地质年代表华南赋煤区二叠系含煤地层在杭州-鹰潭-赣州-韶关-北海一线以南的东南地层分区,二叠系含煤地层主要形成于早二叠世晚期,在闽西南、粤东、粤中称童子岩组,在浙西称礼贤组,在赣东一带称上绕组。
在连云港-合肥-九江-株州-百色一线以南的江南地层分区,二叠系含煤地层主要为海陆交互相的龙潭组,其次是以碳酸盐为主的合山组。
在龙门山-洱海-哀牢山一线以东、秦岭-大别山以南的扬子地层分区,上二叠统含煤地层以碳酸盐沉积为主的称吴家坪组,以海陆交互相为主的称龙潭组和汪家寨组,以玄武岩屑为主的陆相沉积称宣威组。
上二叠统含煤地层存在明显的穿时现象,含煤层位由东向西抬高,在东南分区为下二叠统,在江南分区为下二叠统上部的茅口阶(龙潭组下部),在扬子分区为上二叠统龙潭阶和长兴阶(均为龙潭组)。
中国不同时代形成的煤和地区分布之间的关系?煤是由植物经过复杂的作用形成的,而植物为了适应环境生存,植物界形成了不同的部落,出现植物分区,为成煤提供了丰富的物质基础。
所以,形成了我国地史上的聚煤期有14个,其中早石炭世、晚石炭世-早二叠世、晚二叠世、晚三叠世、早-中侏罗世、早白垩世和第三纪为主要聚煤期。
在这7个主要聚煤期中,以晚石炭世-早二叠世、晚二叠世、早-中侏罗世和早白垩世4个聚煤期更为重要,相应煤系地层中赋存的煤炭资源占我国煤炭资源总量的98%以上,煤层气资源占我国煤层气资源总量的99.5%以上。
1、主要聚煤期含煤地层分布晚石炭世至早二叠世晚石炭世至早二叠世的聚煤作用在我国北方形成海陆交互相石炭-二叠系含煤地层,主要赋存在华北赋煤区,含煤面积80万km2,构成了我国最主要的煤层气聚气区,即华北聚气区。
该区大地构造单元为华北地台的主体部分,地理分布范围西起贺兰山-六盘山,东临勃海和黄海,北起阴山-燕山,南到秦岭-大别山,包括了北京、天津、山东、河北、山西、河南、内蒙南部、辽宁南部、甘肃东部、宁夏东部、陕西大部、江苏北部和安徽北部的广大地区。
在华北赋煤区内,还广泛发育了早-中侏罗世含煤盆地,并见零星上三叠统和第三系含煤地层分布。
晚二叠世晚二叠世聚煤作用在我国南方十分强烈,含煤地层广泛分布于秦岭-大别山以南、龙门山-大雪山-哀牢山以东的华南赋煤区内,构成了我国华南煤层气聚气区。
该区大地构造单元属扬子地台和华南褶皱系,地理分布范围包括西南、中南、华东和华南的12个省区。
华南赋煤区内除有以龙潭组为代表的上二叠统含煤地层外,还有上石炭统、上三叠统-下侏罗统、第三系等含煤地层分布。
下-中侏罗统下-中侏罗统含煤地层主要分布在西北赋煤区,在华北赋煤区的分布也较为广泛。
西北赋煤区由塔里木地台、天山-兴蒙褶皱系西部天山段和秦祁昆仑褶皱带、祁连褶皱带、西秦岭褶皱带等大地构造单元组成,地理分布范围包括秦岭-昆仑山一线以北、贺兰山-六盘一线以西的新疆、青海、甘肃、宁夏等省区的全部或大部。
在整个地质年代中,全球范围内有三个大的成煤期:古生代的石炭纪和二迭纪,成煤植物主要是袍子植物。
主要煤种为烟煤和无烟煤。
中生代的株罗纪和白垩纪,成煤植物主要是裸子植物。
主要煤种为褐煤和烟煤。
新生代的第三纪,成煤植物主要是被子植物。
主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。
三主要成煤期与主要煤田影响成煤期的主要因素自从地球上出现植物,便有了成煤的物质基础,但世界范围内最主要的成煤期都仅属于某些地质年代。
这是因为聚煤作用的发生是古气候、古植物、古地理和古构造诸因素综合作用的结果。
古气候因素地史上最适于聚煤作用发生的气候条件是温暖潮湿的气候。
根据现代聚煤作用发生的气候条件来看,无论在热带、温带和寒带,只要有足够的湿度,都可形成泥炭层。
但在同样长的时间里,以温暖潮湿气候下形成的泥炭层最厚。
因此,湿度与温度相比,湿度对聚煤作用的影响更大。
古植物因素只有当植物演化发展到一定阶段,即有高大的木本植物大量繁殖堆积,才能广泛形成有工业意义的煤层。
高等植物中如石松纲、苛达纲、银杏纲等,树木粗壮高大,树高可达三四十米。
因此它们繁盛发育的石炭纪、二叠纪、白垩纪和第三纪等时期都是重要的成煤期。
古地理因素一般最适于形成泥炭沼泽的古地理环境是广阔的滨海平原、泻湖海湾、河流的冲积平原、山间或内陆盆地等。
在这些地区,聚煤作用可以在几万乃至几十万平方公里范围内广泛而连续地发生。
古构造因素古地壳构造运动是影响成煤期的主导因素。
它不仅影响古气候和古地理条件,而且直接影响聚煤作用,主要表现在以下三个方面:泥炭层的堆积要求地壳发生缓慢的下降。
下降的速度最好与植物残骸堆积的速度大致平衡,这种平衡持续的时间越长,形成的煤层也越厚。
当地壳的陷落速度大于植物残骸的堆积速度,但泥炭沼泽上面的水层厚度仍小于时,水层下的植物残骸可作为养料,滋养新一代植物的生长,泥炭层可继续堆积增厚。
同时,水流和风带来的泥砂会分散掺混于泥炭中。
当泥炭沼泽的覆水厚度大于时,光线难以透过水层,植物因光合作用受阻不能生长,泥炭层的堆积过程亦随之停止。
新疆区域成矿规律一、区域矿产时间分布规律新疆矿种繁多,成因类型复杂多样,为了缩短篇幅,突出重点,现仅就新疆主要矿产的主要成矿期简述如下。
1、铁矿新疆的铁矿成矿作用跨越时间较长,从中元古代至中生代各地质历史阶段多有铁矿形成,但主要形成于如下4个时期。
早元古代是新疆铁矿最早的成矿期,以形成深变质沉积型铁矿床为特征,多为大、中型矿床,如天湖、玉山等铁矿床。
晚志留-早泥盆世主要形成沉积变质型铁矿,已知成型矿床有8处,约占全疆成型矿床的8%,已探明储量约占全疆储量的20%,为新疆第二主要成矿期。
如蒙库、梧桐沟、帕尔岗、黑黑孜江干铁矿等。
石炭纪的铁矿有2种类型:一是火山岩型,如查岗诺尔、雅满苏、阿奇山、赤龙峰铁矿床等;二是沉积型铁矿,如莫托沙拉铁矿。
两者共同的特点,均形成于古陆壳之上裂离或拉伸作用早期阶段;多形成中、小型富铁矿床。
已知成型矿床20余个,约占全疆铁矿总量的30%,是新疆继晚志留-早泥盆世后的第三个主要成矿期。
二叠纪的铁矿有两种类型:一是岩浆型钒钛磁铁矿床(尾亚);二是潜火山岩矿浆贯入型铁矿床,如磁海铁矿。
2、铬矿铬矿均产于蛇绿岩建造下部变质橄榄岩相和超镁铁堆晶岩相中。
分为高铬低铝和高铝低铬两种类型。
前者主要形成于震旦-奥陶纪裂离作用的高潮期,即早中奥陶世,如唐巴勒、洪古勒楞、萨雷诺海等矿床。
含矿围岩年龄(唐巴勒)520-480Ma(肖序常等1991);后者形成于早石炭世裂离作用的高潮期,多形成大、中、小型矿床(沙尔托海、鲸鱼铬铁矿床),其储量约占全疆储量的85%。
早石炭世是新疆铬铁矿主要成矿期。
3、铜矿从长城纪-第三纪各历史阶段均有产出,其中主要是泥盆纪、石炭纪、二叠纪,其次为奥陶纪、白垩纪-第三纪和长城-蓟县纪。
长城-蓟县纪和奥陶纪的铜矿,均为单一的与细碧-角斑岩建造有关的火山岩型块状硫化物铜矿床,如上其汗、可可乃克铜矿床等。
泥盆纪的铜矿主要是火山岩型块状硫化物型铜-多金属矿床(阿舍勒),其次是火山热液层控型铜矿(索尔库都克)。
古生物学1:古生物学是研究地史时期中的生物及其发展的科学。
它所研究的范围不仅包括在地史时期中曾经生活过的各类生物,也包括各地质时代所保存的与生物有关的资料。
古生物学研究地史时期的生物,其具体对象是发现于各时代地层中的化石(fossil),保存在岩石中的远古时期(—般指全新世,距今一万年以前)生物的遗体、遗迹和死亡后分解的有机物分子。
化石:保存在岩层中地质历史时期的生物遗体、生物活动痕迹及生物成因的残留有机物分子。
标准化石:具有在地质历史中演化快、延续时间短、特征显著、数量多、分布广等特点的化石2. 如何区分原地埋藏的化石与异地埋藏的化石?答:原地埋藏的化石保存相对较完整,不具分选性和定向性,生活于相同环境中的生物常伴生在一起;而异地埋藏的化石会出现不同程度破碎,且分选较好,不同生活环境、不同地质时期的生物混杂,具有一定的定向性3. 石化作用过程可以有(矿质充填作用)、(置换作用)和(碳化作用)三种形式。
概述“化石记录不完备性”的原因答:化石的形成和保存取决于生物类别、遗体堆积环境、埋藏条件、时间因素、成岩作用条件。
并非所有的生物都能形成化石。
古生物已记录13万多种,大量未知。
现今我们能够在地层中观察到的化石仅是各地史时期生存过的生物群中极小的一部分。
4.印模化石与印痕化石如何区别:。
印模化石:生物硬体在围岩表面上的印模。
(包括:外模、内模、复合模。
)外膜反映原来生物硬体外表形态及结构,内膜反映硬体内部的构造。
印痕化石:生物软体陷落在细粒的碎屑物或化学沉积物种,在沉积物中留下的印痕经过成岩作用以后,遗体消失,印痕保存下来。
反映生物主要特征。
5.适应辐射:指的是从一个祖先类群,在较短时间内迅速地产生许多新物种。
(某一类群的趋异向着各个不同方向发展,适应多种生活环境。
规模大,较短时间内完成)适应趋同:生物亲缘关系疏远的生物,由于适应相似的生活环境,而在形体上变得相似是指那些具有最适应环境条件的有利变异的个体有较大的生存和繁殖机会。
我国主要煤田简介及各煤炭大省煤种及数量情况我国的煤炭资源形成于六个不同的地质时期,情况分别如下古生代石炭纪晚期至二叠纪早期:距今约3.20亿年-2.78亿年古生代二叠纪晚期:距今约2.64亿年-2.50亿年中生代三叠纪晚期:距今约2.27亿年-2.05亿年中生代侏罗纪早中期:距今约2.05亿年-1.59亿年中生代白垩纪早期:距今约1.42亿年-0.99亿年年新生代第三纪:距今约6550万年-180万年我国不同成煤期的煤炭资源特点[石炭二叠纪是最早的煤炭资源形成期,我国的石炭二叠纪煤基本上分布在黄河流域.石炭二叠纪煤种范围从长焰煤到无烟煤,在已探明的石炭二叠纪煤储量中,气煤占24%,无烟煤占17%,低变质烟煤占14%,贫煤占13%,焦煤占12%,肥煤占1 1%,瘦煤占9%晚二叠纪是我国南方主要的成煤时期,晚二叠纪煤广泛分布于江南各省区,其中绝大部份资源集中于贵州和川南滇东北.在已探明的晚二叠纪煤储量中,无烟煤占62%,焦煤占16%,贫煤占11%,瘦煤占8%,肥煤占2%,气煤占1% 我国晚三叠纪煤的探明储量只有40亿吨,其中陕北三叠纪煤田就占了20亿吨,煤种为气煤.另外20亿吨零星散布于全国各地,基本可以忽略不计我国侏罗纪煤主要集中在内蒙古,陕西,甘肃,宁夏四省区交界地带和新疆北部.在各成煤期中,侏罗纪煤的平均含硫量最低,平均含灰量最低,这是侏罗纪煤的最大优势.侏罗纪的煤种范围从褐煤到无烟煤,在已探明的侏罗纪煤储量中,低变质烟煤占96%,气煤占3%,其他占1%我国白垩纪煤分布于内蒙古东部和东北三省,其中内蒙古东部的白垩纪煤几乎全部是褐煤,且多适合露天开采,东北三省的白垩纪煤从长焰煤到无烟煤,黑龙江七台河煤田是唯一的白垩纪无烟煤产地.在已探明的白垩纪煤储量中,褐煤占了81%第三纪是最后一个成煤期,由于经历的时间最短,所以煤的碳化程度普遍较低.煤种范围从褐煤到气煤,在已探明的第三纪煤储量中,褐煤占90%,长焰煤和气煤占10%石炭二叠纪煤含灰量在10%-20%的占34%,含灰量在20%-30%的占64%,含灰量在30%以上的占2%晚二叠纪煤含灰量在10%-20%占47%,含灰量在20%-30%的占45%,含灰量在30%以上的占8%侏罗纪煤含灰量在10%以下的占44%,含灰量在10%-20%的占55%,含灰量在20%以上的占1%白垩纪煤含灰量在10-20%的占65%,含灰量在20-30%占34%,含灰量在30%以上的占1%石炭二叠纪煤含硫量在1%以下的占24%,含硫量在1%-2%的占52%,含硫量在2%以上的占24%晚二叠纪煤含硫量在1%以下的占7%,含硫量在1%-2%的占29%,含硫量在2%以上的占64%. [ 转自铁血社区/ ]侏罗纪煤含硫量在1%以下的占78%,含硫量在1%-2%的占22%白垩纪煤含硫量在1%以下的占64%,含硫量在1%-2%的占36%不同成煤期在我国煤炭资源中的地位在我国已探明的煤炭储量中,侏罗纪煤占39.6%,石炭二叠纪煤占38.0%,白垩纪煤占12.2%,晚二叠纪煤占7.5%,第三纪煤占2.3%,晚三叠纪煤占0.4% 在我国尚未探明的煤炭预测储量中,侏罗纪煤占65.5%,石炭二叠纪煤占22. 4%,晚二叠纪煤占5.9%,白垩纪煤占5.5%,第三纪煤占0.4%,晚三叠纪煤占0.3% 在我国已探明的褐煤储量中,白垩纪煤占77%,第三纪煤占22%,侏罗纪煤占1%在我国已探明的低变质烟煤储量中,侏罗纪煤占92%,石炭二叠纪煤占6%,其他占2%在我国已探明的气煤储量中,石炭二叠纪煤占83%,侏罗纪煤占8%,白垩纪煤占6%,其他占3%在我国已探明的肥煤储量中,石炭二叠纪煤占90%,晚二叠纪煤占7%,其他占3%在我国已探明的焦煤储量中,石炭二叠纪煤占70%,晚二叠纪煤占18%,侏罗纪煤占6%,白垩纪煤占6%在我国已探明的瘦煤储量中,石炭二叠纪煤占83%,晚二叠纪煤占16%,其他占1%在我国已探明的贫煤储量中,石炭二叠纪煤占81%,晚二叠纪煤占18%,其他占1%[ 转在我国已探明的无烟煤储量中,石炭二叠纪占53%,晚二叠纪煤占45%,其他占2%我国探明地质储量10亿吨以上的煤田简介(注:煤田探明储量数据截止时间并不一致,仅供参考)(注:不包括那些过去探明地质储量曾超过10亿吨,但目前已衰减到10亿吨以下的煤田)1.大同煤田:双纪煤田(石炭二叠纪和侏罗纪),位于山西最北端,探明地质储量373亿吨,其中石炭二叠纪煤308亿吨,侏罗纪煤65亿吨.过去开发的都是侏罗纪矿区,煤种为弱粘煤,低硫低灰,发热量高,属优质的动力煤,大同侏罗纪矿区已充分开发,今后无增产潜力.最近开发了石炭二叠纪矿区,煤种为气煤,同样作为动力煤使用2.宁武煤田:双纪煤田(石炭二叠纪和侏罗纪),位于山西北部,以石炭二叠纪煤为主,仅在中部有少量侏罗纪煤,且未进行开发.宁武煤田探明地质储量412亿吨,其中气煤395亿吨,主要作为动力煤使用.宁武煤田划分为四个矿区:平朔,轩岗,岚县,朔南.其中平朔矿区112亿吨的储量中有60亿吨适合露天开采,规划建三座大型露天矿:安太堡,安家岭,东露天.其中安太堡和安家领两座露天矿已经建成投产,正在建设东露天矿3.西山煤田:石炭二叠纪煤田,位于太原西侧,探明地质储量193亿吨,其中焦煤80亿吨,贫煤62亿吨,瘦煤25亿吨,肥煤20亿吨,无烟煤6亿吨.西山煤田划分为四个矿区:古交,西山,清交,东社.其中古交矿区是我国目前产量最大的焦煤矿区4.霍西煤田:石炭二叠纪煤田,位于山西中南部,探明地质储量309亿吨,其中焦煤102亿吨,肥煤98亿吨,瘦煤69亿吨,气煤20亿吨,无烟煤13亿吨,贫煤7亿吨.霍西煤田是一个典型的炼焦煤田,也是我国肥煤储量最多的煤田.霍西煤田划分为汾西矿区和霍州矿区5.沁水煤田:石炭二叠纪煤田,位于山西中南部,探明地质储量843亿吨,其中无烟煤436亿吨,贫煤287亿吨,瘦煤83亿吨,焦煤37亿吨.沁水煤田是山西最大的煤田,也是我国最大的无烟煤基地.沁水煤田划分为六个矿区:霍东,阳泉,潞安,晋城,武夏,东山6.河东煤田:石炭二叠纪煤田,位于黄河以东,吕梁山以西.探明地质储量515亿吨,其中气煤169亿吨,焦煤123亿吨,瘦煤95亿吨,贫煤61亿吨,肥煤41亿吨,长焰煤26亿吨.河东煤田是我国焦煤储量最多的煤田.河东煤田划分为四个矿区:河保偏,离柳,乡宁,石隰7.焦作煤田:石炭二叠纪煤田,探明地质储量24亿吨,煤种为无烟煤8.新密煤田:石炭二叠纪煤田,位于河南嵩山东边,探明地质储量27亿吨,煤种为贫煤和无烟煤9.禹州煤田(河南省中部):石炭二叠纪煤田,探明地质储量17亿吨,煤种以贫煤和瘦煤为主10.平顶山煤田:石炭二叠纪煤田,探明地质储量50亿吨,煤种以焦煤和肥煤为主11.永夏煤田:石炭二叠纪煤田,位于河南永城和夏邑境内,探明地质储量25亿吨,煤种为瘦煤,贫煤和无烟煤12.淮南煤田:石炭二叠纪煤田,以淮南市为主体,跨淮河两岸.探明地质储量15 3亿吨,煤种为气煤.淮南煤田划分为三个矿区:淮南,潘谢,新集13.淮北煤田:石炭二叠纪煤田,位于安徽北部,探明地质储量67亿吨,煤种范围从气煤到贫煤,其中肥煤和焦煤占储量的一半以上.淮北煤田划分为四个矿区:闸河,宿州,临涣,涡阳14.徐州煤田:石炭二叠纪煤田,探明地质储量34亿吨,煤种以气煤为主.徐州煤田是江苏唯一的煤炭产地,分为徐州矿区和丰沛矿区15.滕州煤田:石炭二叠纪煤田,探明地质储量37亿吨,煤种为气煤16.兖州煤田:石炭二叠纪煤田,探明地质储量33亿吨,煤种为气煤17.济宁煤田:石炭二叠纪煤田,探明地质储量32亿吨,煤种以气煤为主,有少量肥煤18.巨野煤田:石炭二叠纪煤田,探明地质储量55亿吨,煤种为气煤和肥煤19.黄河北煤田:石炭二叠纪煤田,位于山东西北部,探明地质储量25亿吨,煤种以气煤和肥煤为主20.龙口煤田:第三纪煤田,位于龙口和蓬莱一带,是我国唯一的滨海煤田,探明地质储量27亿吨,其中陆地14亿吨,海底13亿吨,煤种为褐煤和长焰煤,目前海底煤炭也已进行了开采21.邯邢煤田:石炭二叠纪煤田,探明地质储量57亿吨,煤种以肥煤和焦煤为主,包括邯郸峰峰矿区和邢台临城矿区22.蔚县煤田:侏罗纪煤田,探明地质储量14亿吨,煤种以长焰煤为主23.开滦煤田:石炭二叠纪煤田,探明地质储量43亿吨,煤种以气煤和肥煤为主24.京西煤田:双纪煤田(侏罗纪和石炭二叠纪),位于北京西南部,探明地质储量20亿吨,煤种均为无烟煤25.铁法煤田:白垩纪煤田,探明地质储量19亿吨,煤种为长焰煤.由于抚顺和阜新的煤炭资源趋于枯竭,铁法煤田目前已成为辽宁最重要的煤炭产地26.鸡西煤田:白垩纪煤田,探明地质储量23亿吨,煤种以气煤为主27.七台河煤田:白垩纪煤田,探明地质储量17亿吨,其中焦煤约10亿吨,七台河煤田是东北地区最重要的炼焦煤基地.28.双鸭山煤田:白垩纪煤田,位于黑龙江双鸭山市,探明地质储量25亿吨,煤种以气煤为主,包括三个矿区:双鸭山,集贤,双桦29.宝清煤田:第三纪煤田,位于黑龙江双鸭山市,探明地质储量65亿吨,煤种为褐煤30.鹤岗煤田:白垩纪煤田,探明地质储量20亿吨,煤种以气煤为主31.大雁煤田:白垩纪煤田,位于内蒙古呼伦贝尔牙克石西南,探明地质储量36亿吨,煤种为褐煤32.宝日希勒煤田:白垩纪煤田,位于内蒙古呼伦贝尔陈巴尔虎旗,探明地质储量41亿吨(其中26亿吨适合露天开采),煤种为褐煤33.呼山煤田:白垩纪煤田,位于内蒙古呼伦贝尔陈巴尔虎旗和新巴尔虎左旗交界处,探明地质储量23亿吨,煤种为褐煤34.伊敏煤田:白垩纪煤田,位于内蒙古呼伦贝尔鄂温克旗,探明地质储量48亿吨(其中25亿吨适合露天开采),煤种为褐煤.伊敏煤田是我国第一个采取煤电联营的方式建设的煤田,通过建设坑口电厂,将褐煤就地转化成电力输出35.伊敏五牧场煤田:白垩纪煤田,探明地质储量53亿吨,煤种为长焰煤和褐煤36.红花尔基煤田:白垩纪煤田,位于呼伦贝尔鄂温克旗,探明地质储量27亿吨,煤种为褐煤37.呼和诺尔煤田:白垩纪煤田,位于内蒙古呼伦贝尔,范围跨鄂温克旗和新巴尔虎左旗,探明地质储量104亿吨,煤种为褐煤38.扎赉诺尔煤田:白垩纪煤田,位于内蒙古呼伦贝尔满洲里市,探明地质储量83亿吨,煤种为褐煤39.霍林河煤田:白垩纪煤田,位于内蒙古通辽霍林郭勒市,探明地质储量131亿吨(其中30亿吨适合露天开采),煤种为褐煤40.乌尼特煤田:白垩纪煤田,位于内蒙古锡林郭勒东乌珠穆沁旗,探明地质储量69亿吨,煤种为褐煤41.白音华煤田:白垩纪煤田,位于内蒙古锡林郭勒西乌珠穆沁旗,探明地质储量140亿吨(其中45亿吨适合露天开采),煤种为褐煤42.胜利煤田:白垩纪煤田,位于内蒙古锡林郭勒锡林浩特市,伴生有锗矿,探明地质储量214亿吨(其中122亿吨适合露天开采),煤种为褐煤,是我国可供露天开采量最大的煤田,也是我国最大的锗矿.胜利煤田规划建设五个露天矿和五个井矿,此外还有一个露天锗矿43.白音乌拉煤田:白垩纪煤田,位于内蒙古锡林郭勒苏尼特左旗,探明地质储量30亿吨,煤种为褐煤44.平庄元宝山煤田:白垩纪煤田,位于内蒙古赤峰市,探明地质储量16亿吨,煤种为褐煤45.桌子山煤田:石炭二叠纪煤田,位于内蒙古乌海市与鄂尔多斯市交界处,探明地质储量29亿吨,煤种以肥煤和焦煤为主,是内蒙古最重要的炼焦煤基地46.准格尔煤田:石炭二叠纪煤田,位于内蒙古鄂尔多斯市准格尔旗,探明地质储量253亿吨(其中40亿吨适合露天开采),煤种为长焰煤47.神府东胜煤田:侏罗纪煤田,从陕北的神木,府谷,榆林,横山,靖边一带向北延伸到内蒙古鄂尔多斯东胜,探明地质储量2236亿吨(陕西1300多亿吨,内蒙古9 00多亿吨),是我国最大的煤田,煤种以不粘煤为主,低硫低灰,发热量高,属优质的动力煤.神府东胜煤田划分为六个矿区:神东,万利,新街,呼吉尔特,榆神,榆横48.陕北石炭二叠纪煤田:该煤田其实与山西河东煤田同属一个煤田,被黄河切成了两部份.探明地质储量54亿吨,划分为府谷矿区和吴堡矿区,府谷矿区以气煤为主,吴堡矿区以焦煤为主49.陕北三叠纪煤田:位于延安,子长,横山等地,探明地质储量20亿吨,是我国最大的三叠纪煤田,煤种为气煤50.渭北煤田:石炭二叠纪煤田,位于渭河以北陕西中东部,探明地质储量62亿吨,煤种为焦煤,瘦煤,贫煤.渭北煤田划分为四个矿区:铜川,蒲白,澄合,韩城51.黄陇煤田:侏罗纪煤田,位于陕西中西部,探明地质储量140亿吨,煤种为长焰煤和弱粘煤.黄陇煤田划分为四个矿区:黄陵,焦坪,旬耀,彬长52.华亭煤田:侏罗纪煤田,位于甘肃陇东地区的华亭县,探明地质储量33亿吨,煤种为长焰煤53.贺兰山煤田:双纪煤田(石炭二叠纪和侏罗纪),探明地质储量25亿吨,划分为三个石炭二叠纪矿区(石嘴山,石炭井,呼鲁斯太)和一个侏罗纪矿区(汝箕沟).除呼鲁斯太矿区位于内蒙古境内外,其他三个矿区均位于宁夏境内.石嘴山矿区煤种为气煤,主要作为动力煤使用;石炭井矿区和呼鲁斯太矿区以焦煤为主;汝箕沟矿区的无烟煤质量是全国最好的,被称为"太西煤"以区别于一般的无烟煤54.宁东煤田:双纪煤田(侏罗纪和石炭二叠纪),位于宁夏东部,探明地质储量2 69亿吨,划分为五个侏罗纪矿区(灵武,鸳鸯湖,马家滩,积家井,萌城)和两个石炭二叠纪矿区(横城,韦州).侏罗纪矿区煤种为不粘煤和长焰煤,石炭二叠纪矿区煤种为气煤55.木里煤田:侏罗纪煤田,位于青海省东北部,探明地质储量33亿吨,其中焦煤31亿吨.木里煤田划分为江仓矿区和聚乎更矿区56.吐哈煤田:侏罗纪煤田,位于新疆吐鲁番-哈密盆地,探明地质储量441亿吨,煤种为长焰煤和气煤57.塔北煤田:侏罗纪煤田,位于新疆塔里木盆地北部边缘,探明地质储量16亿吨,煤种为气煤58.准东煤田:侏罗纪煤田,位于新疆准噶尔盆地东部,探明地质储量138亿吨,煤种为长焰煤,不粘煤和气煤59.准南煤田:侏罗纪煤田,位于新疆准噶尔盆地南部,探明地质储量259亿吨,煤种为长焰煤,不粘煤和气煤60.准北煤田:侏罗纪煤田,位于新疆准噶尔盆地北部,探明地质储量53亿吨,煤种为长焰煤和气煤61.伊犁煤田:侏罗纪煤田,位于新疆伊犁,探明地质储量22亿吨,煤种为长焰煤和气煤62.筠连煤田:晚二叠纪煤田,位于宜宾市筠连县,探明地质储量28亿吨,煤种为无烟煤63.古叙煤田:晚二叠纪煤田,位于泸州市古蔺,叙永两县境内,探明地质储量37亿吨,煤种为无烟煤64.黔北煤田:晚二叠纪煤田,位于贵州北部,探明地质储量151亿吨,煤种以无烟煤为主65.织纳煤田:晚二叠纪煤田,位于贵州织金,纳雍一带,探明地质储量172亿吨,是我国南方最大的煤田,煤种为无烟煤66.六盘水煤田:晚二叠纪煤田,位于贵州六枝,盘县,水城一带,探明地质储量1 47亿吨,其中炼焦煤种约占60%,是我国南方最大的炼焦煤基地67.兴义煤田:晚二叠纪煤田,探明地质储量17亿吨,煤种以无烟煤为主68.昭通煤田:第三纪煤田,位于云南昭通,探明地质储量80亿吨(其中59亿吨适合露天开采),煤种为褐煤[69.老厂煤田:晚二叠纪煤田,位于云南曲靖市,探明地质储量38亿吨,煤种为无烟煤70.恩洪煤田:晚二叠纪煤田,位于云南曲靖市,探明地质储量24亿吨,煤种以焦煤和瘦煤为主煤炭探明地质储量全国前十名(单位:亿吨)全国10189山西2652 (气煤898,无烟煤455,贫煤417,焦煤358,瘦煤273,肥煤165,低变质烟煤86)内蒙古2247 (低变质烟煤1190,褐煤1001,其他56)[ 转自铁血社区/ ]陕西1619 (低变质烟煤1486,其他133)新疆952 (低变质烟煤867,气煤72,其他13)贵州524 (无烟煤347,贫煤65,焦煤42,瘦煤33,肥煤18,气煤12,其他7)宁夏309 (低变质烟煤251,其他58)安徽245 (气煤137,焦煤45,肥煤15,其他48)云南242 (褐煤155,无烟煤41,其他46)河南225 (无烟煤84,贫煤51,焦煤47,瘦煤22,肥煤10,低变质烟煤8,气煤3) 黑龙江218 (褐煤93,气煤51,焦煤35,低变质烟煤28,其他11)预测储量反映的是找煤潜力(四川的数据中包括重庆)全国的煤炭预测地质储量45521亿吨,其中新疆18037.3亿吨,内蒙古12250. 4亿吨,山西3899.18亿吨,陕西2031.1亿吨,贵州1896.9亿吨,宁夏1721.11亿吨,甘肃1428.87亿吨,河南919.71亿吨,安徽611.59亿吨,河北601.39亿吨,云南437. 87亿吨,山东405.13亿吨,青海380.42亿吨,四川303.79亿吨,黑龙江176.13亿吨,北京86.72亿吨,辽宁59.27亿吨,江苏50.49亿吨,湖南45.35亿吨,天津44.52亿吨,江西40.84亿吨,吉林30.03亿吨,福建25.57亿吨,广西17.64亿吨,广东9.11亿吨,西藏8.09亿吨,湖北2.04亿吨,浙江0.44亿吨,海南0.01亿吨我国主要煤炭资源大省区简介山西:山西煤炭探明储量约占全国的1/4,居第1位,预测储量居全国第3位.山西是黄河流域石炭二叠纪聚煤区的中心,除晋北有少量侏罗纪煤外,其他皆为石炭二叠纪煤.山西煤种齐全,以炼焦煤和无烟煤优势突出,炼焦煤探明储量约占全国的50%,无烟煤探明储量约占全国的40%,具有举足轻重的地位内蒙古:内蒙古煤炭探明储量和预测储量均居全国第2位.内蒙古的煤炭资源主要分为两大块:鄂尔多斯市的低变质烟煤;东部地区的褐煤.鄂尔多斯市拥有神府东胜煤田的北半部和准格尔煤田,神府东胜煤田的煤种为不粘煤,准格尔煤田的煤种是长焰煤.内蒙古东部地区是我国最大的褐煤带,分布着十几个大型褐煤田以及大量的中小褐煤田.鄂尔多斯市的不粘煤和长焰煤,以及东部地区的褐煤都属动力煤种.内蒙古的炼焦煤主要分布在桌子山煤田和乌达煤田,探明储量不大,其中桌子山煤田的焦煤预测储量很大,找煤前景广阔.在内蒙古的煤炭探明储量中,低变质烟煤占53%,褐煤占45%,炼焦煤占2%新疆:新疆是我国找煤潜力最大的省区,探明储量居全国第4位,预测储量居全国第1位.新疆的煤炭资源主要集中在北部,其中以吐鲁番-哈密盆地,准噶尔盆地,伊犁河谷资源最为密集.新疆煤炭资源的99.9%为侏罗纪煤,是我国侏罗纪煤最集中的省区.在煤种方面,新疆的煤炭资源以低变质烟煤和气煤为主,已探明的煤炭储量中,低变质烟煤占91%,气煤占8%,其他占1%陕西:陕西煤炭探明储量居全国第3位,预测储量居全国第4位.陕西拥有神府东胜煤田的南半部和黄陇煤田两大侏罗纪煤基地,两者占陕西煤炭探明储量的9 1%.与其他侏罗纪煤田相同,煤种也主要是低变质烟煤,低硫低灰,属优质的动力煤.陕西的炼焦煤资源主要来自陕北石炭二叠纪煤田和渭北石炭二叠纪煤田贵州:贵州煤炭探明储量和预测储量均居全国第5位.贵州是我国南方晚二叠纪聚煤区的主体,煤炭探明储量和预测储量均超过其他南方省区的总和.由于晚二叠纪的成煤特点,贵州的煤炭资源以无烟煤居多.在探明储量中,无烟煤占67%,贫煤占12%,炼焦煤种占21%宁夏:宁夏煤炭探明储量和预测储量均居全国第6位.宁夏的煤炭资源集中于东部,以侏罗纪煤为主,宁夏的煤炭探明储量中,低变质烟煤占81% 甘肃:甘肃的煤炭探明储量较少,居全国第13位,预测储量居全国第7位,找煤潜力较大.甘肃煤炭资源的约95%为侏罗纪煤,集中于陇东地区,已发现的主要是华亭煤田,在尚未探明的预测储量中,庆阳占了全省的94%,但由于埋藏较深,目前仍停留在预测阶段河南:河南的煤炭探明储量居全国第9位,预测储量居全国第8位.河南煤炭资源在成煤年代及煤种结构方面与山西类似,除义马有少量侏罗纪长焰煤,其他皆为石炭二叠纪煤.河南是一个传统产煤大省,且仍有较大的找煤潜力,但由于河南的煤炭资源开发程度已经很高了,因而今后的增产潜力不大安徽:安徽的煤炭探明储量居全国第7位,预测储量居全国第9位,安徽地处黄河流域石炭二叠纪聚煤区的东南端,煤炭探明储量的99%为石炭二叠纪煤,高度集中于皖北地区的淮南和淮北两大煤田.安徽的煤炭资源规模与河南接近,但开发程度要低得多,今后仍有较大的增产潜力我国的煤炭资源到底可以挖多少年巨大的煤炭地质储量数据并不代表实际可用的有效储量,这是因为许多煤炭资源实际无法开发,例如受高压地下水威胁,瓦斯含量过高,铁路公路水库下的煤,城区地下的煤.煤田是多层且形状很不规则,矿井设计过程中不可避免地要放弃一些边边角角和超薄煤层,而且还要保留一部份煤体充当矿井支柱,开采过程中也不可能挖得太干净.综合这些因素,实际可以挖出来的煤炭比例并不高,平均约占地质储量的30%我国现有煤炭地质储量约1.02万亿吨,折合有效储量约3000亿吨,2009年煤炭产量将达30亿吨,2025年煤炭产量达到50亿吨的顶峰.我国现有储量足够挖6 0年.我国尚未探明的煤炭预测地质储量约4.55万亿吨,地质资源总量(探明+预测) 5.57万亿吨,假设我国最终能探明煤炭资源总量的70%,则我国还能找到2.88万亿吨的地质储量,约合8500亿吨的有效储量,可以延长开采170年,我国煤炭资源将在230年后彻底枯竭.。
《煤化学》习题与思考题参考答案绪论1 煤炭综合利用有什么意义?答:煤炭综合利用是指煤的非燃料利用,开展煤炭综合利用(1)有利于合理利用煤炭资源,提高经济效益我国煤炭资源丰富,煤种齐全,不仅可以作燃料,也适用于许多其它工业用途。
如果以煤炭作为燃料的价值为 1,则加工成煤焦油能增值 10倍,加工成塑料能增值 90倍,合成染料能增值 375 倍,制成药品可增值 750倍,而制成合成纤维增值高达 1500倍。
(2)有利于减轻污染,保护环境开展煤炭的综合利用是消除公害、保护环境的有效途径,煤炭加工所产生的煤灰、煤渣废气、废液都可以得到合理的处理和利用。
(3)有利于煤化工与石油化工互相依存,共同发展煤炭资源与石油资源相比要大得多,从长远观点看,发展煤炭资源的综合利用就显得尤为重要。
以这种煤作为原料可以得到很多石油化工较难得到的产品,如萘、酚类等,从煤中可以独特地制得一些带有五环的化合物如茚、苊,以及三个芳香环以上的化合物,如蒽、菲、芘、苊蒽、晕苯等稠环化合物。
另外,煤炭可以生产大量的烯烃和烷烃制品以补充石油原料的不足。
2 煤炭综合利用有那些工艺方法答:煤炭综合利用的主要工艺方法有:干馏、气化、液化、炭素化和煤基化学品(1)干馏――将煤料在隔绝空气的条件下加热炭化,以得到焦炭、焦油和煤气的工艺过程。
按加热终温的不同,煤的干馏可分为三类:低温干馏干馏终温 500~550℃产物:煤气、低温焦油、半焦中温干馏干馏终温 600~800℃产物:煤气、中温焦油、半焦高温干馏干馏终温 950~1050℃产物:煤气、高温焦油、焦炭煤的干馏是技术最成熟、应用最广泛的煤炭综合利用方法。
(2)气化――将煤(煤的半焦、焦炭)在气化炉中加热,并通入气化剂(空气、氧气、水蒸气或氢气),使煤中的可燃成分转化为煤气的工艺过程。
(3)液化――采用溶解、加氢、加压与加热等方法,将煤中的有机物转化为液体产物的工艺过程。
(4)炭素化――以煤及其衍生物为原料,生产炭素材料的工艺过程。
试论中国主要的成煤时代及其成煤环境演化摘要:煤是分布十分广泛的沉积矿床,控制其分布的有各种因素,如植物演化,海陆分布,海水进退,地壳运动,构造发展,古气候的分布和变化等。
中国主要成煤时期为石炭-二叠纪,侏罗纪,白垩纪和第三纪,本文介绍了中国主要成煤时期的地质构造总体演化历程,以煤层所含化石为直接证据,论述了中国主要的成煤时代演化及主要含煤地层,分析了中国各个主要含煤地区环境的演化,并简要介绍了含煤地区的地质构造与各主要成煤时期的古气候特征。
关键词:成煤时代成煤环境聚煤盆地聚煤期1中国主要的聚煤期及含煤地层从早古生代腐泥煤类的石煤至第四纪泥炭,共有14个聚煤期,其中最重要的聚煤期是:华北石炭-二叠纪,华南二叠纪,晚三叠纪,西北早,中侏罗世,东北晚侏罗-早白垩世,以及东北,西南及沿海第三纪,共7个主要的聚煤期。
早,中侏罗世聚煤期煤炭资源量占全国总量的60%,华北石炭-二叠纪聚煤期资源量占全国资源总量的26%。
1.1古生代主要聚煤期我国早古生代聚煤主要是浅海,滨海藻菌类形成的腐泥无烟煤,以下寒武统煤层的煤层的煤质较好,广泛分布于华南地区。
真正的腐泥植煤是从晚古生代植物登陆成林才形成的。
泥盆纪原始陆生植物形成的煤层零星分布于新疆、广东、广西和云南等地。
其中,广东封开煤厚1m左右,具有一定的开采价值。
石炭纪是地球上最重要的聚煤期之一。
早石炭世晚期以鳞木、古芦木和种子蕨类为主的植物群形成大面积的沼泽森林,华南早石炭世大圹阶自下而上可分为:旧司组、上司组和摆左组,贵州、云南的旧司组及其相当的地层中含有煤层。
湖南测水组大致相当于旧司组的上段,以湘中地区煤层发育最好。
浙江叶家圹组为陆生相含煤地层,依据植物化石,自下而上可分为A,B,C,D四段。
其中,A段为主要含煤层段,可与韦宪阶对比:B段已相当于纳缪尔阶。
由此可见,早石炭世含煤地层自西面向东北显示层位抬高的时迁现象。
晚石炭世地球上出现了明显的植物地理分区,我国主要属于华夏植物地理区,称大羽羊齿植物群,由石松纲、楔叶纲、真蕨纲和裸子纲等组成茂密的沼泽森林。
中国在地质历史上的成煤期共有 14 个,其中有 4 个最主要的成 煤期,即广泛分布在华北一带的晚炭纪——早二叠纪,广泛分布在南 方各省的晚二叠纪,分布在华北北部、东北南部和西北地区的早中侏 罗纪以及分布在东北地区、内蒙东部的晚侏罗纪—早白 垩纪等四个时期。
它们所赋存的煤炭资源量分别占中国煤炭资源 总量的 26%、5%、60%和 7%,合计占总资源量的 98%。
上述四个最主要的成煤期中,晚二叠纪主要在中国南方形成 了有工业价值的煤炭资源,其他三个成煤期分别在中国华北、西北和 东北地区形成极为丰富的煤炭资源。
中国煤炭资源分布面广,除上 海市外,全国 30 个省、市、自治区都有不同数量的煤炭资源。
在全国 2100 多个县中,1200 多个有预测储量,已有煤矿进 行开采的县就有 1100 多个, 60%左右。
占 从煤炭资源的分布区域看, 华北地区最多,占全国保有储量 的 49.25%,其次为西北地区,占 全国的 30. 39%, 依次为西南 地区, 8. 占 64%, 华东地区, 5. 占 7%, 中南地区,占 3.06%, 东北地区,占 2.97%。
按省、市、自治区 计算,山西、内蒙、陕西、新疆、贵州和宁夏 6 省区最多,这 6 省的 保有储量约占全国的 81.6%。
储量丰富,分布面广,品种齐全。
据中国第二次煤田预测资料,埋深 在 1000m 以浅的煤炭总资源量为 2.6 万亿 t。
其中大别山-秦岭-昆仑 山一线以北地区资源量约 2.45 万亿 t,占全国总资源量的 94%;以南 的广大地区仅占 6%左右。
其中新疆、内蒙古、山西和陕西等四省区 占全国资源总量的 81.3%,东北三省占 1.6%,华东七省占 2.8%,江 南九省占 1.6%。
中国煤炭资源的种类较多,在现有探明储量中,烟煤占 75%、无 烟煤占 12%、褐煤占 13%。
其中,原料煤占 27%,动力煤占 73%。
动力煤储量主要分布在华北和西北,分别占全国的 46%和 38%,炼 焦煤主要集中在华北,无烟煤主要集中在山西和贵州两省。
小知识我国不同成煤期的煤矿特点我国煤炭资源形成于六个地质时期情况分别如下:古生代石炭纪晚期至二叠纪早期:距今约3.20亿年-2.78亿年古生代二叠纪晚期:距今约2.64亿年-2.50亿年中生代三叠纪晚期:距今约2.27亿年-2.05亿年中生代侏罗纪早中期:距今约2.05亿年-1.59亿年中生代白垩纪早期:距今约1.42亿年-0.99亿年年新生代第三纪:距今约6550万年-180万年中国煤炭流向示意图我国不同成煤期的煤炭资源特点石炭二叠纪是最早的煤炭资源形成期,我国的石炭二叠纪煤基本上分布在黄河流域.石炭二叠纪煤种范围从长焰煤到无烟煤,在已探明的石炭二叠纪煤储量中,气煤占24%,无烟煤占17%,低变质烟煤占14%,贫煤占13%,焦煤占12%,肥煤占11%,瘦煤占9%。
晚二叠纪是我国南方主要的成煤时期,晚二叠纪煤广泛分布于江南各省区,其中绝大部份资源集中于贵州和川南滇东北.在已探明的晚二叠纪煤储量中,无烟煤占62%,焦煤占16%,贫煤占11%,瘦煤占8%,肥煤占2%,气煤占1%。
我国晚三叠纪煤的探明储量只有40亿吨,其中陕北三叠纪煤田就占了20亿吨,煤种为气煤.另外20亿吨零星散布于全国各地,基本可以忽略不计。
我国侏罗纪煤主要集中在内蒙古,陕西,甘肃,宁夏四省区交界地带和新疆北部.在各成煤期中,侏罗纪煤的平均含硫量最低,平均含灰量最低,这是侏罗纪煤的最大优势.侏罗纪的煤种范围从褐煤到无烟煤,在已探明的侏罗纪煤储量中,低变质烟煤占96%,气煤占3%,其他占1%。
我国白垩纪煤分布于内蒙古东部和东北三省,其中内蒙古东部的白垩纪煤几乎全部是褐煤,且多适合露天开采,东北三省的白垩纪煤从长焰煤到无烟煤,黑龙江七台河煤田是唯一的白垩纪无烟煤产地.在已探明的白垩纪煤储量中,褐煤占了81%。
第三纪是最后一个成煤期,由于经历的时间最短,所以煤的碳化程度普遍较低.煤种范围从褐煤到气煤,在已探明的第三纪煤储量中,褐煤占90%,长焰煤和气煤占10%。
书山有路勤为径,学海无涯苦作舟煤炭(煤)工业分类及其相关特点的认识是重要的,对实践具有指导意义。
同时,从含煤建造、构造盆地和相关的变质作用研究煤矿的成因类型也是很重要的,尚冠雄(1998 年)提出按沉积特征类型近海型、内陆型和煤盆地构造类型,划分了中国煤矿床成因类型。
其中在近海型(海陆交替型煤系)中有4 个煤盆地构造类型,包括华北石炭纪、二叠纪、扬子二叠纪、东南二叠纪、三叠纪,三江穆棱白垩纪和台湾晚第三纪(新近纪) 等典型煤田及同类煤田; 内陆型中也有4 个煤盆地构造类型,包括川漠三叠纪,准噶尔、吐哈、鄂尔多斯侏罗纪,东北及内蒙古东部白垩纪,抚密断裂带早第三纪(古近纪)和昭通晚第三纪(新近纪)等典型煤田及同类煤田,对我国煤矿成因类型的这一论述,有利于研究我国煤炭的工业分类,也有益于这方面的科研与勘查工作。
在煤炭成因分类的基础上,为指导煤矿勘查及煤的有效利用,按国家新颁布的标准,主要根据煤的干燥无灰基挥发分、黏结指数、胶质层最大厚度、奥亚膨胀度和煤的透光率等,将自然界的煤划分为14 个工业分类(表1-3-3)。
表1-3-3 我国煤表主要工业分类表1-3-3 中所列各类别煤的用途与地理分布:(1)高变质煤是表中所列的无烟煤和贫煤。
除可作动力与民用燃料外,在缺乏瘦煤的地区,贫煤也可充当配煤炼焦的瘦化剂使用;质量好的无畑煤,可作气化原料、高炉喷吹和铁矿粉烧结的燃料以及制造电石、电极和炭素材料等。
无烟煤和贫煤集中分布在我国普东南地区和黔中一带,约占全国高变质煤资源储量的75%,中南、西南和华东南部也广泛分布,其中,福建省100%为高变质煤,湖南、湖北、广东、四川的高变质煤占全省煤炭资源量的70%左右,北京占到97%左右。
由于这些省(市) 煤炭资源总量不大,因而高变质煤。
煤的形成年代在整个地质年代中,全球范围内有三个大的成煤期:(1)古生代的石炭纪和二叠纪,成煤植物主要是孢子植物。
主要煤种为烟煤和无烟煤。
(2)中生代的侏罗纪和白垩纪,成煤植物主要是裸子植物。
主要煤种为褐煤和烟煤。
(3)新生代的第三纪,成煤植物主要是被子植物。
主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。
煤是古代植物遗体堆积在湖泊、海湾、浅海等地方,经过复杂的生物化学和物理化学作用转化而成的一种具有可燃性能的沉积岩。
煤的化学成分主要为碳、氢、氧、氮、硫等元素。
在显微镜下可以发现煤中有植物细胞组成的孢子、花粉等,在煤层中还可以发现植物化石,所有这些都可以证明煤是由植物遗体堆积而成。
科学家们在地质考察研究中发现,在地球上曾经有过气候潮湿、植物茂盛的时代,如石炭纪、二迭纪(距今约3亿年)、侏罗纪(距今约1.3亿~1.8亿年)等。
当时大量繁生的植物在封闭的湖泊、沼泽或海湾等地堆积下来,并迅速被泥砂覆盖,经过亿万年以后,植物变成了煤,泥砂变成了砂岩或页岩。
由于有节奏的地壳运动和反复堆积,在同一地区往往具有很多煤层,每层煤都被岩石分开。
由植物变为煤的过程可以分为三个阶段:(1)菌解阶段,即泥炭化阶段。
当植物堆积在水下被泥砂覆盖起来的时候,便逐渐与氧气隔绝,由嫌气细菌参与作用,促使有机质分解而生成泥炭。
通过这种作用,植物遗体中氢、氧成分逐渐减少,而碳的成分逐渐增加。
泥炭质地疏松、褐色、无光泽、比重小,可看出有机质的残体,用火柴烧可以引燃,烟浓灰多。
(2)煤化作用阶段,即褐煤阶段。
当泥炭被沉积物覆盖形成顶板后,便成了完全封闭的环境,细菌作用逐渐停止,泥炭开始压缩、脱水而胶结,碳的含量进一步增加,过渡成为褐煤,这称为煤化作用。
褐煤颜色为褐色或近于黑色,光泽暗淡,基本上不见有机物残体,质地较泥炭致密,用火柴可以引燃,有烟。
(3)变质阶段,即烟煤及无烟煤阶段。
褐煤是在低温和低压下形成的。
如果褐煤埋藏在地下较深位置时,就会受到高温高压的作用,使褐煤的化学成分发生变化,主要是水分和挥发成分减少,含碳量相对增加;在物理性质上也发生改变,主要是密度、比重、光泽和硬度增加,而成为烟煤。
万方数据 万方数据第6期煤质技术2007年11月表4中国各成煤时代不同硒含量煤样品分布%从表4可见,古生代煤,无论是华北石炭一二叠纪煤(c3一P。
)还是华南早石炭世(C。
)及晚二叠世煤(P2),大多数样品中硒含量较高。
华北晚石炭世(c3)绝大多数煤中硒含量在2~10pg/g。
含硒在2p.g/g以下的煤仅分布于华;11E--II;部少数煤层。
华北早二叠世(P。
)煤中,含硒在2/-g/g以下的仅占不足10%,主要分布于河南鹤壁、宁夏石炭井等少数矿区的部分煤层中。
华南晚二叠世(P2)煤中,硒含量大多数在2~10pg/g,仅四川广旺、广东四望嶂等少数矿区部分样品中含硒低于2p.g/g,同时,华南晚二叠世(Pz)煤中,有超过20%的煤硒含量达到10p.g/g以上。
中生带和新生代煤中硒含量总体上较低。
早.中侏罗世(J。
一:)煤和东北晚侏罗.早白垩世(J。
一K。
)煤分别有62.76%和71.82%的煤硒含量低于0.5嵋/g。
华南晚三叠世(T3)煤中硒含量在0.5p.g/g以下的比例也相对较高。
新生代煤硒含量分布虽相对分散,但硒含量在1pg/g以下的占样品总数的42%,尚未发现有超过10肛g/g的新生代煤,且北方第三纪煤中硒含量低于南方第三纪煤中。
4.2中国不同聚煤区煤中硒分布表5为中国不同聚煤区煤中硒含量分布范围及算术平均值,可见,华南聚煤区和华北C3.P。
聚煤区煤中硒含量明显高于华北J。
扎西北J。
.:和东北J。
.K.聚煤区煤中。
图1为根据《中国煤种资源数据库》中不同地区硒平均含量数据绘制的硒含量分布等值线图,可见,中国煤中硒分布的地理、地质特征差异显著,总体上呈现“北低南高”的趋势。
表5中国不同聚煤区煤中硒含量分布pg/g30图1中国燥中硒含量分布等值线表6列出了各聚煤区不同硒含量煤样品分布频率。
华北J。
扎西北J。
一。
和东北J3-K,聚煤区分别有71.00%、74.68%和60.25%的煤含硒低于0.5弘g/g,同时,这三个聚煤区中硒含量在2pg/g以上的煤很少,尚未发现硒含量大于10/比g/g的煤层分布。