2017--2019近几年广州中考数学情考点分析及建议
- 格式:docx
- 大小:210.02 KB
- 文档页数:9
广州市数学中考试题题型与解析广州市数学中考比较重视学生对基本方法、基本知识、基本技能的考查,没有偏、怪、难的题目,试题一般有多种解法,大多数题目的解法都能从课本上找到影子。
回归课本,就是要掌握典型例题、习题的通法通则,就是抓纲悟本。
从这三年的中考数学试卷上分析可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);4、代数部分考查分数大概是90~100分,几何部分考查分数50~60分(37%);5、知识点的考查比较有规律,常规题型的变化不大下面是我对2010~20XX年广州市中考数学试卷的分析表,仅供参考:从表中我们可以清楚的意识到,中考对于函数部分的考查比例非常重,考查的对象主要是:一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思想,分类讨论的思想在里面体现得很淋漓尽致。
对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题总结与归纳。
一、试题具体相关数据注:2011及20XX年对比加粗部分为占比变化较大的板块。
表2 2013广州中考数学试卷中各版块分值分布注:灰色部分为多个知识点综合题.二、试题分析1.在内容上,20XX年广州中考数学在各板块所占比重与上年基本持平,但函数部分占比下降明显,20XX年填选题3题,解答题2题,20XX年填空题1题,解答题2题。
数与式部分题目量增加,所占分值较上年有所增加。
本卷统计与概率结合同一解答题考查,统计概论板块所占分值下降。
2.20XX年广州中考数学没有考查找规律,也没考查方程、不等式或函数的应用题,而增加了尺规作图的考查,还是要求考生掌握基本作图方法。
3.在难度上,与上年相比,20XX年中考数学试题前22题难度相对较小,考察的题型也比较常规,基本上都是基础的知识,如有理数大小比较、数与式部分基础题型、全等三角形的判定和尺规作图、四边形的性质。
初中数学中考考点分析广州市数学中考比较重视学生对基木方法、基木知识、基木技能的考杳,没有偏、怪、难的题目,试题一般有多种解法,大多数题忖的解法都能从课木上找到影了。
冋归课本,就是要掌握典型例题、习题的通法通则,就是抓纲悟木。
从这三年的屮考数学试卷上分析可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其屮选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);4.代数部分考查分数大概是90〜100分,儿何部分考查分数50〜60分(37%);5、知识点的考查比校有规律,常规题型的变化不大下面是我对2010〜2012年广州市中考数学试卷的分析表,从表屮我们可以清楚的意识到,中考对于函数部分的考查比例非常重,考查的对象主要是: 一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思想, 分类讨论的思想在里血体现得很淋漓尽致。
对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题总结与归纳。
Ps:函数部分是代数部分的重点内容,也是难点内容,考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基木性质的应用,难度屮等;函数的实际应川,常出现在试卷难度最大的代数综合题、代几综合题屮,分值在25 分左右。
不等式与方稈的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
从试卷这部分考题来看,难度都不大,关键是我们的同学能否有明确的思路,良好的解题过程,正确答案。
因此我们在复习的时候,一定要特别注意。
加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。
注意整体思想,换元法的训练。
Ps:方稈(组)与不等式(组)部分考查方稈和方稈组的解法及一元二次方稈的根的判断还有方稈在应用题屮的应用。
广州中考数学难点归纳总结数学作为中考科目之一,经常被许多考生视为难点和挑战。
广州中考数学试卷通常涵盖了各个知识点和难度级别,因此掌握数学的难点是提高分数的关键。
本文将对广州中考数学的难点进行归纳总结,在题型、考点和解题技巧等方面提供帮助和指导。
一、整数与有理数整数与有理数是广州中考数学重点和难点之一。
在整数与有理数的计算中,考生容易出现错位运算、符号迷失以及正负号的混淆等问题。
此外,涉及到最大公约数、最小公倍数、约数倍数等概念时,考生也常常感到困惑。
对于整数与有理数的计算,考生需要掌握加减乘除法则,并注意正负号的运用。
同时,掌握最大公约数、最小公倍数的求解方法,可以通过列举法、质因数分解法或辗转相除法等方式进行求解。
二、代数式与方程代数式与方程是中考数学的重中之重,也是考生容易出错的地方。
在解代数式与方程的过程中,考生常常忽略符号、计算错误、运算步骤不清晰,导致答案错误或无法得出结论。
解决代数式与方程的难点,考生可以通过以下步骤进行:1. 仔细阅读题目,理解问题的含义与要求。
2. 根据题目给出的条件和要求,设立未知数,建立方程。
3. 运用代数运算规则和等式性质,进行方程的变形和求解。
4. 检查解的合理性,判断是否满足题意。
三、几何与图形几何与图形是广州中考数学的难点之一。
在几何证明和图形运算中,考生容易遇到条件理解错误、计算混乱、步骤不清晰等问题。
为了应对几何与图形的难点,考生应该做到:1. 认真阅读题目,理解题意,分析几何关系。
2. 灵活使用几何定理和性质,合理选取几何方法进行证明或计算。
3. 注意几何关系之间的转化与推理,严谨地推导证明过程。
4. 确保计算准确,各步骤清晰明了。
四、概率与统计概率与统计也是广州中考数学的难点之一。
在概率与统计的计算与分析中,考生容易出现搞混概念、计算错误、未按要求解答等问题。
为了应对概率与统计的难点,考生应该掌握以下技巧:1. 理解概率和统计的基本概念,熟悉相关术语和计算方法。
2019年广东省中考数学试题分析和备考教学建议2019年广东省初中学业水平考试数学科试题符合《课程标准》(2011)的要求,试卷以《2019年广东省初中学业水平考试数学科目考试大纲》为依据,传承了往年广东省初中学业考试数学试题的特点,在知识内容、题型、题量等方面总体保持稳定,在稳定基础上保持适度的变化。
试卷既考查了四基:基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,注重联系社会实际与学生生活实际,考查学生的运算能力、推理能力、应用意识,重视数学思想和数学方法的考查,有力地彰显了《考试大纲》的权威性。
全卷基础题和综合题的区分度比较明显,很好的体现了中考作为升学考试和选拔性考试的双重功能,比较符合初中数学教学实际,对初中数学教学有良好的导向作用。
一、题型、题量与结构表二、试题考点分布表三、内容、分值、板块和难度四、近四年省题考点分布表五、2019年广东中考试题特点5.1立足基础,稳中小变2019年选择题整体水平与去年持平,试题结构保持稳定,难度系数不大,考点均与往年试题相似,考生都有似曾相识的感觉,平均分较去年有提高。
选择题第10题没有延续2018年的动点与函数图形的综合题,而是以正方形为背景,结合正方形的性质、中点、全等、相似、面积等设置综合题,这与2017年有点类似,该题有一定的难度,对学生灵活应用能力提出更高要求。
填空题与以往相比有较大变化,感觉眼前一亮,但整体难度不大,每年必考的因式分解今年没有考查,而是用数的简单运算代替,2018年填空题求阴影部分面积今年在解答题中体现;第15题考查解直角三角形的应用,此知识点近年来在选择填空单独考查没有出现过;第16题是考查代数式与图形规律探索,关键在于通过图形分段、找到规律,再用代数式表示出来,较往年16题难度降低了不少。
今年最大不同的是选择填空压轴题均考查几何图形及性质,去年2018年选择填空压轴题均设置以几何图形为背景的函数题,知识考点轮换意图明显。
近三年广州中考数学考点分析广州市数学中考比较重视学生对基本方法、基本知识、基本技能的考查,没有偏、怪、难的题目,试题一般有多种解法,大多数题目的解法都能从课本上找到影子。
回归课本,就是要掌握典型例题、习题的通法通则,就是抓纲悟本。
从这三年的中考数学试卷上分析可得到以下结论:1、试卷满分都是150分,考试时间120分钟;2、题型的分布都是总共25道题,其中选择题10道(30分),填空题6道(18分),解答题9道(102分);3、试卷难度不大,基础题占有122分(82%),有难度拔高题占有28分(18%);4、代数部分考查分数大概是90~100分,几何部分考查分数50~60分(37%);5、知识点的考查比较有规律,常规题型的变化不大下面是我对2009~2011年广州市中考数学试卷的分析表,仅供参考:从表中我们可以清楚的意识到,中考对于函数部分的考查比例非常重,考查的对象主要是:一次函数、反比例函数、二次函数。
主要研究函数的解析式,取值范围,数形结合的思想,分类讨论的思想在里面体现得很淋漓尽致。
对于必须掌握的一定要复习到位,比如待定系数法求三种函数的解析式,函数与方程的联系与转换,函数与不等式的关系,函数里的最值问题总结与归纳。
Ps:函数部分是代数部分的重点内容,也是难点内容,考查重点在于以下几点:函数解析式的求法,难度较低,熟悉待定系数法等方法即可;三种函数图像的基本性质的应用,难度中等;函数的实际应用,常出现在试卷难度最大的代数综合题、代几综合题中,分值在25分左右。
不等式与方程的复习,要以基础为主,不要只研究难题,要注重过程以及方法的总结。
从试卷这部分考题来看,难度都不大,关键是我们的同学能否有明确的思路,良好的解题过程,正确答案。
因此我们在复习的时候,一定要特别注意。
加强对以下内容的复习:一元一次方程、二元一次方程组、一元一次不等式、不等式组、一元二次方程。
注意整体思想,换元法的训练。
Ps:方程(组)与不等式(组)部分考查方程和方程组的解法及一元二次方程的根的判断还有方程在应用题中的应用。
近三年广东省中考数学试题考点分析(WORD版)题型题号2017年2016年2015年选择题1相反数相反数绝对值2科学记数法数轴科学记数法3求补角中心对称图形中位数4一元二次方程求参数的值(代入法)科学记数法平行求角度5众数正方形的性质对称图形6对称图形(轴对称和中心对称图形)中位数整式计算7用函数图象求点坐标点坐标最大数8整式计算锐角三角函数方程根的个数9圆的基本性质整体思想求值扇形面积10正方形性质、相似几何问题分段函数图像几何问题分段函数图像填空题11因式分解算术平方根多边形外角和12多边形内角和因式分解四边形计算13数轴、比较大小求不等式组的解集分式方程14概率弧长公式相似性质15整式运算(整体代入)矩形与勾股定理找规律16矩形中的折叠问题圆周角与三角函数阴影部分面积解答题一17实数的计算(绝对值、0指数幂,负整数指数幂)实数的计算(绝对值、0指数幂,负整数指数幂)解一元二次方程18分式化简求值分式化简求值分式化简求值19二元一次方程组应用题(1)作垂直平分线(2)利用中位线求边长(1)作垂线(2)利用三角函数求边长解答题二20(1)作垂直平分线(2)利用外角求角度分式方程的应用(1)画树状图(2)求概率21几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)解直角三角形几何证明与计算(折叠)22数据分析(频数分布图、扇形、估算)数据分析(条形、扇形、估算)(1)二元一次方程组应用(2)一元一次不等式应用解答题三23函数小综合(一次函数、二次函数、锐角三角函数)函数小综合(反比例函数、一次函数、二次函数)反比例函数与一次函数(最短路径问题)24(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长(1)相似证明(2)三角形的性质(3)圆的切线的证明(1)角(圆的垂径定理)(2)特殊四边形的证明(3)垂直25图形变换,动态的问题、数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积的最小值图形变换,动态的问题、数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积的最大值动点问题,数形结合(1)几何基本计算(2)三角函数计算边长(3)积,解直角三角形应用,二次函数求最值,二次根式计算。
2017广州中考数学点评基本功与技巧性的完美结合!今年试卷依旧遵循《广州市初中毕业生学业考试数学考试大纲》的规定,突出对学生基本数学素养的评价,既考核了基本知识、基本方法和基本数学思想方法,又突出教材中最基础、最核心的重点内容。
试题顺应教材改革,删去梯形以及圆与圆位置关系的考察,着重于基础知识的深化利用,利于学生发挥。
下面从考查内容及难度、试题特点两个方面,对试卷做具体的分析,最后给予初二学生一些学习建议。
一、考察内容及难度分析2017广州中考数学科试题考核一览表整份试卷总体分析:今年广州中考题,根据考试难易程度分析,前21题,依旧重基础,要求对常规题型熟练掌握,22题,23题作为中等题,在重视基础知识的同时也要求灵活运用,对于大部分后进生的来说,既是机遇也是挑战。
24题,25题着重在传统经典题型中考出新鲜感,对学生的综合分析能力提出了更高的要求,对于部分优等生而言,还是能够拉开差距。
对于现在处于中等或偏下的升初三学生来说,仅仅满足于学校的教学和考试难度(特别往往期末区统考会比较简单),不尝试冲击难度更大的题型,一旦中考21-23中等难度题型难度上升,拿不下这部分分数,中考成绩就会大幅下降。
根据考核知识点分析,七年级考查4题,八年级考查了6题,九年级考查了7题,跨年级综合有8题。
数据说明,一方面,初二的内容在中考中占据非常重的比例,如整式乘除,因式分解,分式方程与分式化简,全等三角形的判定与性质,特殊四边形的判定与性质,尺规作图,一次函数的综合应用,而这几部分学得不好,会直接影响初三的学习;另一方面,本年中考着力考查学生作图能力,借综合大题为载体,通过作图能力的要求进一步加深学生的平面/空间思维。
建议即将升初三的学生,如果初二知识学得不牢固,要利用好暑假的时间,查漏补缺,拓展思维的广度;同时,注意综合作图能力的扎实和提高。
二、重点试题命题特点分析今年试题最大的亮点之一,就是多处考察学生作图能力以及几何分析能力。
广东省中考数学历年重点题型分析与对策探讨中山市坦洲实验中学邓凯中考试题有规律可循,我们作为备考教师有必要研究其中的一些规律,这将有益于我们指导学生有效的备考复习。
中考中,有些题是每年必考的,还有一些题是隔年考的,还有一些题是几个知识点轮流考的。
为什么会出现这种情况?这是因为,初中范围内,重点知识必须重点掌握,而非重点知识也不可忽视。
比较研究高考试卷,大体也如此。
所以,我们经常看到一些专家指导我们复习要“重基础,抓重点”,其实就是这个意思。
下面,我们有序地进行分析。
一、观察统计表,发现历年重点题型本表系广东省近五年数学中考题分析简表。
由这个表,我们发现,哪些题型年年在考?1.数的简单计算(相反数、绝对值、算术平方根、倒数等);以及数的综合计算(往往综合零指数、负指数、方根、特殊角的三角函数、绝对值化简等)2.科学记数法(都是与当年最热时事相关的数据)3.式的简单计算(幂的计算、乘法公式、根式与分式等计算);以及式的综合计算(有时还设计成化简求值的题,主要考查整式与分式的基本计算)4.作图题(尺规作图或者方格纸中作图)5.探究规律(数的计算、式的计算、图形计数、图形计算等,往往设计在第10题;有时还设计成解答题,比如2010年第21题)6.统计和概率(往往是一小一大,并且位置轮换)7.应用题(06年不等式组,07年分式方程,08年分式方程,09年一元二次方程,10年不等式组)8.几何综合题(题型固定,但综合的图形不一样,有时是三角形与四四边形,有时是四边形与圆,有时是三角形与圆等)9.函数小综合题(题型固定,但综合的内容不一样,可能是一次函数、反比例函数、二次函数的选其中两者进行小综合,有时也单独考一种函数,可能是小题,也可能是大题,还可能一小一大)10.以几何图形为母版的压轴题。
由于以简单几何图形为母版,学生容易理解题意,容易建立联系,也容易上手,同时,还有能有效地考查学生的创新能力和综合能力,因此,很受命题者亲睐。
2017--2019近几年广州中考数学情考点分析及建议近几年考情分析引言2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。
选择填空题考法常规,考查范围以基础知识为主。
解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。
24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。
本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生研究的结果,也重视研究的过程。
2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。
本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。
一、整体评价试卷难度稳定,整体布局与往年的广州中考类似。
选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识接洽,请求学生具备计算本领、多个知识点灵活运用本领、作图本领等数学基本头脑和本领。
二、试卷特点试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。
今年函数部分分值降低,压轴题与以往同等,考查一题函数、一题几何的模式。
函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。
今年的试题主要特点:①重视基础,考查灵活运用知识点的本领;②突显学生作图本领,加强着手本领;③注重知识点交汇;④常规但不俗套;⑤注重学生计算本领的考查;⑥相比往年,今年减少了分类讨论头脑的考查。
今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。
第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在研究过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。
近几年考情分析
引言
2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。
选择填空题考法常规,考查范围以基础知识为主。
解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。
24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。
本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生学习的结果,也重视学习的过程。
2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。
本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。
一、整体评价
试卷难度稳定,整体结构与往年的广州中考类似。
选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识联系,要求学生具备计算能力、多个知识点灵活运用能力、作图能力等数学基本思想和能力。
二、试卷特点
试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。
今年函数部分分值降低,压轴题与以往一致,考查一题函数、一题几何的模式。
函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。
今年的试题主要特点:①重视基础,考查灵活运用知识点的能力;②突显学生作图能力,加强动手能力;③注重知识点交汇;④常规但不俗套;⑤注重学生计算能力的考查;⑥相比往年,今年大大减少了分类讨论思想的考查。
今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。
第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在学习过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。
今年中考的第17-22题与往年中考的变化不大,主要考查学生对基础知识点的掌握。
第23题,涉及尺规作图,但难度相比往年有所降低,并结合“垂径定理”与“双勾股”等常规的模型,用方程思想解决线段长问题。
三、近三年中考对比分析
例:1、近三年各模块分值占比
(1)2019年各模块分值分布
(2)2018年各模块分值分布
(3)2017年各模块分值分布
2、近几年考点对比分析
3、2019年七、八、九年级知识考查占比
4、试题特点
(1)立足双基,注重动手能力
从命题趋势与内容来看,只有厚积三年,才可能决胜初中。
初一是基础、初二是关键、初三是冲刺。
从2019年命题特点和命题内容来看,覆盖的知识点非常全面,覆盖了七年级、八年级、九年级的知识内容。
今年的函数知识点分值减低,占比减少,但难度比较大,注重初高中衔接,同时对学生的动手作图能力要求比较高。
例如:23-24题考查画图能力,共26分。
22题和25题考查函数,共26分。
这些热点问题虽在模拟卷中多次出现,并在卓越教育课堂上多次讲解,但需要学生在掌握基础知识的同时,还要注重初高中知识的衔接,提高含参问题的计算能力,以及与函数图像性质联系。
(2)注重学生计算能力的培养
试卷60%的题型都涉及到了大量的代数运算,考查了学生在计算中的一些常规的计算方法,以及整体思想,例如:第10题考查了平方差公式和整体思想,第19题也是考查了整体代入。
(3)凸显数学能力,区分度明显
试题在第25题考查学生的数形结合能力,第14题的分类讨论,第16题的函数思想以及第10题、22题、24题的转化思想,对学生的能力要求比较高,需要学生具备清晰的思维,这对考生思维的灵活性及转化能力有较大的要求。
整体来看,试题有很高的区分度。
四、2020年中考备考建议
结合2019年广州中考数学试卷命题特点,卓越教育中考数学专家团队给2020年中考生以下4个备考建议:
1. 注重基础运用,提升知识点之间的联系
试卷内容看似基础知识偏多,但是学生拿满分不容易,主要是试题设计比较灵活,更注重知识的横向结合,而在日常学习知识模块过程中,学生学习知识点是零散的。
因此,建议考生在备考过程中注重建立知识点的关联。
2. 强化运算能力
在衔接高中学习的要求下,学生需加强运算能力。
今年有60%的考题涉及到运算,特别是含参类计算,会是学生失分的主要原因。
3. 提升作图能力
2019年广州中考数学第14题,23-25题都要求学生作图,需要学生在基础图形上进行作图探究,除了要求学生基础几何作图能力外,还要结合图形的性质及特点,进行图形构造和证明。
4.探究能力要求提升,注意与高中教学相衔接
2019年广州中考数学第25题,还是注重初高中的衔接。
在核心素养教学与高中知识点衔接的要求下,学生在初中的学习中,结合函数图像性质,解决数学问题。