Linux系统编程概述(精)
- 格式:pdf
- 大小:287.48 KB
- 文档页数:6
Linux系统程序设计第1章 Linux操作系统基础1.1 Unix/Linux操作系统简介1.2 相关术语1.3 库函数与系统调用1.4 项目构思-远程访问虚拟机1.5 Linux常用命令1.6 项目设计、实施与运行1.1 Unix/Linux操作系统简介Unix概述1969年:Ken Thompson 汇编语言1973年:与Dennis Ritchie用C语言重写UNIX ⅢUNIX分为System V和 BSD两大主流1978年:加利福尼亚大学伯克利分校以UNIX第六版为基础改进成BSD系列UNIX1983年:System V版本1发布,第一个商业UNIX版本System V 版本4是较成功的,或称为SVR41992年,版权纠纷,伯克利分校删除原UNIX代码,重写内核,1994年诞生4.4BSD版本,成为现代BSD基本版本1.1 Unix/Linux操作系统简介Linux概述1987年:荷兰的Vrije大学的Andrew S. Tanenbaum开发MINIX,用于操作系统课程的教学。
1991年:Linus学习MINIX,并发布了Linux内核。
2003年:Linux2.6版本内核发布Linux版本的两种说法内核版本:Linux2.4.20,Linux2.6等r.x.y:r-主版本号,x-偶数稳定奇数开发,y-错误修补次数发行版本:RedHat Linux 9.0,SUSE 10,Ubuntu等厂家将Linux内核与外围实用程序和文档包装,提供安装界面和系统配置、管理工具等,形成的操作1.2 相关术语操作系统多用户系统用户和组进程文件硬链接和软链接文件类型文件描述符与索引节点1.3 库函数与系统调用系统调用操作系统提供给外部程序的接口。
库函数C语言库函数提供给C语言编程需要的功能,有的库函数需要调用系统调用接口。
Linux中有GNU的glibc,POSIX的线程函数库等。
从用户角度观察都以常见的C语言函数形式出现,调用方法一致。
linux ioctl系统调用的原理-概述说明以及解释1.引言1.1 概述概述在计算机领域中,ioctl(I/O控制)系统调用是一种用于控制设备的通用接口。
它提供了一种与设备进行交互的方法,允许用户态程序向内核发送各种命令和请求。
ioctl系统调用的设计初衷是为了解决不具有标准化接口的设备的控制问题。
由于不同设备的功能和控制接口可能各不相同,ioctl系统调用提供了一种统一的方式来访问和控制这些设备。
无论是字符设备、块设备还是网络设备,都可以通过ioctl系统调用进行操作和控制。
与其他系统调用相比,ioctl系统调用具有很大的灵活性和通用性。
它的参数非常灵活,可以接受不同的请求和命令,并且可以传递任意类型和大小的数据。
这种设计使得ioctl系统调用能够适用于各种不同的设备和需求,为开发者提供了更多的自由度。
在实际应用中,ioctl系统调用被广泛用于设备驱动程序的开发和应用程序的交互。
例如,在Linux中,网络设备的配置和参数设置、字符设备的状态查询和控制、磁盘驱动的性能优化等都离不开ioctl系统调用。
本文将深入探讨ioctl系统调用的原理和实现机制,帮助读者更好地理解和应用它。
我们将首先介绍ioctl系统调用的基本概念和作用,然后详细讲解ioctl系统调用的调用方式和参数。
最后,我们将探讨ioctl系统调用的实现原理,并进一步探讨其优势和应用场景以及未来的研究和发展方向。
通过本文的阅读,读者将能够全面了解ioctl系统调用的作用和原理,掌握其使用方法和技巧,为开发者在设备控制和通信领域提供重要的参考和指导。
无论是初学者还是有一定经验的开发者,都可以从中获得启发和收益。
让我们一起深入研究和探索ioctl系统调用的奥秘吧!1.2文章结构文章结构部分的内容可以从以下几个方面进行描述:1.2 文章结构本文将按照以下结构进行论述:1. 引言:首先我们会对文章的主题进行简要的概述,介绍Linux ioctl 系统调用的基本概念和作用,以及本文的目的。
linux c bit 方法【原创实用版2篇】目录(篇1)1.Linux 系统简介2.C 语言编程基础3.Linux 下的 C 语言编程4.Linux C 编程常用方法5.结论正文(篇1)1.Linux 系统简介Linux 是一个基于 UNIX 的开源操作系统,它具有开放源代码、多用户、多任务、支持多种处理器架构等特点。
Linux 系统广泛应用于服务器、嵌入式系统、超级计算机等领域,其稳定性、安全性和可扩展性得到了业界的认可。
2.C 语言编程基础C 语言是一种通用的高级程序设计语言,具有语法简洁、执行效率高、跨平台等特点。
C 语言编程的基本要素包括变量、数据类型、运算符、控制结构、函数、指针等。
3.Linux 下的 C 语言编程在 Linux 系统中,C 语言编程通常使用 GCC(GNU Compiler Collection)编译器进行编译。
GCC 是一个开源的编译器套件,支持多种编程语言,包括 C、C++、Fortran 等。
在 Linux 系统中,可以使用终端输入以下命令进行 C 语言程序的编译和运行:```gcc -o program program.c./program```其中,`-o`选项用于指定编译后程序的输出文件名,`program.c`是 C 语言源文件名,`program`是编译后可执行文件名。
4.Linux C 编程常用方法在 Linux C 编程中,有很多常用的方法可以帮助开发者提高编程效率和代码质量。
这里列举一些常用的方法:(1)使用库函数:Linux 系统提供了丰富的库函数,可以帮助开发者实现各种功能,如字符串操作、文件操作、网络编程等。
合理使用库函数可以减少重复代码,提高开发效率。
(2)使用指针:指针是 C 语言编程的重要特性之一,可以实现内存动态分配、函数参数传递等。
熟练使用指针可以提高代码的灵活性和效率。
(3)使用多态:多态是面向对象编程的一个重要特性,可以在不改变原有代码的基础上实现功能的扩展和修改。
Linux系统编程之进程控制(进程创建、终⽌、等待及替换)进程创建在上⼀节讲解进程概念时,我们提到fork函数是从已经存在的进程中创建⼀个新进程。
那么,系统是如何创建⼀个新进程的呢?这就需要我们更深⼊的剖析fork 函数。
1.1 fork函数的返回值调⽤fork创建进程时,原进程为⽗进程,新进程为⼦进程。
运⾏man fork后,我们可以看到如下信息:#include <unistd.h>pid_t fork(void);fork函数有两个返回值,⼦进程中返回0,⽗进程返回⼦进程pid,如果创建失败则返回-1。
实际上,当我们调⽤fork后,系统内核将会做:分配新的内存块和内核数据结构(如task_struct)给⼦进程将⽗进程的部分数据结构内容拷贝⾄⼦进程添加⼦进程到系统进程列表中fork返回,开始调度1.2 写时拷贝在创建进程的过程中,默认情况下,⽗⼦进程共享代码,但是数据是各⾃私有⼀份的。
如果⽗⼦只需要对数据进⾏读取,那么⼤多数的数据是不需要私有的。
这⾥有三点需要注意:第⼀,为什么⼦进程也会从fork之后开始执⾏?因为⽗⼦进程是共享代码的,在给⼦进程创建PCB时,⼦进程PCB中的⼤多数数据是⽗进程的拷贝,这⾥⾯就包括了程序计数器(PC)。
由于PC中的数据是即将执⾏的下⼀条指令的地址,所以当fork返回之后,⼦进程会和⽗进程⼀样,都执⾏fork之后的代码。
第⼆,创建进程时,⼦进程需要拷贝⽗进程所有的数据吗?⽗进程的数据有很多,但并不是所有的数据都要⽴马使⽤,因此并不是所有的数据都进⾏拷贝。
⼀般情况下,只有当⽗进程或者⼦进程对某些数据进⾏写操作时,操作系统才会从内存中申请内存块,将新的数据拷写⼊申请的内存块中,并且更改页表对应的页表项,这就是写时拷贝。
原理如下图所⽰:第三,为什么数据要各⾃私有?这是因为进程具有独⽴性,每个进程的运⾏不能⼲扰彼此。
1.3 fork函数的⽤法及其调⽤失败的原因fork函数的⽤法:⼀个⽗进程希望复制⾃⼰,通过条件判断,使⽗⼦进程分流同时执⾏不同的代码段。
《LinuxUNIX系统编程⼿册》导读本书可以分为以下⼏个部分:1. 背景知识及概念UNIX、C语⾔以及 Linux的历史回顾,以及对UNIX标准的概述:《第1章历史和标准》。
以程序员为对象,对Linux和UNIX的概念进⾏介绍:《第2章基本概念》。
Linux和UNIX系统编程的基本概念:《第3章系统编程概念》。
2. 系统编程接⼝的基本特性⽂件I/O:《第4章⽂件I/O:通⽤的I/O模型》、《第5章深⼊探究⽂件I/O》。
内存分配:《》、《》、《》。
⽤户和组:《第8章⽤户和组》。
时间:《第10章时间》。
系统限制和选项:《第11章系统限制和选项》3. 系统编程接⼝的⾼级特性⽂件IO缓冲:《第13章⽂件I/O缓冲》。
⽂件系统:《第14章⽂件系统》。
⽂件属性:《第15章⽂件属性》。
扩展属性:《第16章扩展属性》。
访问控制列表:《第17章访问控制列表》。
⽬录和链接:《第18章⽬录和链接》。
信号:《第19章监控⽂件事件》、《第20章信号:基本概念》、《第21章信号:信号处理函数》、《第22章信号:⾼级特性》。
定时器:《第23章定时器与休眠》。
4. 进程、程序《》、《第9章进程凭证》、《》、《》、《》、《》、《》、《第34章进程组、会话和作业控制》、《第35章进程优先级和调度》、《第36章进程资源》、《》、《第38章编写安全的特权程序》、《第39章能⼒》、《第40章登录记账》、《第41章共享库基础》、《第42章共享库⾼级特性》。
5. 线程《》、《第30章线程:线程同步》、《第31章线程:线程安全和每线程存储》、《第32章线程:线程取消》、《第33章线程:更多细节》6. 进程间通信(IPC)《》:《第45章 System V IPC介绍》《第51章 POSIX IPC介绍》。
数据传输:《第44章管道和FIFO》、《第46章 System V 消息队列》、《》。
共享内存:《》、《第54章 POSIX 共享内存》。