2013学年第二学期八年级期中检测数学试卷
- 格式:doc
- 大小:186.00 KB
- 文档页数:4
2013—2014学年度第二学期期中学业水平调研测试七年级数学试卷2.答卷前,考生必须将自己的学校、班级、姓名、试室、考号按要求填写在试卷密封线左边的空格内.答卷过程中考生不能使用计算器.一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个A .±2B .2C .2D .±22.点P (3,4)在( ) A . 第一象限B .第二象限C .第三象限D .第四象限3.如图,直线a ∥b ,∠1=52°,则∠2的度数是( ) A . 38°B . 52°C . 128°D .48°4.右图1通过平移后可以得到的图案是( )5.下列运算正确的是( ) A .=±3B . |-3|=-3C . -=-3D . -32 = 96.在0,3.14159,3 ,227,39中,无理数的个数是( )A . 1个B . 2个C . 3个D . 4个7.点A 的坐标为(﹣2,﹣3),现将点A 向下平移2个单位,则经过平移后的对应点A′的坐标是( ) A .(﹣2,﹣1)B .(﹣2,﹣5)C .(0,﹣3)D .(﹣4,﹣3)8.点到直线的距离是指( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长9.有下列四个命题:(1)相等的角是对顶角;(2)两条直线被第三条直线所截,同位角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)垂直于同一条直线的两条直线互相垂直。
其中是假命题...的有( ) A .1个 B .2个 C . 3个 D .4个 10.如图2,直线a ∥b ,则|x ﹣y |=( ) A . 20 B . 80 C . 120D . 180二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在相应位置上。
2022—2023学年第二学期八年级期中试卷数学试卷考试时间:120分钟满分:150分一、选择题(共10小题,每小题4分,满分40分)1.下列式于为最简二次根式的是( )ABCD2.如图,已知菱形的周长为8,,则对角线的长是()A .1B C .2D.3.下列各组线段长度能构成直角三角形的一组是()A .5,12,13B .6,7,8C .3,4,6D .7,12,154.函数()的图象经过点,则这个函数的解析式是( )A .B .C .D .5.如图,的对角线,相交于点O ,E 是AB 中点,且,则的周长为( )A .20B .16C .12D .86.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距()A .40海里B .35海里C .30海里D .25海里7.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是4、5、2、4,则最大正方形E 的面积是()ABCD 60A ∠=︒BD y kx =0k ≠()2,1-2y x=2y x=-12y x =12y x =-ABCD □AC BD 4AE EO +=ABCD □A .15B .61C .69D .728.下列说法正确的是()A .对角线互相垂直的四边形是菱形B .四条边都相等的四边形是正方形C .一组对边平行,另一组对边相等的四边形是平行四边形D .四个角相等的四边形是矩形9.如图,菱形的对角线,相交于点O ,过点D 作于点H ,连接,若,,则的长为()AB .3C .D .10.已知直角坐标系中,四边形是长方形,点A ,C 的坐标分别为,,点D 是的中点,点P 是边上的一个动点,当是腰长为5的等腰三角形时,则点P 坐标为()A .B .C .D .二、填空题(本大题有6小题,每小题4分,共24分)11.在函数中,自变量x 的取值范围是________.12.平行四边形的周长为16,一边长为5,则另一条邻边长为________.13.在中,,则________.14.已知直角三角形两条边的长为6、8,则这个直角三角形的第三边长为________.ABCD AC BD DH BC ⊥OH 4OA =24ABCD S =菱形OH 52125OABC ()10,0A ()0,4C OA BC POD △()2,4()3,4()2,4()8,4()2,4()3,4()8,4()2,4()2.5,4()3,4()8,4y =ABCD □200B D ∠+∠=︒A ∠=15.已知四边形中,,,,若,,则四边形的面积为________.16.如图,正方形的边长为3,E 是CD 上一点,,连接AE 与BD 相交于点F ,过点F 作,交BC 于点G ,连接AG ,则点E 到AG 的距离为________.三、解答题:(本大题有9小题,共86分)17.(8分)计算:.18.(8分))已知的小数部分是a ,b ,求ab 的值.19.(8分)已知:中,,,,求AB 和BC 的长.20.如图,在中,点O 是对角线BD 的中点,过点O 作,垂足为点O ,且交AD ,BC 分别于点E ,F .求证:四边形BEDF 是菱形.21.(8分)如图,在平行四边形中,,在AD 取一点E ,使得,连接BE .(1)用尺规完成以下基本作图:作的角平分线交BC 于点F ,交BE 于点O ;(保留作图痕迹,不写作法和结论)(2)根据(1)中作图,经过学习小组讨论发现,并给出以下证明,请将证明过程补充完整.证明:∵ABCD 60ABC ∠=︒AD BC ∥AB CD =6AB =9BC =ABCD ABCD 1DE =FG AE ⊥0(11-55ABC △2AC =30C ∠=︒45B ∠=︒ABCD □EF BD ⊥ABCD AB BC <AE AB =BAD ∠90AOB ∠=︒AE AB=∴________________∵四边形为平行四边形∴________________∴∴∵AF 平分∴________________∵四边形为平行四边形∴∴________________∴.即.∵在中,.∴.22.(10分)如图,正方形中,E 是对角线BD 上一点,连接AE ,CE ,延长AE 交CD 边于点F .(1)求证:.(2)若,,求证:.23.(10分)阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如,.ABCD AEB EBC ∠=∠12ABEEBC ABC ∠=∠=∠BAD ∠ABCD AD BC ∥119022ABC BAD ∠+∠=︒90ABE BAO ∠+∠=︒ABO△180BAO ABE AOB ∠+∠+∠=︒90AOB ∠=︒ABCD AEB CEB ∠=∠2AEC α∠=AFD β∠=135αβ+=︒========当然也可以利用得,故,像这样,通过分子、分母同乘以一个式子把分母中的根号化去,叫做分母有理化.解决问题:(1(224.(12分)如图,在中,于点D ,在线段DA 上取点E 使得,DF 平分交AB 于点F ,连接EF .(1)若,,求CD 的长;(2)若,求证:.25.(14分)已知,正方形的边长为6,菱形的三个顶点E ,G,H 分别在正方形边AB ,CD ,DA 上,.(1)如图,当,且点F 在边BC 上时,求证:①;②菱形是正方形;(2)如图,当点F 在正方形的外部时,连接CF .①探究:点F 到直线CD 的距离是否发生变化?并说明理由;②设,的面积为S ,是否存在x 的值,使得?若存在,求出x 的值;12111-=11211=-====+ABC △BD AC ⊥ED CD =ADB ∠AB =BC =8AD =FB FE ⊥BD ED +=ABCD EFGH ABCD 2AH =2DG =AHE DGH △≌△EFGH ABCD DG x =FCG △1S =若不存在,请说明理由.2022—2023学年第二学期八年级期中试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【分析】根据最简二次根式的概念进行判断.【解答】解:A 、原式,∴不是最简二次根式;B 、原式,∴不是最简二次根式;C 、原式,∴是最简二次根式;D 、原式,∴不是最简二次根式;故选:C .【点评】此题主要考查了最简二次根式,掌握最简二次根式的概念是解题关键.2.【分析】由菱形的性质可证是等边三角形,即可求解.【解答】解:∵四边形是菱形,∴,又∵,∴是等边三角形,∴,故选:C .【点评】本题考查了菱形的性质,等边三角形的判定和性质,掌握菱形的性质是解题的关键.3.【分析】根据勾股定理的逆定理可以判断各个选项中的三条线段能否构成直角三角形,本题得以解决.【解答】解:A 、,故选项A 符合题意;B 、,故选项B 不符合题意;C 、,故选项C 不符合题意;D 、,故选项D 不符合题意.故选:A .【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.【分析】把点A 的坐标代入函数解析式求出k 值即可得解.【解答】解:∵正比例函数的图象经过点,∴,解得,a ====ABD △ABCD AB AD =60A ∠=︒ABD △824BD AB ===22251213+=222678+≠222346+≠22271215+≠y kx =()2,1A -21k -=12k =-∴正比例函数的解析式为.故选:D .【点评】本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.5.【分析】首先证明:,由,推出即可解决问题;【解答】解:∵四边形是平行四边形,∴∵∴∵∴,∴,∴平行四边形的周长,【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.6.【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴,两小时后,两艘船分别行驶了海里,海里,(海里).故选:A .【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.7.【分析】根据勾股定理可知:直角三角形两个直角边平方的和等于斜边的平方.两个相邻的小正方形面积的和等于相邻的一个大正方形的面积.【解答】解:由勾股定理可知:,,∴,,∴12y x =-12OE BC =4AE EO +=8AB BC +=ABCD OA OC =AE EB=12OE BC=4AE EO +=228AE EO +=8AB BC +=ABCD 2816=⨯==⨯路程速度时间90BAC ∠=︒16232⨯=12224⨯=40=A B F S S S +=C D G S S S +=224541F S =+=222420G S =+=E F GS S S =+4120=+61=故选:B .【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.8.【分析】根据平行四边形,矩形,菱形,正方形的判定逐项判断即可.【解答】解:对角线互相垂直的平行四边形是菱形,故A 错误,不符合题意;四条边都相等的四边形是菱形,故B 错误,不符合题意;一组对边平行且相等的四边形是平行四边形,故C 错误,不符合题意;四个角相等的四边形是矩形,故D 正确,符合题意;故选:D .【点评】本题考查平行四边形,矩形,菱形,正方形的判定,解题的关键是掌握平行四边形,矩形,菱形,正方形的判定定理.9.【分析】根据菱形的性质得出,,,求出AC ,根据求出BD ,根据直角三角形斜边上的中线性质求出答案即可.【解答】解:∵四边形是菱形,∴,,,∵,∴,∵,∴解得:,∵∴,∵∴【点评】本题考查了菱形的性质,直角三角形斜边上的中线性质等知识点,注意:菱形的对角线互相垂直且平分,菱形的面积等于对角线积的一半.10.【分析】题中没有指明的腰长与底分别是哪个边,故应该分情况进行分析,分别求得点P 的坐标,即可求解.【解答】解:(1)OD 是等腰三角形的底边时,P 就是OD 的垂直平分线与CB 的交点,此时;(2)OD 是等腰三角形的一条腰时:若点O 是顶角顶点时,P 点就是以点O 为圆心,以5为半径的弧与CB 的交点,AC BD ⊥DO BO =AO OC =24ABCD S =菱形ABCD AC BD ⊥DO BO =AO OC =4OA =28AC OA ==24ABCD S =菱形18242BD ⨯⨯=6BD =DH BC⊥90DHB ∠=︒DO BO=116322OH BD ==⨯=ODP △5OP PD =≠在直角中,,则P 的坐标是;若D 是顶角顶点时,P 点就是以点D 为圆心,以5为半径的弧与CB 的交点,过D 作于点M ,在直角中,,当P 在M 的左边时,,则P 的坐标是;当P 在M 的右侧时,,则P 的坐标是.所以满足条件的点P 的坐标为:或或.故选:C .【点评】此题主要考查矩形的性质,等腰三角形的性质及勾股定理的运用,注意正一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.二、填空题(每小题4分,满分24分)11.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:且,解得:且.故答案为:且.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】根据平行四边形的对边相等,求出两邻边的和,再根据题意求解即可.【解答】解:,.,故答案为:3.【点评】此题考查了平行四边形的性质,熟记平行四边形的性质是解题的关键.13.【分析】根据平行四边形的对角相等、邻角互补即可得出的度数.【解答】解:如图所示:∵四边形是平行四边形,∴,,∴,∵,∴,OPC△3CP ===()3,4DM BC ⊥PDM△3PM ===532CP CM PM =-=-=()2,4538CP CM PM =+=+=()8,4()3,4()2,4()8,410x -…20x +≠1x …2x ≠-1x …2x ≠-1625÷-85=-3=A ∠ABCD AD BC ∥B D ∠=∠180A B ∠+∠=︒200B D ∠+∠=︒100B D ∠=∠=︒∴.故答案为:80°.【点评】本题考查平行四边形的性质以及平行线的性质;解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.14.【分析】已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当8是斜边时,第三边长当6和8是直角边时,第三边长;∴第三边的长为:或10,故答案为:10.【点评】本题考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.15.【分析】根据题干得到四边形为不固定图形,需要分类讨论,根据AD 与BC 的大小情况做出讨论即可.【解答】解:∵,∴如图,当时,易得四边形ABCD为平行四边形,过A 点作,,则;如图,当时,易知四边形为等腰梯形,分别过点A 、D 作,,∴,,∴,180********A B ∠=︒∠=︒︒=︒﹣﹣==10==ABCD 60ABC ∠=︒AD BC…AD BC =AE AB ==AE BC ⊥AE ==9ABCD S AE BC =⋅==平行四边形AD BC ≠ABCD AE BC ⊥DF BC ⊥AE AB ==132BE FC AB ===9333AD EF ==--=∴综上,四边形的面积为.故答案为:.【点评】本题考查平行变形和梯形的相关知识,能够分析出四边形ABCD 的两种情况是关键.【点评】本题考查了动点问题的函数图象以及速度的计算;根据图象获取相关信息是解决问题的关键.16.【分析】连接CF ,过E 作于H ,根据正方形的性质和全等三角形的判定得出,进而利用等腰直角三角形的性质和勾股定理解答即可.【解答】解:连接CF ,过E 作于H ,在正方形中,,在和中,,∴(),∴,,∵,在四边形中,,∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴为等腰直角三角形,∴,∵,∴,即点E 到AG 的距离HE.3922ABCD AD BC S AE ++=⋅=⨯=梯形ABCD EH AG ⊥ABF CBF △≌△EH AG ⊥ABCD 45ABF CBF ∠=∠=︒ABF △CBF △AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩ABF CBF △≌△SAS AF CF =BAF BCF ∠=∠FG AE ⊥ABGF 3609090180BAF BGF ∠+∠=︒-︒-︒=︒180BGF CGF ∠+∠=︒BAF CGF ∠=∠CGF BCF ∠=∠CF FG =AF FG =AFG △45HAE ∠=︒HAE △AE ==222HE HA AE +=HE HA=HE ==【点评】此题考查正方形的性质,关键是根据正方形的性质、等腰直角三角形的判定和性质以及勾股定理解答.三、解答题:(本大题有9小题,共86分)17.【分析】先化简各式,然后再进行计算即可解答.【解答】解:.【点评】本题考查了实数的运算,零指数幂,准确熟练地化简各式是解题的关键.18.的大小,然后确定a 和b 的值,再计算ab 即可.【解答】解:∵,∴的整数部分是8,小数部分是,1,小数部分是∴,,.【点评】本题考查了估算无理数的大小,要想准确地估算出无理数的取值范围需要记住一些常用数的平方.19.【分析】作,得,根据勾股定理和直角三角形30°所对的直角边是斜边的一半计算即可.【解答】解:作,∴,∵,∴,在,根据勾股定理得,,∵,∴,∴,则∴.0(11-+--411=++-11=-+-0=34<<5+583+-=5-514=3a =4b =-)(34ab =--1012=-+22=-AD BC ⊥90ADC ADB ∠=∠=︒AD BC ⊥90ADC ADB ∠=∠=︒30C ∠=︒112AD AC ==Rt ACD △CD =45B ∠=︒45DAB B ∠=∠=︒1BD AD ==1BC =AB =【点评】本题考查了解直角三角形,熟练掌握勾股定理和直角三角形中30°所对的直角边是斜边的一半,这两个定理的应用是解题关键.20.【分析】证(),得,再证四边形是平行四边形,然后由即可得出结论.【解答】证明:∵四边形是平行四边形,O 为对角线BD 的中点,∴,,在和中,,∴()∴,又∵,∴四边形是平行四边形,∵,∴平行四边形为菱形.【点评】此题主要考查了菱形的判定,平行四边形的判定与性质以及全等三角形的判定与性质等知识,证明是解题的关键.21.【分析】(1)根据作角平分线的基本作图画图;(2)根据平行四边形的性质及平行线的性质证明.【解答】(1)解:如下图:(2)证明:∵,∴,∵四边形为平行四边形,∴∴∴∵AF 平分,DOE BOF △≌△ASA OE OF =EBFD EF BD ⊥ABCD BO DO =EDB FBO ∠=∠EOD △FOB △EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩DOE BOF △≌△ASA OE OF =OB OD =BEDF EF BD ⊥BEDF DOE BOF △≌△AE AB =ABE AEB ∠=∠ABCD AD BC∥AEB EBC∠=∠12ABE EBC ABC ∠=∠=∠BAD ∠∴,∵四边形为平行四边形,∴,∴,∴.即.∵在中,.∴,故答案为:,,,.【点评】本题考查了复杂作图,掌握平行四边形和平行线的性质是解题的关键.22.【分析】(1)由“”可证;(2)由全等三角形的性质可求,由三角形的外角的性质可求解.【解答】(1)证明:∵四边形是正方形,∴,,在和中,,∴(),∴;(2)解:∵,,∴,∴,∴.∴∴.【点评】本题考查了正方形的性质,全【点评】本题考查了一次函数在行程问题中的应用,数形结合、分类讨论并明确行程问题的基本数量关系,是解题的关键.23.【分析】(1)根据平方差公式可以将分母有理化,然后化简即可;(2)根据分母有理化的方法,可以将式子化简,然后计算加减法即可.12BAF DAF BAD ∠=∠=∠ABCD AD BC ∥180DAB ABC ∠+∠=︒90ABC BAD ∠+∠=︒119022ABE BAO ∠+∠=︒ABO △180BAO ABE AOB ∠+∠+∠=︒90AOB ∠=︒ABE AEB ∠=∠AD BC ∥12BAF DAF BAD ∠=∠=∠180DAB ABC ︒∠+∠=SAS ABE CBE △≌△CEB ∠ABCD AB CB =ABE CBE ∠=∠ABE △CBE △AB CB ABE CBE BE BE =⎧⎪∠=∠⎨⎪=⎩ABE CBE △≌△SAS AEB CEB ∠=∠AEB CEB ∠=∠2AEC α∠=CEB AEB α∠==∠DEF α∠=18018045AFD DEF EDF αβ∠=︒-∠-∠=︒-︒-=135βα=︒-135αβ+=︒【解答】解:(1;(2.24.【分析】(1)先判断出,再用勾股定理求出BD ,进而用勾股定理求出CD ;(2)过点F 作,再判断出,得出,可得结论.【解答】(1)解:∵,∴,在中,,∴,在中,,∴,(2)证明:如图1,由(1)知,,∵DF 平分,∴,过点F 作,∴,∴是等腰直角三角形,∴,,∵,,∴,∴,∵,===+32=+--+32=-1=90ADB CDB ∠=∠=︒FH FD ⊥EHF BDF △≌△BD HE =BD AC ⊥90ADB CDB ∠=∠=︒Rt ADB △AB =8AD =4BD ==Rt CDB △BC =4BD =1CD ==90ADB CDB ∠=∠=︒ADB ∠45BDF ADF ∠=∠=︒FH FD ⊥90DFH ∠=︒DFH △45FHD ∠=︒DHDF FH ==EF AB ⊥BD AC ⊥90BFE BDE ∠=∠=︒180FED DBF ∠+=︒180FED FEH ∠+=︒∴,在和中,,∴(),∴,,∴.【点评】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判断和性质,锐角三角函数,解本题的关键是(2)判断出,(3)判断出,作出辅助线是解本题的难点,是一道中等难度的中考常考题.25.【分析】(1)由于四边形为正方形,四边形为菱形,那么,,而,利用HL 证明;②由全等三角形的性质得出,等量代换可得,即可证四边形为正方形;(2)①过点F 作,根据平行公理可得,根据平行线的性质可以得到,,再根据菱形的邻角互补以及平角等于180°可以求出,然后证明与全等;②过F 作,垂足为M ,设,则,由三角形面积公式可求出.【解答】(1)证明:①∵四边形是正方形,∴,∵,,∴,∵四边形是菱形,∴,∴(HL );②∵,∴,∵,∴,∴,∴四边形为正方形;(2)①解:点F 到直线CD 的距离不发生变化.理由:作交DC 的延长线于M ,如图2,过点F 作,FEH DBE ∠=EHF △BDF △45FEH DBF EHF BDF FH DF ∠=∠⎧⎪∠=∠=⎨=︒⎪⎩EHF BDF △≌△AAS EF BF =EH BD=BD ED HE DE +=+=EHF BDF △≌△22AE DF BD ==ABCD HEFG 90D A ∠=∠=︒HG HE =2AH DG ==Rt Rt AEH DHG △≌△DHG AEH ∠=∠90DHG AHE ∠+∠=︒EFGH FN DM ∥FN AB ∥FGM GFN ∠=∠EFN BEF ∠=∠FGM AEH ∠=∠AEH △MGF △FM CD ⊥DG x =6CG x =-5x =ABCD 90A D ∠=∠=︒2AH =2DG =AH DG =EFGH EH HG =Rt Rt AEH DHG △≌△AEH DHG △≌△DHG AEH ∠=∠90AEH AHE ∠+∠=︒90DHG AHE ∠+∠=︒90EHG ∠=︒EFGH FM DC ⊥FN DM∵正方形中∴,∴,,∵四边形是菱形,∴,即,又,∴,在与中,,∴(),∴,∵,∴,是定值不变;②解:过F 作,交DC 的延长线于点M ,由①可知,∴,设,∴,∴,∴,即.故线段DG 的长度为5.【点评】本题是四边形综合题,考查了正方形的性质和判定、菱形的性质、全等三角形的判ABCD AB CD∥FN AB ∥FGC FNG ∠=∠EFN BEF ∠=∠EFGH 180HEF GFE ∠+∠=︒180FNG EFN HEF ∠+∠+∠=︒180BEF AEH HEF ∠+∠+∠=︒FGC AEH ∠=∠AEH △MGF △90A M FGM AEH HE GF ∠=∠=⎧⎪∠=∠⎨=︒⎪⎩AEH MGF △≌△AAS FM AH =2AH =2FM =FM CD ⊥AEH MGF △≌△2MF AH==DG x =6CG x =-16332FCG S CG FM =⋅=-=△5x =5DG =定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.。
2023~2024学年度第二学期期中质量检测八年级数学试卷一、选择题(共10 小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义,则x 的取值范围是( )A. x>3 B. x≠3 C. x ≥3 D. x ≤32.下列各式计算正确的是( )A. B.C. D. 3. 在 中,,则的大小是()A. B. C. D. 4.在中,,,的对边分别是,下列条件不能判断是直角三角形的是( )A. B.C. D. 5. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折高者几何?意思是:一根竹子,原高一丈(一丈尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 尺,则下列方程正确的是( )A. B. C. D. 6. 如图,在 中,下列结论中错误的是( )A. 当时,它是菱形B. 当平分 时,它是菱形6=2÷==1-=ABCD Y 40A ∠=︒C ∠40︒140︒50︒70︒ABC A ∠B ∠C ∠a b c ,,ABC A B ∠∠=︒+90::3:4:5A B C ∠∠∠=::3:4:5a b c =222a b c =+10=3x ()222310x x +=-()22310x x -=-()22310x x +=-()222310x x -=-ABCD Y AB BC =AC BAD ∠C. 当时,它是矩形D. 当时,它是正方形7. 如图,是菱形 的对角线的交点,是边中点,若,,则长是( )A. B. 3 C. D. 58. 在四边形中,.下列说法能使四边形为矩形的是( )A. B. C. D. 9. 如图,在矩形中,为对角线的中点,.动点在线段上,动点在线段上,点同时从点出发,分别向终点运动,且始终保持.点关于的对称点为;点关于的对称点为.在整个过程中,四边形形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形10. 已知的值是( )A. B. C. 5 D. 6二、填空题(共6 小题,每小题 3 分,共 18 分)11. 写出一个小于3的正无理数___________.12.的结果是_________..OA OB =AC BD =O ABCD E AD 6AC =8BD =OE 2.5 3.5ABCD ,AD BC AB CD =∥ABCD AB CD AD BC =A B ∠=∠A D∠=∠ABCD O BD 60ABD ∠=︒E OB F OD ,E F O ,B D OE OF =E ,AD AB 12,E E F ,BC CD 12,F F 1212E E F F 1x +=32321x x x +-+13. 多项式分解因式的结果是_____________.14. 如图,在正方形中,已知,,则的长是_____________,其对角线的交点坐标是_____________.15. 出入相补原理是我国古代数学重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形中,,,对角线与交于点O ,点E 为边上的一个动点,,,垂足分别为点F ,G ,则___________.16. 如图,在四边形中,,,,,则的长是________.三、解答题(共8 小题,共 72 分)17. 计算:(1;(218. 已知,(1)直接写出,的值;(2)求的值.19. 如图,四边形中,.的在27x -ABCD ()30A ,()04B ,AB ABCD 5AB =12AD =AC BD BC EF AC ⊥EG BD ⊥EF EG +=ABCD AB BC =60ABC ∠=︒75ADC ∠=︒=AD 3DC =BD --+3a =+3b =-a b +ab 22a ab b -+ABCD 201572490AB BC CD AD B ====Ð=°,,,,(1)求证:(2)求四边形的面积.20. 如图,在中,是边的中点,过点 作直线,交的角平分线于点E ,交的外角的角平分线于点,连接.(1)求证:四边形为矩形.(2)请添加一个条件,使四边形为正方形,直接写出该条件.21. 如图,在中,两点分别在边 上,连接, 且.(1)求证:四边形为平行四边形;(2)若平分,,且,,求的长.22. 如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,的顶点都是格点,点 P 在AC 上,仅用无刻度的直尺在给定网格中完成画图.(1)在图1中,先画,再在上画点H ,使,然后在上画点Q,使CD AD ⊥ABCD ABC O AC O MN BC ∥ACB ∠CE ABC ACG ∠CF F AE AF ,AECF AECF ABCD Y E F ,AB CD ,DE BF AF ,,ADE CBF ∠=∠DEBF AF BAD ∠DE AB ⊥6AD =10AF =AE 86⨯ABC ABDC BD BH CP =CD;(2)在图2中,先画的中线,再在上画点F ,使.23. 如图1,在菱形中,E 是边上的点,是等腰三角形,,().(1)如图2,当时,连接交于点P ,①直接写出的度数;②求证:.(2)如图1,当时,若,求的值.24. 平面直角坐标系中,已知矩形,其中.(1)如图1,若点,E 在边上,将沿翻折,点C 恰好落在边上点F 处,①直接写出点 F 的坐标及的长;②如图 2,将沿y 轴向上平移m 个单位长度得到,平面内是否存在点G ,使以、O 、、G 为顶点的四边形是菱形,若存在,求点G 的坐标,若不存在,请说明理由.(2)如图3,若点,连接,M ,N 两点分别是线段 上的动点,且,求的最小值.在的∥QH BC ABC CE AC 12EF AC =ABCD BC AEF △AE EF =AEF ABC α∠=∠=90α≥︒90α=︒BD AF DCF ∠2CF DP +=135DCF ∠=︒23BE EC =2CF CD ⎛⎫ ⎪⎝⎭AOBC ()06A ,()100B ,BC ACE △AE OB EF AOF A O F ''' A 'F '()60B ,AB BC AB ,2AN CM =12OM ON +。
姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2013年八年级下学期期中检测数学试卷(全卷共三个大题,20个小题,满分100,考试时间120分钟)题号一二三总分得分一、选择题(请选择一个你认为最合理的答案,每小题3分,共24分)1、在、、、、、中分式的个数有( )A、2个B、3个C、4个D、5个2、利用分式的基本性质将变换正确的是()A、B、C、D、3、下列函数是反比例函数的是( )A、y=B、y=C、y=x2+2xD、y=4x+84、函数y=的图象经过点(2,8),则下列各点不在y=图象上的是()A:(4,4)B:(-4,-4)C:(8,2)D:(-2,8)5、对分式,,通分时,最简公分母是()A.24x2y3B.12x2y2C.24xy2D.12xy26、反比例函数经过()A、一、三象限B、二、四象限C、二、三象限D、三、四象限7、下列几组数据中,能作为直角三角形三边长的是()A、2,3,4,B、C、1,,D、()8、如图,函数与在同一坐标系中,图象只能是下图中的( )二、填空题(本题满分18分,每小题3分)9、已知一个直角三角形的其中两边长分别4, 5, 则其第三边长为10、如果代数式有意义,那么的取值范围是.11、某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要__________元.12、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为米。
13、若方程的解是正数,则a的取值范围是。
14、观察下面一列有规律的数: 根据其规律可知第个数应是_________( 为正整数)。
三、解答题(62分)15、(每小题5分,共10分)计算:(1)(2)16、(每小题5分,共20分)解下列方程:(1)(2)(3)(4)17、(6分)先化简求值:÷,其中18、(6分)已知,反比例函数和一次函数都经过P(m,2),求这个一次函数的解析式。
2011-2012学年第二学期期中考试八 年 级 数 学 试 卷(满分:100分 时间:100分钟 )一、选择题(每题3分,共30分)1.在式子1a 、2xy π、2334a b c 、56x +、78x y+、109x y +中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个2.已知在□ABCD 中,AD =3cm ,AB =2 cm ,则□ABCD 的周长等于 ( ) A .10cm B .6cm C .5cm D .4cm3. 函数21-=x y 的自变量x 的取值范围是 ( ) A.x >-2 B.x <2 C.x ≠2 D.x ≠-2。
4. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是 ( ) A . 1.5,2,3a b c === B . 7,24,25a b c === C . 6,8,10a b c === D. 3,4,5a b c ===5. 反比例函数)0(≠=k xky 的图象经过点(2-,3),则它还经过点 ( )A. (6,1-)B.(1-,6-) C. (3,2) D.(2,3)6.下面正确的命题中,其逆命题不成立的是 ( ) A .旁内角互补,两直线平行 B.三角形的对应边相等C .对顶角相等 D.角平分线上的点到这个角的两边的距离相等 7.如图所示:数轴上点A 所表示的数为a ,则a 的值是A .+1 C 学校 班级 姓名: 学号AMNCB 8. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
设B 型包装箱每个可以装x 件文具,根据题意列方程为 ( ) A .1080x =1080x -15+12 B .1080x =1080x -15-12C .1080x =1080x +15-12D .1080x =1080x +15+129.如图,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 阴影部分的面积为10π,则反比例函数的解析式为 ( A .y =3x B .y =5x C .y =10x D .y =12x10. 如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于 ( ) A.65 B. 95 C. 125 D. 165二、细心填一填:(每题3分,共30分)11. 根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么5级地震所释放出的相对能量相当于9级地震所释放出的相对能量的 .(用科学记数法表示) 12. 解方程:xx x -=+--23123的结果是 。
大路边二中第二学期八年级数学期中检测试卷(时间100分钟 满分100分)班别 座号 姓名 成绩 一、选择题(每题2分,共20分)1.如果a >b ,那么下列结论中错误的是( ). (A)a -2>b -2 (B)2a >2b(C)2a >2b (D)-a >-b2.如果x -1是非负数,那么x 的取值范围是( ).(A)x >0 (B)x >1 (C)x ≥1 (D)x ≤03.把不等式组⎩⎨⎧>-≤+0,01x x 的解集表示在数轴上,正确的是( ).4.下列各式从左到右的变形,属于分解因式的是( ).(A)a (a +2b )=a 2+2ab (B)a 2-4=(a +2)(a -2) (C)x 2-2x +1=x (x -2)+1 (D)6a 2b =2a 2·3b5.下列多项式中,能用公式法分解因式的是( ). (A)x 2-y (B)x 2+1 (C)x 2+y +y 2 (D)x 2-4x +46.分式2293mmm --化简的结果是( ). (A)3+m m (B) -3+m m (C) 3-m m (D)mm-3 7.已知b a =3,那么bba +是( ). (A)4∶3 (B)4∶1 (C)3∶4 (D)1∶48.下列说法正确的是( ).(A)任意两个矩形相似 (B)任意两个菱形相似 (C)任意两个直角三角形相似 (D)任意两个正六边形相似 9.如图,已知△ABC ∽△ADE ,DE =1,BC =3,AB =6,则AD 的长为( ). (A) 1 (B) 1.5 (C) 2 (D) 2.5 C D EA第9题图(A)(B) (C) (D)10.甲、乙两名工人加工某种零件,已知甲每天比乙多加工5个零件,甲加工80个零件和乙加工70个零件所用的天数相同.设甲每天加工x 个零件,则根据题意列出方程是( ). (A)57080+=x x (B) x x 70580=- (C) x x 70580=+ (D) 57080-=x x二、填空题(每题3分,共27分)11.当x 时,代数式2x +3的值小于-1. 12.分解因式:x 3-x = . 13.当x 时,分式12-x x有意义. 14.一个两位数的十位数字是x ,个位数字比十位数字小3,并且这个两位数小于40,用不等式表示问题中的数量关系是 .15.1米长的标竿直立在水平的地面上,它的影长为0.8米,此时若某电视塔的影长为100米,则此电视塔的高度应是 米.16.图纸上画出的一个零件的长是32mm ,比例尺是1∶20,这个零件实际的长是 cm .17.已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为 cm 。
2013学年第二学期八年级期中检测数学试卷
一、精心选一选(每题3分,共30分)
1、要使二次根式4-x 有意义,则x 的取值范围是( )
A 、x ≤4
B 、x ≥4
C 、x ≠-4
D 、x ≥-4 2.下列方程中,是一元二次方程的为( )
A 、 x 2 + 3x = 0
B 、 2x + y = 3
C 、
210x x -= D 、 x (x 2+2)= 0 3.下列运算正确的是( )
A 、x x x 32=+
B 、12223=-
C 、
D 、2222=
- 4、把方程2830x x -+=化成()2x m n +=的形式,则m 、n 的值是( )
A 、4,13
B 、-4,19
C 、-4,13
D 、4,19
5、下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( )
A 、5
B 、12
C 、14
D 、16
6、下列为真命题...
的是( ) A 、相等的角是对顶角 B 、两点之间线段最短
C 、两直线平行,同旁内角相等
D 、若2
a = a ,则a >0
7、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( )
A 、 有两个角是直角
B 、 有两个角是钝角
C 、 有两个角是锐角
D 、 一个角是钝角,一个角是直角
8、如图4所示,△ABC 与△BDE 都是等边三角形,AB<BD .若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( ) A 、AE=CD B 、AE>CD C 、AE<CD D 、无法确定
9、关于x 的一元二次方程22(1)10a x x a -++-=的一个根为0,则a 的值为( )
A 、1
B 、-1
C 、1或-1
D 、不能确定
10、平阳某服装店四月份的营业额为8000元,第二季度的营业额为40000元。
如果平均每月的增长率为x,则由题意可列出方程为( )
A 、8000(1+x)2 =40000
B 、8000+8000(1+x)2 =40000
C 、8000+8000×2x =40000
D 、8000[1+(1+x)+ (1+x)2 ]= 40000
二、认真想一想,把答案填在横线上。
(每题3分,共24分)
11、方程23x x =的根是 .
12、八年级某班55位同学中,4月份出生的频率是0.20,那么该班4月份生日的同学有 .人
13、化简2)21(-= ,
14、把命题“角平分线线上的点到角两边的距离相等”改写成“如果…
那么…的形式为_____________________________
15、如图:两个相同的矩形摆成“L ”字形,则∠CFA = 度。
16、一元二次方程0122=--x kx 有两个不相等的实数根,则k 的取值范围是
17、一个三角形的三边都满足方程x 2-6x +8=0,则这个三角形的周长为
18、把图一的长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二),
已知∠MPN=090,PM=3,PN=4,(1)BC= ;(2)长方形纸片ABCD 的面积为 .
(第15题19、(8分)
三、细心解一解(共46分)
19、(本题6分) 计算:(1
2
(2) )32)(32()32(2-+-+
20、解方程(本题8分) (1)0142=++x x (用配方法解) (2))2(3)2(2
-=-x x x
图一D C B A (第18题) G F E D C B
A
第23题图
21、(本题6分)已知:如图△ABC 、△ADE 都是等边三角形,求证:BE =CD
22、(本题8分)某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.
(1)第四个小组的频数是多少? 第五个小组的频率是多少?
(2)50名学生的成绩的中位数在哪一范围内?
(3)这次测验中,八年级全体学生成绩在59.5~69.5中的人数约是多少?
(4)试估计这次测验中,八年级全体学生的平均成绩?
23、.(本题8分)某厂工业废气的年排放量为450万立方米,为改善大气质量环境,决定分两期投入治理,使废气的年排气量减少到288万立方米,如果每期治理中废气减少的百分率相同。
(1)求每期减少的百分率是多少?
(2)预计第一期治理中每减少1万立方米需投入3万元,第二期治理中每减少1万立方米废气需投入2.5万元。
问两期治理完成后共需投入多少万元?
A B C D E
24、(本题10分)
(1)如图1,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于点F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E,求证:BD+CE=DE.
(2)如图2,△ABC的外角平分线BF、CF相交于点F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间存在什么关系?请证明你的结论。
(3)如图3,∠ABC的平分线BF与∠ACB的外角平分线CF相交于点F,过点F作DE ∥BC,交直线AB于点D,交直线AC于点E,那么BD、CE、DE之间又存在什么关系?根据(1),(2)写出你的猜想,并证明你的结论.。