2016年浦东初中一模数学及答案
- 格式:pdf
- 大小:1.13 MB
- 文档页数:12
九年级中考数学(模拟一)杨浦区2015学年度第一学期期末考试初三数学试卷 2016.1(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.将抛物线向上平移2个单位后所得抛物线的表达式是……………(▲)(A);(B);(C);(D).2.以下图形中一定属于互相放缩关系的是………………………………………(▲)(A)斜边长分别是10和5的两直角三角形;(B)腰长分别是10和5的两等腰三角形;(C)边长分别为10和5的两菱形;(D)边长分别为10和5的两正方形.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于…(▲)(A);(B);(C);(D).4.坡比等于1∶的斜坡的坡角等于……………………………………………(▲)(A);(B);(C);(D).5.下列各组条件中,一定能推得△ABC与△DEF相似的是…………………(▲)(A)∠A=∠E且∠D=∠F;(B)∠A=∠B且∠D=∠F;(C)∠A=∠E且;(D)∠A=∠E且.6.下列图像中,有一个可能是函数的图像,它是…(▲)(A)(B)(C)(D)二、填空题:(本大题共12题,每题4分,满分48分)7.如果,那么▲.8.如图,已知点G为△ABC的重心,DE过点G,且DE//BC,EF//AB,那么▲.9.已知在△ABC中,点D、E分别在边AB和BC上,AD=2,DB=1,BC=6,要使DE∥AC,那么BE= ▲.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是▲ cm.11.如果AB//CD,,与的方向相反,那么= ▲.12.计算:= ▲ .13.在△ABC中,∠C=90°,如果,AB=6,那么BC= ▲.14.如果二次函数配方后为,那么c的值是▲ .15.抛物线的对称轴是直线▲.16.如果,是二次函数图像上的两个点,那么y1 ▲ y2(请填入“”或“”).17.请写出一个二次函数的解析式,满足:图像的开口向下,对称轴是直线,且与y轴的交点在x轴下方,那么这个二次函数的解析式可以是▲.18.如图,已知将△ABC沿角平分线BE所在直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值为▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)已知二次函数的图像上部分点的横坐标x与纵坐标y的对应值如下表所示: x…-124…y…-511m…求:(1)这个二次函数的解析式;(2)这个二次函数图像的顶点坐标及上表中m的值.21.(本题满分10分,其中每小题各5分)如图,梯形ABCD中,AD//BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为和,矩形建筑物宽度AD=20 m,高度DC=33 m.(1)试用和的三角比表示线段CG的长;(2)如果,请求出信号发射塔顶端到地面的高度FG的值(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)23.(本题满分12分,其中每小题各6分)已知:如图,在△ABC中,点D、E分别在边AB、AC上,DE//BC,点F在边AB上,,CF与DE 相交于点G.(1)求证:;(2)当点E为AC中点时,求证:.24.(本题满分12分,其中每小题各4分)已知在平面直角坐标系中,抛物线与轴交于点A、B,与轴交于点C,直线经过A、C两点.(1)求抛物线的表达式;(2)如果点P、Q在抛物线上(P点在对称轴左边),且PQ//AO,PQ=2AO.求点P、Q的坐标;(3)动点M在直线上,且△ABC与△COM相似,求点M的坐标.25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知菱形ABCD的边长为5,对角线AC的长为6(如图1),点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.杨浦区2015学年度第一学期期末考试初三数学答案 2016.1一、选择题:(本大题共6题,每题4分,满分24分)1. A; 2. D; 3. B; 4. A; 5. C; 6. C;二、填空题:(本大题共12题,每题4分,满分48分)7.; 8.; 9.2;10. 5; 11.; 12.;13.2; 14.5; 15.x=1;16.; 17.等; 18.;三、解答题:(本大题共7题,满分78分)19.解:-----------------------(1分)----------------------------------------------------------------------(4分)画图正确4分(方法不限),结论1分.20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)由题意可得:-----------------------------------(3分)解得:,即解析式为---------------------------(3分)(2)∵,∴顶点坐标是(1,3), ------(2分)∴当x=4时,y=-15,即m=-15. ------------------------------(2分)21.(本题满分10分,其中每小题各5分)解:(1)延长BE交AD的延长线于点M,∵AD//BC,∴,-------------------------------------------(2分)∵点E为边DC的中点,∴DM=BC,∵BC=2AD,∴DM=2AD,∴AM=AD+DM=3AD, ----------------------------------(1分)∴------------------------------------------------------------------(2分)(2)∵AD//BC,∴,,-------------(1分,1分)∴,∴,---------------------------------------(1分)∴-----------------------------------------------------------------------(2分)22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)解:(1)如图,延长AD交FG于点E.在Rt△FCG中,tanβ=,∴----------------------(2分)在Rt△FAE中,tanα=,∴------------------------(1分)∵FG-FE=EG=DC=33,∴-----------------------------------------------(1分)∵AE=AD+DE=AD+CG=20+CG,∴,∴.----------------------------------------------------------(2分)(2)∵,∴-------(1分)∴ = 115.5≈116.--------------------------(2分)答:该信号发射塔顶端到地面的高度FG约是116 m.-------------------------(1分)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)(1)证明:∵,∴,------------------------------------(1分)又∵∠B=∠B,∴△BCF∽△BAC,------------------------------------------(2分)∵DE//BC,∴△FDG∽△FBC,----------------------------------------------(1分)∴△FDG∽△CBA,--------------------------------------------------------------(1分)∴,即.----------------------------------(1分)(2) 证明:∵,∴,∵△BCF∽△BAC,∴,----------------------------------------------------(1分)。
2016年奉贤区调研测试九年级数学2016.01(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.用一个4倍放大镜照△ABC ,下列说法错误的是(▲) A .△ABC 放大后,∠B 是原来的4倍; B .△ABC 放大后,边AB 是原来的4倍; C .△ABC 放大后,周长是原来的4倍; D .△ABC 放大后,面积是原来的16倍2.抛物线()212y x =-+的对称轴是(▲)A .直线2x =;B .直线2x =-;C .直线1x =;D .直线1x =-.3.抛物线223y x x =--与x 轴的交点个数是(▲) A . 0个 ; B .1个; C . 2个 ; D . 3个.4.在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且有12AD AE DB EC ==,BC =18,那么DE 的值为(▲)A .3 ;B .6 ;C .9 ;D .12. 5.已知△ABC 中,∠C =90°,BC =3,AB =4,那么下列说法正确的是(▲) A .3sin 5B =; B . 3cos 4B = ; C .4tan 3B =; D .3cot 4B =6.下列关于圆的说法,正确的是(▲) A .相等的圆心角所对的弦相等;B .过圆心且平分弦的直线一定垂直于该弦;C .经过半径的端点且垂直于该半径的直线是圆的切线;D .相交两圆的连心线一定垂直且平分公共弦.二.填空题:(本大题共12题,每题4分,满分48分) 7.已知3x =2y ,那么xy=▲; . 8.二次函数342+=x y 的顶点坐标为▲;9. 一条斜坡长4米,高度为2米,那么这条斜坡坡比i =▲;10.如果抛物线k x k y -+=2)2(的开口向下,那么k 的取值范围是▲;11.从观测点A 处观察到楼顶B 的仰角为35°,那么从楼顶B 观察观测点A 的俯角为▲; 12.在以O 为坐标原点的直角坐标平面内有一点A (-1,3),如果AO 与y 轴正半轴的夹角为α,那么角α的余弦值为▲;13.如图,△ABC 中,BE 平分∠ABC ,DE//BC ,若DE =2AD ,AE=2,那么EC =▲; 14.线段AB 长10cm ,点P 在线段AB 上,且满足BP APAP AB=,那么AP 的长为▲cm ;. 15.⊙O 1的半径11r =,⊙O 2的半径22r =,若此两圆有且仅有一个交点,那么这两圆的圆心距d =▲;16.已知抛物线(4)y ax x =+,经过点A (5,9)和点B (m,9),那么m =▲;17.如图,△ABC 中,AB =4,AC =6,点D 在BC 边上,∠DAC =∠B ,且有AD =3,那么BD的长为▲;18.如图,已知平行四边形ABCD 中,AB=AD =6,cotB =21,将边AB 绕点A 旋转,使得点B 落在平行四边形ABCD 的边上,其对应点为B ’(点B ’不与点B 重合),那么 sin ∠CAB ’=▲. 三、解答题(本大题共7题,满分78分) 19.(本题满分10分)计算:︒+︒--︒+︒60sin 260tan 2130cos 45sin 422.第13题图BA DC E第17题图B ADC第18题图B20.(本题满分10分,每小题5分)如图,已知AB//CD//EF ,AB:CD:EF=2:3:5,=. (1)=BD (用a 来表示);(2)求作向量AE 在AB 、BF 方向上的分向量. (不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,每小题5分)为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB 进行改造,在斜坡中点D 处挖去部分坡体(阴影表示),修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .(1)若修建的斜坡BE 的坡角为36°,则平台DE 的长约为多少米?(2)在距离坡角A 点27米远的G 处是商场主楼,小明在D 点测得主楼顶部H 的仰角为30°,那么主楼GH 高约为多少米?(结果取整数,参考数据:sin 36°=0.6,cos 36°=22.(本题满分10分,每小题5分)如图,在⊙O 中,AB 为直径,点B 为CD 的中点,CD =AE =5. (1)求⊙O 半径r 的值;(2)点F 在直径AB 上,联结CF ,当∠FCD =∠DOB 时,求AF 的长.E AB F第20题图CD第21题图F E ABOCD23.(本题满分12分,第(1)小题6分,第(2)小题6分) 已知:在梯形ABCD 中,AD //BC ,AB ⊥BC ,∠AEB =∠ADC . (1)求证:△ADE ∽△DBC ;(2)联结EC,若2CD AD BC =⋅,求证:∠DCE =∠ADB .24.(本题满分12分,第(1)小题4分,第(2)小题8分)如图,二次函数2y x bx c =++图像经过原点和点A (2,0),直线AB 与抛物线交于点B , 且∠BAO =45°.(1)求二次函数解析式及其顶点C 的坐标; (2)在直线AB 上是否存在点D ,使得△BCD为直角三角形.若存在,求出点D 的坐标, 若不存在,说明理由.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 已知:如图,Rt △ABC 中,∠ACB =90°,AB =5,BC =3,点D 是斜边AB 上任意一点,联结DC ,过点C 作CE ⊥CD ,垂足为点C ,联结DE ,使得∠EDC =∠A ,联结BE . (1)求证:AC BE BC AD ⋅=⋅;(2)设AD =x ,四边形BDCE 的面积为S ,求S 与x 之间的函数关系式及x 的取值范围; (3)当ABC BDE S S ∆=41△时,求tan ∠BCE 的值.EA B第20题图CDAE第25题备用图A2016学年九年级第一学期期末测试参考答案与评分标准 2016.01一、选择题:(本大题共6题,每题4分,满分24分)1.A ; 2.C ; 3.C ; 4.B ; 5.B ; 6.D . 二、填空题:(本大题共12题,每题4分,满分48分)7.23; 8.(0,3);9.2k <-; 10.1 11.35°; 12.10103; 13.4; 14.5; 15.1或3; 16.-9; 17.72; 18.1010或2.三、解答题:(本大题共7题,满分78分)19.(1)原式=2+24222⎛⨯ ⎝⎭...................................(4分)=(13+244-+(4分) = -1 .......................(2分) 20.解:(1)13a …………………………………………………(5分)(2)向量AE 在AB 、BF 方向上的分向量分别为GE 、AG.图形准确……………………………………………(3分) 结论正确……………………………………………(2分)21.解:(1)由题意得,AB =60米,∠BAC =30°,∠BEF =36°,FM//CG∵点D 是AB 的中点 ∴BD =AD =12AB =30................................................(1分) ∵DF//AC 交BC 、HG 分别于点F 、M , ∴∠BDF =∠A=30°,∠BFE =∠C=90° 在Rt △BFD 中,∠BFD =90°,cos BDF DF BD ∠=,30DF =, 25.5DF =≈............(1分) sin BF BDF BD∠=1230BF =. 15BF =…………………………(1分)在Rt △BFE 中,∠BFE =90°,tan BEF BFEF ∠=,0.715EF =,EF =21.4………(1分) ∴DE=DF-EF =25.5-21.4=4.1≈4(米)答:平台DE 的长约为4米. ………………………………………………………(1分)(2)由题意得,∠HDM =30°,AG =27米,过点D 作DN ⊥AC 于点N在Rt △DNA 中,∠DNA =90°cos DAC AN AD ∠=30AN =AN =(1分)sin DN DAN AD∠= 1230DN = 15DN =...................(1分)∴27DM NG AN AG ==+=……………………………………(1分)在Rt △HMD 中,∠HMD =90° tan HDM HMDM ∠=15HM =+453930153915≈+=++=+=MG HM HG 米…(1分)答:主楼GH 的高约为45米………………………………………………………(1分) 22.解:(1) ∵OB 是半径,点B 是CD 的中点∴OB ⊥CD ,CE=DE =12CD =…(2分)∴222ODED OE =+ ∴()()2225-5r r =+ 解得 r =3…………(3分)(2) ∵OB ⊥CD ∴∠OEC=∠OED =90°……………………………………………(1分) 又∵∠FCE=∠DOE ∴△FCE ∽△DOE ∴EF CEED OE=…………………………(2分)= 得52EF =……………………………………………………(1分)∴ 52AF AE EF =-=……………………………………………………………(1分) 23.(1)证明:∵AD ∥BC ∴∠ADB =∠DBC ………………………………………(2分) ∵ ∠ADC+∠C=180° ∠AEB+∠AED=180°又∵∠AEB =∠ADC ∴∠C =∠AED …………………………………………(2分) ∴△ADE ∽△DBC ……………………………………………………………(2分) (2) ∵△ADE ∽△DBC∴AD DBDE BC =∴AD BC DB DE ⋅=⋅…………………………………………(1分) ∵2CD AD BC =⋅ ∴2CD DB DE =⋅∴CD DEDB CD =………………………………………………………………………(1分) ∵∠CDB =∠CDE∴△CDE ∽△BDC ………………………………………………………………(2分) ∴ ∠DCE =∠DBC ………………………………………………………………(1分) ∵∠ADB =∠DBC∴∠DCE =∠ADB ………………………………………………………………(1分)24.解:(1)将原点(0,0)和点A (2,0)代入2y x bx c =++中0042cb c=⎧⎨=++⎩ 解得20b c =-⎧⎨=⎩ 22y x x =-………………………(3分)∴顶点C 的坐标为(1,﹣1(2)过点B 作BG ⊥x 轴,垂足为点G ∵∠BGA =90°,∠A =45° ∴∠GBA=45° 设点A (x ,22x x -) 则22x x -=2-x ∴点B (-1,3设直线AB : 0y kx b k =+≠() 将点A (2,0)、B (-1,3)代入203k b k b +=⎧⎨-+=⎩解得12k b =-⎧⎨=⎩ 直线AB :y =设点D (x ,2x -+)则BC =CD =BD 若△BCD 为直角三角形①∠BCD =90° ∴222BC CD BD += 即(222+= 解得73x =∴7133D ⎛⎫⎪⎝⎭点,-……………………………………………(2分)② ∠BDC =90°∴222BDCD BC += 即(222+=解得 1221x x ==-,(舍去) ∴点D (2,0)…………………(2分)综上所述:()712,033D ⎛⎫ ⎪⎝⎭点,-或25.解:(1)∵CE ⊥CD ∴∠DCE =∠BCA =90︒∵∠EDC =∠A ∴△EDC ∽△BAC ∴EC BCDC AC=……………(2分) ∵∠DCE =∠BCA ∴∠DCE -∠BCD =∠BCA -∠BCD 即∠BCE=∠DCA ……(1分)∵ECBCDC AC = ∴△BCE ∽△ACD ………………………………(1分)∴BCACBEAD= 即AC BE BC AD ⋅=⋅………………………………………(1分) (2)∵△BCE ∽△ACD ∴∠CBE =∠A ∵∠BCA=90° ∴4AC ,∠ABC+∠A=90°∴∠CBE+∠ABC=90°即∠DBE=90°……………………(1分)∴DE ==∵BC AC BE AD =,34BE x = ∴ 3=4BE x ()2113153==52248BDE x x S BD BE x x ∆-⋅-⋅=……………………………………(1分) ∵ △CDE ∽△CAB ∴22121165CDE ABC S DE x x S AB ∆∆⎛⎫==-+ ⎪⎝⎭ ∵11==43=622ABC S BC AC ∆⋅⨯⨯ ∴2312=685CDE S x x ∆-+……………………(1分) 即()21=S 60540BDE CDE S S x x ∆∆+=-<<……………………………(2分) (3)11==43=622ABC S BC AC ∆⋅⨯⨯ 由14ABC S S ∆=得 21531684x x -=⨯ ∴2540x x -+=1214x x ==,…………………………(1分)过点D 作DF ⊥AC 于点F ∴∠DFA=∠BCA =90°∴ DF ∥BC ∴DF AD AFBC AB AC == 当x =1时,3455DF AF ==,,165CF AC AF =-=………………………………(1分) 在Rt △DFC 中,∠DFC =90° t a n 3DF DCF ==∠∵∠BCE=∠DCA ∴3an 16t BCE =∠当x =4时,得121655DF AF ==, CF =3tan DCF DFCF∠==,即tan ∠∴综上所述:6an 331t BCE =∠或.2016浦东一模一. 选择题1. 如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2; B. 1:4; C. 1:8; D. 1:16;2. 在Rt △ABC 中,90C ︒∠=,若5AB =,4BC =,则sin A 的值为( )A.34; B. 35; C. 45; D. 43; 3. 如图,点D 、E 分别在AB 、AC 上,以下能推得DE ∥BC 的条件是( ) A. ::AD AB DE BC =; B. ::AD DB DE BC =; C. ::AD DB AE EC =; D. ::AE AC AD DB =;4. 已知二次函数2y ax bx c =++的图像如图所示,那么a 、b 、c 的符号为( ) A. 0a <,0b <,0c >; B. 0a <,0b <,0c <; C. 0a >,0b >,0c >; D. 0a >,0b >,0c <;5. 如图,Rt △ABC 中,90ACB ︒∠=,CD AB ⊥于点D ,下列结论中错误的是( )A. 2AC AD AB =⋅;B. 2CD CA CB =⋅; C. 2CD AD DB =⋅; D. 2BC BD BA =⋅; 6. 下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似;二. 填空题7. 已知13x y =,那么x x y =+ ; 8. 计算:123()3a ab -+=;9. 上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图 上距离约 厘米;10. 某滑雪运动员沿着坡比为100米,则运动员下降的垂直高度为 米;11. 将抛物线2(1)y x =+向下平移2个单位,得到新抛物线的函数解析式是 ; 12. 二次函数2y ax bx c =++的图像如图所示,对称轴为直线2x =,若此抛物线与x 轴的 一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是 ;13. 如图,已知AD 是△ABC 的中线,点G 是△ABC 的重心,AD a = ,那么用向量a表示向量AG为 ;14. 如图,△ABC 中,6AC =,9BC =,D 是△ABC 的边BC 上的点,且CAD B ∠=∠, 那么CD 的长是 ;15. 如图,直线1AA ∥1BB ∥1CC ,如果13AB BC =,12AA =,16CC =,那么线段1BB 的 长是 ;16. 如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处 水平放置一平面镜,一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的 顶端C 处;已知AB BD ⊥,CD BD ⊥,且测得15AB =米,20BP =米,32PD =米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米;17. 若抛物线2y ax c =+与x 轴交于点(,0)A m 、(,0)B n ,与y 轴交于点(0,)C c ,则称 △ABC 为“抛物三角形”;特别地,当0mnc <时,称△ABC 为“正抛物三角形”;当0mnc > 时,称△ABC 为“倒抛物三角形”;那么,当△ABC 为“倒抛物三角形”时,a 、c 应分 别满足条件 ;18. 在△ABC 中,5AB =,4AC =,3BC =,D 是边AB 上的一点,E 是边AC 上的 一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE = ;三. 解答题19. 456tan302cos30︒︒︒+-;20. 二次函数2y ax bx c =++的变量x 与变量y 的部分对应值如下表:(1)求此二次函数的解析式; (2)写出抛物线顶点坐标和对称轴;21. 如图,梯形ABCD 中,AD ∥BC ,点E 是边AD 的中点,联结BE 并延长交CD 的延 长线于点F ,交AC 于点G ;(1)若2FD =,13ED BC =,求线段DC 的长; (2)求证:EF GB BF GE ⋅=⋅;22. 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上 由西向东匀速行驶,依次经过点A 、B 、C ,P 是一个观测点,PC l ⊥,PC =60米,4tan 3APC ∠=,45BPC ︒∠=,测得该车从点A 行驶到点B 所用时间为1秒; (1)求A 、B 两点间的距离;(2)试说明该车是否超过限速;23. 如图,在△ABC 中,D 是BC 边的中点,DE BC ⊥交AB 于点E ,AD AC =,EC 交AD 于点F ;(1)求证:△ABC ∽△FCD ; (2)求证:3FC EF =;24. 如图,抛物线22y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点(0,3)C -,抛物线的顶点为M ;(1)求a 、c 的值; (2)求tan MAC ∠的值;(3)若点P 是线段AC 上一个动点,联结OP ; 问是否存在点P ,使得以点O 、C 、P 为顶点的 三角形与△ABC 相似?若存在,求出P 点坐标; 若不存在,请说明理由;25. 如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),45EBM ︒∠=,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M ;(1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DECG的值; (2)联结EG ,如图2,设AE x =,EG y =,求y 关于x 的函数解析式,并写出定义域; (3)当M 为边DC 的三等分点时,求EGF S 的面积;21、22、23、24、25、2016青浦、静安一模一. 选择题 1.的相反数是( )A.B. C.2; D. 2-; 2. 下列方程中,有实数解的是( )A. 210x x -+=; B. 1x =-;C.210x x x -=-; D. 211xx x-=-; 3. 化简11(1)x ---的结果是( ) A.1x x -; B. 1xx -; C. 1x -; D. 1x -; 4. 如果点(2,)A m 在抛物线2y x =上,将此抛物线向右平移3个单位后,点A 同时平移到 点A ',那么A '坐标为( )A. (2,1);B. (2,7);C. (5,4);D. (1,4)-;5. 在Rt △ABC 中,90C ∠=︒,CD 是高,如果AD m =,A α∠=,那么BC 的长为( )A. tan cos m αα⋅⋅;B. cot cos m αα⋅⋅;C.tan cos m αα⋅; D. tan sin m αα⋅;6. 如图,在△ABC 与△ADE 中,BAC D ∠=∠,要使△ABC 与△ADE 相似,还需满 足下列条件中的( )A. AC AB AD AE =;B. AC BC AD DE =;C. AC AB AD DE =;D. AC BCAD AE=;二. 填空题7. 计算:23(2)a -= ; 8. 函数3()2x f x x -=+的定义域为 ;9. 1x =-的根为 ;10. 如果函数(3)1y m x m =-+-的图像经过第二、三、四象限,那么常数m 的取值范围为 ;11. 二次函数261y x x =-+的图像的顶点坐标是 ;12. 如果抛物线225y ax ax =-+与y 轴交于点A ,那么点A 关于此抛物线对称轴的对称点坐标是 ;13. 如图,已知D 、E 分别是△ABC 的边AB 和AC 上的点,DE ∥BC ,BE 与CD 相交于点F ,如果1AE =,2CE =,那么:EF BF 等于 ;14. 在Rt △ABC 中,90C ∠=︒,点G 是重心,如果1sin 3A =,2BC =,那么GC 的长 等于 ;15. 已知在梯形ABCD 中,AD ∥BC ,2BC AD =,设AB a = ,BC b = ,那么CD =(用向量a 、b的式子表示);16. 在△ABC 中,点D 、E 分别在边AB 、AC 上,AED B ∠=∠,6AB =,5BC =,4AC =,如果四边形DBCE 的周长为10,那么AD 的长等于 ;17. 如图,在平行四边形ABCD 中,AE BC ⊥,垂足为E ,如果5AB =,8BC =,4sin 5B =,那么tan CDE ∠= ; 18. 将平行四边形ABCD (如图)绕点A 旋转后,点D 落在边AB 上的点D ',点C 落到C ',且点C '、B 、C 在一直线上,如果13AB =,3AD =,那么A ∠的余弦值为 ;三. 解答题19. 化简:222266942x x x x x x x---++--,并求当123x =时的值;20. 用配方法解方程:22330x x --=;21. 如图,直线43y x =与反比例函数的图像交于点(3,)A a ,第一象限内的点B 在这个反比 例函数图像上,OB 与x 轴正半轴的夹角为α,且1tan 3α=:(1)求点B 的坐标;(2)求OAB ∆的面积;22. 如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是26.6°,向 前走30米到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是45°和33.7°,求该电 线杆PQ 的高度(结果精确到1米);(备用数据:sin 26.60.45︒=,cos 26.60.89︒=,tan 26.60.50︒=,cot 26.6 2.00︒=,sin 33.70.55︒=,cos33.70.83︒=,tan 33.70.67︒=,cot 33.7 1.50︒=)23. 已知,如图,在△ABC 中,点D 、E 分别在边BC 、AB 上,BD AD AC ==,AD 与CE 相交于点F ,2AE EF EC =⋅; (1)求证:ADC DCE EAF ∠=∠+∠;(2)求证:AF AD AB EF ⋅=⋅;2124. 如图,直线112y x =+与x 轴、y 轴分别相交于点A 、B ,二次函数的图像与y 轴相 交于点C ,与直线112y x =+相交于点A 、D ,CD ∥x 轴,CDA OCA ∠=∠;(1)求点C 的坐标;(2)求这个二次函数的解析式;25. 已知:在梯形ABCD 中,AD ∥BC ,10AC BC ==,4cos 5ACB ∠=,点E 在对角 线AC 上,且CE AD =,BE 的延长线与射线AD 、射线CD 分别相交于点F 、G ,设AD x =,△AEF 的面积为y ;(1)求证:DCA EBC ∠=∠;(2)如图,当点G 在线段CD 上时,求y 关于x 的函数解析式,并写出它的定义域; (3)如果△DFG 是直角三角形,求△AEF 的面积;22静安区2015学年第一学期期末教学质量调研 九年级数学试卷参考答案及评分说明2016.1一、选择题:1.D ; 2.D ; 3.A ; 4.C ; 5.C ; 6.C . 二、填空题:7.68a -; 8.2-≠x ; 9.4=x ; 10.31<<m ; 11.(3, -8); 12.(2, 5); 13.31; 14.2; 15.b a 21--; 16.2; 17.21; 18.135. 三、解答题:19.解:原式= )2()3()2)(2()3)(2(2--÷-+-+x x x x x x x ············································································ (4分) =)3()2()2)(2()3)(2(--⋅-+-+x x x x x x x ··············································································· (1分) =3-x x. ········································································································ (2分) 当3321==x时,原式=231311333+-=-=-. ································· (3分) 20.解:023232=--x x , ····································································································· (1分) 23232=-x x , ············································································································ (1分) 16923)43(2322+=+-x x , ······················································································· (2分) 1633)43(2=-x , ·········································································································· (2分) 43343±=-x , ········································································································· (2分)433231+=x ,433232-=x . ·············································································· (2分)2321.解:(1)∵直线x y 34=与反比例函数的图像交于点A (3,a ), ∴334⨯=a =4,∴点的坐标A (3,4). ······························································ (1分) 设反比例函数解析式为xky =, ············································································· (1分)∴12,34==k k ,∴反比例函数解析式为xy 12=. ··········································· (1分)过点B 作BH ⊥x 轴,垂足为H , 由31tan ==OB BH α,设BH =m ,则OB =m 3,∴B (m 3,m ) ························ (1分) ∴mm 312=,2±=m (负值舍去), ······································································ (1分) ∴点B 的坐标为(6,2). ······················································································ (1分)(1) ····································· 过点A 作AE ⊥x 轴,垂足为E ,OBH AEHB OAE OAB S S S S ∆∆∆-+=梯形············································································ (1分) =BH OH EH BH AE OE AE ⋅-⋅++⋅21)(2121 ··············································· (1分) ==⨯⨯-⨯++⨯⨯26213)24(2143219. ······················································ (2分)22.解:延长PQ 交直线AB 于点H ,由题意得.由题意,得PH ⊥AB ,AB =30,∠PAH =26 .6°,∠PBH =45°,∠Q BH =33.7°, 在Rt △QBH 中,50.1cot ==∠QHBHQBH ,设QH =x ,BH =x 5.1, ···················· (2分) 在Rt △PBH 中,∵∠PBH =45°,∴PH = BH =x 5.1,··············································· (2分) 在Rt △PAH 中,00.2cot ==∠PHAHPAH ,AH =2PH =x 3, ··································· (2分) ∵AH –BH =AB ,∴305.13=-x x ,20=x . ························································· (2分) ∴PQ =PH –QH =105.05.1==-x x x . ····································································· (1分) 答:该电线杆PQ 的高度为10米. ················································································· (1分)2423.证明:(1)∵EC EF AE ⋅=2,∴AEECEF AE =. ·························································· (1分) 又∵∠AEF =∠CEA ,∴△AEF ∽△CEA . ······················································· (2分) ∴∠EAF =∠ECA , ··························································································· (1分) ∵AD =AC ,∴∠ADC =∠ACD , ······································································· (1分) ∵∠ACD =∠DCE +∠ECA =∠DCE +∠EAF . ····················································· (1分)(2)∵△AEF ∽△CEA ,∴∠AEC =∠ACB . ······························································· (1分)∵DA =DB ,∴∠EAF =∠B . ················································································ (1分) ∴△EAF ∽△CBA . ····························································································· (1分)∴ACEFBA AF =. ··································································································· (1分) ∵AC =AD ,∴ADEFBA AF =. ················································································ (1分) ∴EF AB AD AF ⋅=⋅. ···················································································· (1分)24.解:(1)∵直线121+=x y 与x 轴、y 轴分别相交于点A 、B , ∴A (–2,0)、B (0,1).∴OA =2,OB =1. ······················································ (2分) ∵CD //x 轴,∴∠OAB =∠CDA ,∵∠CDA =∠OCA ,∴∠OAB =∠OCA . ············· (1分) ∴tan ∠OAB =tan ∠OCA , ························································································· (1分) ∴OCOA OA OB =,∴OC 221=, ·················································································· (1分) ∴4=OC ,∴点C 的坐标为(0,4). ································································ (1分) (2)∵CD //x 轴,∴BOBCAO CD =. ················································································· (1分) ∵BC =OC –OB=4–1=3,∴132=CD ,∴CD =6,∴点D (6,4). ························ (1分) 设二次函数的解析式为42++=bx ax y , ···························································· (1分)⎩⎨⎧++=+-=,46364,4240b a b a ………………(1分) ⎪⎩⎪⎨⎧=-=.23,41b a ········································· (1分) ∴这个二次函数的解析式是423412++-=x x y . ················································· (1分)25.解:(1)∵AD ∥BC ,∴∠DAC =∠ECB . ········································································ (1分)又∵AD =CE ,AC =CB ,∴△DAC ≌△ECB . ······························································ (2分) ∴∠DCA =∠EBC . ··································································································· (1分) (2)过点E 作EH ⊥BC ,垂足为H .AE =AC –CE =x -10.。
浦东新区2016年一模数学试卷(含答案详解)(总分150)2016一、选择题:(本大题共6小题,每题4分,满分24分)1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2 B. 1:4 C. 1:8 D. 1:162.在Rt △ABC 中,∠C=90°,AB=5,BC=4,则sinA 的值为( )A. B. C. D.3.如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( ) A. AD:AB=DE:BC ; B. AD:DB=DE:BC ; C. AD:DB=AE:EC ; D. AE:AC=AD:DB.4.已知二次函数y=ax 2+bx+c 的图像如图所示,那么a 、b 、c 的符号为( ) A. a <0,b <0,c >0; B. a <0,b <0,c <0;C. a >0,b >0,c >0;D. a >0,b >0,c <0.5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列结论中错误的是( ) A. AC 2=AD ·AB ; B. CD 2=CA ·CB ; C. CD 2=AD ·DB ; D. BC 2=BD ·BA.6.下列命题是真命题的是( )A. 有一个角相等的两个等腰三角形相似;B. 两边对应成比例且有一个角相等的两个三角形相似;34354543BAC. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似.二、填空题(本大题共12小题,每题4分,满分48分)7.已知,那么 .8.计算: .9.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约厘米.10.某滑雪运动员沿着坡比为1:的斜坡向下滑行了100m,则运动员下降的垂直高度是米.11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .12.二次函数y=ax2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x轴的一个交点为(6,0),则抛物线与x轴的另一个交点坐标是 .13.如图,已知AD是△ABC的中点,点G是△ABC的重心,,那么用向量表示向量为 .14.如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是 .15.如图,直线AA1//BB1//CC1,如果 ,AA1=2,CC1=6,那么线段BB1的长为 .x y =13xx+y=133AB = a aABBC=13AG第12题图 第13题图 第14题图 第15题16.如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处水平放置一平面镜.一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=15米,BP=20米,PD=32米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米.17.若抛物线y=ax 2+c 与x 轴交于点A (m ,0),B (n ,0),与y 轴交于点C (0,c ),则称△ABC 为“抛物三角形”.特别地,当mnc <0时,称△ABC 为“倒抛物三角形”时,a 、c 应分别满足条件 .18.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE= .三、解答题(本大题共7小题,满分78分) 19.(本题满分10分)计算: sin45°+6tan30°-2cos30°.20.(本题满分10分,第(1)小题6分,第(2)小题4分) 二次函数y=ax 2+bx+c 的变量x 与变量y 的部分对应值如下表: x…-3-2-115…GDBADCBC1B1A1CBA 2(1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴.21. (本题满分10分,每小题8分)如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,ED:BC=1:3,求线段DC的长;(2)求证:EF·GB=BF·GE.B22. (本题满分10分,第(1)小题6分,第(2)小题4分) 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A 、B 、C. P 是一个观测点,PC ⊥l ,PC=60米, tan ∠APC= ,∠BPC=45°,测得该车从点A 行驶到点B所用时间为1秒.(1)求A 、B 两点间的距离; (2)试说明该车是否超过限速.4323. (本题满分12分,每小题6分)如图,在△ABC 中,D 是BC 边的中点,DE ⊥BC 交AB 于点E ,AD=AC ,EC 交AD 于点F. (1)求证:△ABC ∽△FCD ; (2)求证:FC=3EF.24. (本题满分12分,每小题4分)如图,抛物线y=ax 2+2ax+c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点CBAC(0,-3),抛物线的顶点为M.(1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),∠EBM=45°,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M. (1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE:CG 的值;(2)联结EG ,如图2,若设AE=x ,EG=y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当M 为边DC 的三等分点时,求S △EGF 的面积.备用图CE浦东新区2016学年一模数学试卷(答案详解)。
2016学年浦东新区初三一模数学试卷数学试卷数学试卷 2017/1/12(满分:150分,考试时间:100分钟)考生注意:1. 本试卷含三个大题,共25题2. 答题时,考生务必按答题要求在答题纸规定位置上作答,在草稿纸,本试卷上大题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤。
一、选择题(本大题共6题,每题4分,满分24分).1.在下列y 关于x 的函数中,一定是二次函数的是………………………………………………( ) (A )22y x =; (B )22y x =-; (C )2y ax =; (D )2a y x =. 2.如果向量a b x 、、满足32()23x a a b +=-,那么x 用a b 、表示正确的…………………( ) (A )2a b -; (B )52a b -; (C )23a b -; (D )12a b -3.已知在Rt ABC ∆中,90O C ∠=,A α∠=,2BC =,那么AB 的长等于( ) (A )2sin α; (B )2sin α; (C )2cos α; (D )2cos α#4.在ABC ∆中,点D E 、分别在边AB AC 、,如果2AD =,=4BD ,那么由下列条件能够判断DE BC ∥的是( ) (A )12AE AC =; (B )13DE BC =; (C )13AE AC =; (D )12DE BC =5.如图,ABC ∆的两条中线AD CE 、交于点G ,且AD CE ⊥.联结BG 并延长与AC 交于点F ,如果912AD CE ==,,那么下列结论不正确的是( )(A ) 10AC =; (B )15AB =; (C )10BG =; (D )15BF =—6.如果抛物线21A y x =-:通过左右平移得到抛物线B ,再通过上下平移抛物线B 得到抛物线222C y x x =-+:,那么抛物线B 的表达式为( )(A )22y x =+; (B )221y x x =--; (C )22y x x =- ; (D )221y x x =-+;…二、填空题(本大题共12题,每题4分,满分48分)7.已知线段34a cm b cm ==,,那么线段a b 、的比例中项等于 cm ; 8.已知P 是线段AB 上的黄金分割点,PB PA >,=2PB ,那么=PA ; 9.已知24a b ==,,且b 和a 反向,用向量a 表示b = ; 10.如果抛物线2(3)2y mx m x m =+--+经过原点,那么m = ; 11.如果抛物线2(3)2y a x =--有最低点,那么a 的取值范围是 。
浦东新区2016学年度第一学期期末质量抽测七年级数学试卷一、选择题:(本大题共5题,每题2分,满分10分)1.下列计算正确的是………………………………………………………………………( ) (A )523x x x =+; (B )x x x =-23; (C )623x x x =⋅; (D )x x x =÷23. 2.如果分式59+x x -无意义,那么x 的值为…………………………………………………( ) (A )-5; (B )0; (C )5; (D )9. 3.下列各等式中,从左到右的变形是正确的因式分解的是………………………………( ) (A )xy x y x x 22)(22-=-⋅;(B ))2()(22y x y x y x +=-+; (C ))23(232n mx x x nx mx -=+-; (D )2)3(232-+=-+x x x x .4.在方程012=+x ,012=-x ,5123=--xx ,x x 512=+中,分式方程共有………………( ) (A )1个; (B )2个; (C )3个; (D )4个.5.正方形是轴对称图形,它的对称轴共有…………………………………………………( ) (A )1条; (B )2条; (C )3条; (D )4条. 二、填空题:(本大题共15题,每题2分,满分30分) 6.分解因式:x x 822-= . 7.计算:)3()36(3x x x -÷-= . 8.化简:12742+--a a a = . 9.计算:20162017515⎪⎭⎫⎝⎛⨯= .10.计算:)4)(2)(2(2++-m m m = .11.将322y x -写成只含有正整数指数幂的形式是: .12.如果当y =2时,分式xyyx 63-的值为0,那么x 的值为 . 13.已知整式22y x m 与整式n y x 34是同类项,那么n m = .14.如果关于x 、y 的多项式3-+-nx y x m 是三次二项式,那么m +n = . 15.某种细菌的直径为0.000 003 8米,这个数用科学记数法表示为 . 16.设某数为m ,用含m 的代数式表示“比某数与3的差的2倍大5的数”: . 17.已知m 、n 是整数,4=m x ,21=n x ,那么n m x -= . 18.如图,将长方形ABCD 折叠,使点C 与点A 重合,折痕分别交边BC 于点E 、边AD 于点F .如果∠AEB =70°,那么∠CEF = 度. 19.如图,大小相同的小正方形按如图的规律摆放:第1层1个,第2层3个,第3层5个,…(下面一层依次比上面一层多两个小正方形),那么第2017层的小正方形个数有 个. 20.已知在直角三角形ABC 中,∠ACB =90°,将此直角三角形沿射线BC 方向平移4cm ,到达直角三角形A 1B 1C 1的位置(如图所示),此时边A 1B 1与边AC 相交于点D .如果AD =3cm ,CD =2cm ,那么四边形ABB 1D 的面积等于 cm 2.三、简答题:(本大题共4题,其中21、22题,每题各12分,23、24题,每题各6分,满分36分)21.计算:(1)23033237-)()(+-.(2)2)()3)(2(y x y x y x --+-.22.分解因式:(1)9824-+x x ;(2)n mn m m 8242+--.A B C D E F (第18题图)(第19题图)1 1 1 (第20题图)23.解方程:xxx +=-+72376.24.先化简,再求值:3229443222222----÷-+--+x x x x x x x x x x ,其中23-=x .四、画图题:(本大题满分8分) 25.(1)画出如图所示的三角形与圆的组合图形关于直线MN 的轴对称的图形a ;(2)画出如图所示的三角形与圆的组合图形绕点O 按顺时针方向旋转90°后的图形b ; (3)图形b 可以通过图形a 经过怎样的图形运动得到?请写出你的方法.(第25题图)五、解答题:(本大题共2题,每题8分,满分16分)26.某工厂计划加工生产800件产品,当完成200件产品后,改进了技术,提高了效率,改进后每小时生产的产品数是原来的1.2倍,因此提前了25小时完工.求原来每小时加工生产的产品数.27.阅读材料:在代数式中,将一个多项式添上某些项,使添项后的多项式中的一部分成为一个完全平方式,这种方法叫做配方法.如果我们能将多项式通过配方,使其成为22B A -的形式,那么继续利用平方差公式就能把这个多项式因式分解.例如,分解因式:44+x .解:原式224444x x x -++=2224)2(x x -+=)22)(22(22x x x x -+++=.即 原式)22)(22(22+-++=x x x x . 按照阅读材料提供的方法,解决下列的问题. 分解因式:(1)124++x x ;(2)91042222---+xy y x y x .参考答案及评分说明一、选择题:1.D ; 2.A ; 3.B ; 4.C ; 5.D .二、填空题: 6.)4(2-x x ; 7.122+-x ; 8.31-a ; 9.5; 10.164-m ; 11.232x y ;12.6; 13.9; 14.2;15.6108.3-⨯;16.5)3(2+-m ; 17.8;18.55;19.4033; 20.14.三、简答题: 21.解:(1)原式=912781+- ……………………………………………………………(3分) =273827+- ……………………………………………………………(2分) =2722. …………………………………………………………………(1分) (2)原式=)2()62222y xy x y xy x +----( …………………………………(4分) =222226y xy x y xy x -+--- ………………………………………(1分) =27y xy -. ……………………………………………………………(1分)22.解:(1)原式=)1)(922-+x x ( ………………………………………………………(3分) =)1)(1)(92-++x x x (. ……………………………………………(3分)(2)原式=)4(2)4(---m n m m …………………………………………………(3分)=)2)(4(n m m --.…………………………………………………(3分)23.解:去分母,得x x 2)7(36=+-. …………………………………………………(2分)去括号,得x x 22136=--. …………………………………………………(1分)所以155-=x . …………………………………………………………………(1分) 解得3-=x . ………………………………………………………………………(1分)经检验:3-=x 是原方程的解. …………………………………………………(1分) 所以原方程的解是3-=x .24.解:原式=)1)(2()1)(3()3)(3()2()3(22+-+-⋅-+--+x x x x x x x x x x …………………………………(2分)=323+--+x x x x ……………………………………………………………(1分)=32+x . …………………………………………………………………(1分)当23-=x 时,原式=3232+-=34. …………………………………………(2分)25.解:(1)画图正确; ……………………(3分)(2)画图正确; ……………………(3分)(3)如图,图形b 可以通过图形a 沿直线l 翻折得到.等 …………(2分)26.解:设原来每小时加工生产的产品数为x 件.…………………………………(1分)根据题意,得25)2.1600200(800=+-xx x . ………………………………………(3分) 整理,得12.12424=-xx . ………………………………………………………(1分) 解得x =4. …………………………………………………………………(1分) 经检验:x =4是原方程的解并符合题意. …………………………………(1分) 答:原来每小时加工生产的产品数为4件. …………………………………(1分)27.解:(1)原式=22412x x x -++…………………………………………………(2分)=222)1(x x -+………………………………………………………(1分)=)1)(1(22x x x x -+++. ……………………………………………(1分)即原式=)1)(1(22+-++x x x x . (2)原式=96442222---+-xy y x y xy x…………………………………(2分)=2232)()(+--xy y x …………………………………………………(1分)=)32)(32(---++-xy y x xy y x . …………………………………(1分)。
2016年上海各区县一模数学第18题汇编(含分析)例2016年上海市崇明县中考一模第18题如图I.等边•二角形中,。
是8r边上的一点,E BD : DC= 1 :3.把AdBr折都使点d落在6C边上的点D处,那么_ 的佗为如图2,因为/A/Z>C=/B+/l=6(r +/1, NA/DC=/A/PN+/2=6(r +/2, 所以Nl = /2.又因为NE = NC=6(r ,所以△MBD S ADCN.由3 DM 413/向周长TB + BD所以 --- = -------------- = ----------ND △ZXW的周长JC+DC如图3,设等边三角形ABC的边长为4, "1BD :。
「=1 :3时,—=—AM ND 4 + 3 7图图例 2016年上海市奉贤区中考一模第18题如图1.已知平行四边形,45。
[)中,.48:2/,,3=6.8由='.将边绕点」旋*)转,使得点B 落在平行四边形ABCD 的边上,其对应点为F (点£不与点S 瓯合),那么 sin ZC-fB r = .如图2.在Rtzk/HE 中,由T5=2,7, covB- 1 .可得2E=3 .正=4.在RlA/fCE 中,由.dE=4. CE=BC-BE=6-2-4.可得/C= 4应.乙4CE75 .①如图3,当点用在灰:,边上时,B 任=BE=2.在等腰直角—.用形中,B fC=2.所以8H=CH=J 三. 管1△ABH R'H= JI, AH=AC-CH = 372 .所以-虫?'=26.此时向“用=型=£=巫. AB' 2V5 10②如图4.当点?在HD 边上时,ZCJ5r=45 .此时sin/CH3=^. ?图12016年上海市虹口区中考一模第18题如图1,在矩形JBCD中,.48=6,初=10,点E是SC的中点,联结HE.若将&4的沿HE翻折,点8落在点广处,联结FC.贝iJco$NECF= __________ .B E图I如图2.由EB=EC=EF.可知N3尸C=90 .又因为.在戊直平分BF.所以NRO£=90° .所以如O/JE所以NECF=N8E4.在R【ZLd%?I。
上海市黄浦区2016年中考数学一模试题一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为( )A .1:2B .1:4C .1:8D .1:162.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a=9cm ,b=4cm ,则线段c 长( )A .18cmB .5cmC .6cmD .±6cm3.如果向量与向量方向相反,且,那么向量用向量表示为( )A .B .C .D .4.在直角坐标平面内有一点P (3,4),OP 与x 轴正半轴的夹角为α,下列结论正确的是( )A .tan α=B .cot α=C .sin α=D .cos α=5.下列函数中不是二次函数的有( )A .y=x (x ﹣1)B .y=﹣1C .y=﹣x 2D .y=(x+4)2﹣x 26.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,如果DE ∥BC ,且∠DCE=∠B ,那么下列说法中,错误的是( )A .△ADE ∽△ABCB .△ADE ∽△ACDC .△ADE ∽△DCBD .△DEC ∽△CDB二、填空题:(本大题共12题,每题4分,满分48分)7.如果sin α=,那么锐角α= °.8.已知线段a 、b 、c 、d ,如果,那么= .9.计算:= .10.在Rt△ABC中,∠C=90°,AC=2,cotA=,则BC= .11.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= .12.如图,在△ABC中,点D是BC边上的点,且CD=2BD,如果,,那么= (用含、的式子表示).13.在△ABC中,点O是重心,DE经过点O且平行于BC交边AB、AC于点D、E,则S△ADE:S△ABC= .14.如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则DE:BC= .15.某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为米.16.如图,AD、BE分别是△ABC中BC、AC边上的高,AD=4,AC=6,则sin∠EBC= .17.已知抛物线y1=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”.18.如图,在梯形ABCD中,AD∥BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC=90°,若AB=2,则AD的长是.三、解答题:(本大题共7题,满分78分)19.计算:cos245°﹣+cot230°.20.如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,点F是DE延长线上的点,,联结FC,若,求的值.21.已知抛物线y=ax2+bx+c如图所示,请结合图象中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.22.如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA=∠ADE,∠CAD=∠BAE.(1)求证:△ABC∽△A ED;(2)求证:BE•AC=CD•AB.23.如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.24.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+c与x轴交于A(﹣1,0)、B两点(A点在B点左侧),与y轴交于点C(0,2).(1)求抛物线的对称轴及B点的坐标;(2)求证:∠CAO=∠BCO;(3)点D是射线BC上一点(不与B、C重合),联结OD,过点B作BE⊥OD,垂足为△BOD外一点E,若△BDE与△ABC相似,求点D的坐标.25.已知直线l1、l2,l1∥l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O 是AB的中点,D是CB延长线上的点,将△DOC沿直线CO翻折,点D与D′重合.(1)如图1,当点D′落在直线l1上时,求DB的长;(2)延长DO交l1于点E,直线OD′分别交l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的函数解析式及其定义域;②若△DON的面积为时,求AE的长.2016年上海市黄浦区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.如果两个相似三角形的周长比为1:4,那么这两个三角形的相似比为()A.1:2 B.1:4 C.1:8 D.1:16【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比解答即可.【解答】解:∵两个相似三角形的周长比为1:4,∴这两个三角形的相似比为1:4,故选:B.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比是解题的关键.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.如果向量与向量方向相反,且,那么向量用向量表示为()A.B.C.D.【考点】*平面向量.【分析】由向量与向量方向相反,且,可得3=﹣,继而求得答案.【解答】解:∵向量与向量方向相反,且,∴3=﹣,∴=﹣.故选D.【点评】此题考查了平面向量的知识.注意根据题意得到3=﹣是解此题的关键.4.在直角坐标平面内有一点P(3,4),OP与x轴正半轴的夹角为α,下列结论正确的是()A.tanα=B.cotα=C.sinα=D.cosα=【考点】锐角三角函数的定义;坐标与图形性质.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.【解答】解:斜边为=5,A、tanα=,故A正确;B、cotα=,故B错误;C、sinα=,故C错误;D、cosα=,故D错误;故选:A.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=﹣1 C.y=﹣x2D.y=(x+4)2﹣x2【考点】二次函数的定义.【分析】依据二次函数的定义回答即可.【解答】解:A、整理得y=x2﹣x,是二次函数,与要求不符;B、y=﹣1是二次函数,与要求不符;C、y=﹣x2是二次函数,与要求不符;D、整理得:y=8x+16是一次函数,与要求相符.故选:D.【点评】本题主要考查的是二次函数的定义,掌握二次函数的定义是解题的关键.6.如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是()A.△ADE∽△ABC B.△ADE∽△ACD C.△ADE∽△DCB D.△DEC∽△CDB【考点】相似三角形的判定.【分析】由相似三角形的判定方法得出A、B、D正确,C不正确;即可得出结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∠BCD=∠CDE,∠ADE=∠B,∠AED=∠ACB,∵∠DCE=∠B,∴∠ADE=∠DCE,又∵∠A=∠A,∴△ADE∽△ACD;∵∠BCD=∠CDE,∠DCE=∠B,∴△DEC∽△CDB;∵∠B=∠ADE,但是∠BCD<∠AED,且∠BCD≠∠A,∴△ADE与△DCB不相似;正确的判断是A、B、D,错误的判断是C;故选:C.【点评】本题考查了相似三角形的判定方法;熟练掌握相似三角形的判定方法,由两角相等得出三角形相似是解决问题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.如果sinα=,那么锐角α= 60 °.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:由sinα=,得锐角α=60°,故答案为:60.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.8.已知线段a、b、c、d,如果,那么= .【考点】比例的性质.【分析】根据等比性质:⇒=,可得答案.【解答】解:由等比性质,得=,故答案为:.【点评】本题考查了比例的性质,利用等比性质是解题关键.9.计算:= +.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解:=﹣3﹣+4=+.故答案为:.【点评】此题考查了平面向量的运算法则.注意去括号时符号的变化.10.在Rt△ABC中,∠C=90°,AC=2,cotA=,则BC= 6 .【考点】锐角三角函数的定义.【分析】根据余切等于邻边比对边,可得答案.【解答】解:Rt△ABC中,∠C=90°,AC=2,cotA==,得BC=3AC=3×2=6,故答案为:6.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切等于邻边比对边.11.如图,已知AD、BC相交于点O,AB∥CD∥EF,如果CE=2,EB=4,FD=1.5,那么AD= 4.5 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD=AF+FD=4.5即可.【解答】解:∵AB∥EF,∴,则,又EF∥CD,∴,则,∴,即,解得:AF=3,∴AD=AF+FD=3+1.5=4.5,即AD的长是4.5;故答案为:4.5.【点评】本题考查了平行线分线段成比例、比例的性质;由平行线分线段成比例定理得出比例式求出AF是解决问题的关键.12.如图,在△ABC中,点D是BC边上的点,且CD=2BD,如果,,那么= 3﹣3(用含、的式子表示).【考点】*平面向量.【分析】由,,直接利用三角形法则即可求得,再由CD=2BD,即可求得答案.【解答】解:∵,,∴=﹣=﹣,∵在△ABC中,点D是BC边上的点,且CD=2BD,∴=3=3﹣3.故答案为:.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是解此题的关键.13.在△ABC中,点O是重心,DE经过点O且平行于BC交边AB、AC于点D、E,则S△ADE:S△ABC= 4:9 .【考点】三角形的重心.【分析】根据三角形的重心的性质得到=,根据相似三角形的面积比等于相似比的平方交点即可.【解答】解:∵点O是重心,∴=,∵DE∥BC,∴==,△ADE∽△ABC,∴S△ADE:S△ABC=4:9,故答案为:4:9.【点评】本题考查的是三角形的重心的概念和性质、相似三角形的性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.14.如图,在△ABC中,D、E分别是边AC、AB上的点,且AD=2,DC=4,AE=3,EB=1,则DE:BC=.【考点】相似三角形的判定与性质.【分析】根据已知条件得到,由于∠A=∠A,推出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AD=2,DC=4,AE=3,EB=1,∴AC=6,AB=4,∴,,∴,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=AD:AB=1:2,故答案为:.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.15.某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为26 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】因为tanα(坡度)=垂直距离÷水平距离,可得水平距离为24米,根据勾股定理可得背水面的坡长为26米.【解答】解:∵大坝高10米,背水坝的坡度为1:2.4,∴水平距离=10×2.4=24(米).根据勾股定理,可得背水面的坡长为: =26(米).故答案为:26.【点评】此题主要考查了坡度问题应用,此题的关键是熟悉且会灵活应用公式:tanα(坡度)=垂直距离÷水平距离.16.如图,AD、BE分别是△ABC中BC、AC边上的高,AD=4,AC=6,则sin∠EBC=.【考点】解直角三角形.【专题】推理填空题.【分析】根据AD、BE分别是△ABC中BC、AC边上的高,可以求得∠EBC和∠DAC的关系,AD=4,AC=6,可以求得CD的长,从而可以求出∠DAC的三角函数值,进而可以得到∠EBC的三角函数值,本题得以解决.【解答】解:∵AD、BE分别是△ABC中BC、AC边上的高,∴∠BDA=∠ADC=90°,∴∠CBE=∠DAC,∵∠ADC=90°,AD=4,AC=6,∴CD=,∴sin,∴sin∠EBC=,故答案为:.【点评】本题考查解直角三角形,解题的关键找出各个角之间的关系,利用等角的三角函数值相等,可以求得所求的角的三角函数值.17.已知抛物线y1=a(x﹣m)2+k与y2=a(x+m)2+k(m≠0)关于y轴对称,我们称y1与y2互为“和谐抛物线”.请写出抛物线y=﹣4x2+6x+7的“和谐抛物线”y=﹣4x2﹣6x+7 .【考点】二次函数图象与几何变换.【专题】新定义.【分析】根据关于y轴对称的点的坐标规律:纵坐标相同,横坐标互为相反数,可得答案【解答】解:抛物线y=﹣4x2+6x+7的“和谐抛物线”是y=﹣4(﹣x)2+6(﹣x)+7,化简,得y=﹣4x2﹣6x+7,故答案为:y=﹣4x2﹣6x+7.【点评】本题考查了二次函数图象与几何变换,利用了关于y轴对称的点的坐标规律.18.如图,在梯形ABCD中,AD∥BC,∠B=45°,点E是AB的中点,DE=DC,∠EDC=90°,若AB=2,则AD的长是.【考点】相似三角形的判定与性质;全等三角形的判定与性质.【专题】计算题;图形的相似.【分析】延长DE交CB的延长线于点F,将AD替换成BF,再由三角形相似,借助比的特性,即能得出结论.【解答】解:延长DE交CB的延长线于点F,如图,∵AD∥BC,∴∠ADE=∠F,∵点E是AB的中点,∴AE=BE=1,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,DE=EF,∵∠B=∠F+∠BEF=45°,DE=DC,∠EDC=90°,∴∠CED=∠F+∠ECF=45°,CE=DE,∴∠BEF=∠ECF,∵∠F=∠F,∴△BEF∽△ECF,∴=,即=,∴=,∴AD=.故答案为:.【点评】本题考查全等三角形的判定和性质以及相似三角形的判定和性质,解题的关键是巧妙的利用比的特性,化未知为已知,从而得出结论.三、解答题:(本大题共7题,满分78分)19.计算:cos245°﹣+cot230°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,点F是DE延长线上的点,,联结FC,若,求的值.【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理和已知条件得出,证出AB∥CF,再由平行线分线段成比例定理和比例的性质即可得出结果.【解答】解:∵DE∥BC,∴,又∵,∴,∴AB∥CF,∴=,∵,∴=2,∴=2.【点评】本题考查了平行线分线段成比例定理以及逆定理;熟练掌握平行线分线段成比例定理,证明AB∥CF是解决问题的关键.21.已知抛物线y=ax2+bx+c如图所示,请结合图象中所给信息完成以下问题:(1)求抛物线的表达式;(2)若该抛物线经过一次平移后过原点O,请写出一种平移方法,并写出平移后得到的新抛物线的表达式.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)根据题意和图形列出三元一次方程组,解方程组得到答案.(2)由于平移前后的二次项系数不变,而平移后的抛物线过原点,则平移后的抛物线解析式中常数项为0,然后根据这两个条件写出一个解析式即可.【解答】解:(1)由题意得,解得.∴函数的解析式为:y=﹣x2﹣2x+3;(2)平移抛物线y=﹣x2﹣2x+3,使它经过原点,则平移后的抛物线解析式可为y=﹣x2﹣2x.故向下平移3个单位,即可得到过原点O的抛物线.【点评】本题考查的是待定系数法求二次函数的解析式和二次函数图象与交换变换,掌握待定系数法和平移的规律是解题的关键.22.如图,已知四边形ABCD的对角线AC、BD交于点F,点E是BD上一点,且∠BCA=∠ADE,∠CAD=∠BAE.(1)求证:△ABC∽△AED;(2)求证:BE•AC=CD•AB.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据已知条件和角的和差得到∠BAC=∠DAE,由于∠ACB=∠ADE,即可得到结论;(2)根据相似三角形的性质得到,由∠BAE=∠CAD,推出△ABE∽△ACD,由相似三角形的性质即可得到结论.【解答】证明:(1)∵∠BAE=∠DAC,∠BAC=∠BAE﹣∠CAE,∠DAE=∠DAC﹣∠CAE,∴∠BAC=∠D AE,∵∠ACB=∠ADE,∴△ABC∽△AED;(2)∵△ABC∽△AED,∴,∵∠BAE=∠CAD,∴△ABE∽△ACD,∴,即:BE•AC=CD•AB.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定和性质是解题的关键.23.如图,一条细绳系着一个小球在平面内摆动.已知细绳从悬挂点O到球心的长度为50厘米,小球在A、B两个位置时达到最高点,且最高点高度相同(不计空气阻力),在C点位置时达到最低点.达到左侧最高点时与最低点时细绳相应所成的角度为37°,细绳在右侧达到最高点时与一个水平放置的挡板DE所成的角度为30°.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)(1)求小球达到最高点位置与最低点位置时的高度差.(2)求OD这段细绳的长度.【考点】解直角三角形的应用.【分析】(1)根据题意得出CF=OC﹣OF=OC﹣OAcos37°,进而得出答案;(2)根据题意得出CF=CD﹣DF=BD﹣BD•cos60°=10,进而得出DC的长,进而得出答案.【解答】解:(1)连接AB交OC于点F,可知,AB⊥OC,由题意可得:∠AOC=37°,则CF=OC﹣OF=OC﹣OAcos37°=50﹣50×0.8=10(cm),故A,C之间的高度差为10cm;(2)由(1)知,B,C的高度差也是10cm,故CF=CD﹣DF=BD﹣BD•cos60°=10(cm),解得:CD=20,则OD=OC﹣BD=50﹣20=30(cm),答:OD这段细绳的长度为30cm.【点评】此题主要考查了解直角三角形的应用,根据题意得出OF与OA的关系是解题关键.24.在平面直角坐标系xOy中,抛物线y=ax2﹣3ax+c与x轴交于A(﹣1,0)、B两点(A点在B点左侧),与y轴交于点C(0,2).(1)求抛物线的对称轴及B点的坐标;(2)求证:∠CAO=∠BCO;(3)点D是射线BC上一点(不与B、C重合),联结OD,过点B作BE⊥OD,垂足为△BOD外一点E,若△BDE与△ABC相似,求点D的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得对称轴,根据函数值相等的两点关于对称轴对称,可得B点坐标;(2)根据正切函数值相等的两锐角相等,可得答案;(3)根据两角对应相等的两个三角形相似,可得①∠EBD=∠CBA,根据余角的性质,可得∠EDB=∠CAB=∠OCD=∠ODC,根据等腰三角形的判定,可得OD的长,根据勾股定理,可得a的值,根据a的值OH的长,可得D点坐标;②根据等腰三角形的判定,可得OD的长,根据勾股定理,可得m的值,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将A、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x+2=﹣(x﹣)2+,对称轴为x=,A到对称轴的距离是﹣(﹣1)=,B点的横坐标为, +=4,B点坐标为(4,0);(2)证明:如图1,∵AO=1,OC=2,BO=4,∴tan∠CAO==2,tan∠BCO=2,∴tan∠CAO=tan∠BCO,∴∠CAO=∠BCO;(3)垂足为△BOD外一点E,得△BOD为钝角三角形,∠BED=∠ACB=90°,①∠EBD=∠CBA时,如图2,过D作DH⊥OB于H,∠EDB=∠CAB=∠OCD=∠ODC,OD=OC=2.tan∠CBO===,设DH=a,HB=2a,OH=4﹣2a,OD2=OH2+DH2,即4=(4﹣2a)2+a2,解得a=,a=2(舍),当a=时,OH=4﹣2a=,D点坐标为(,);②∠EDB=∠CBA时,如图3,此时OD=OB=4,BC:y=﹣x+2,设D(m,﹣ m+2),m2+(﹣m+2)2=16,解得m=﹣,m=4(舍),当m=﹣时,﹣ m+2=,D(﹣,),综上所述:D点坐标为(,),(﹣,).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正切函数值相等的两锐角相等是解题关键;利用两角对应相等的两个三角形相似得出①∠EBD=∠CBA,②∠EDB=∠CBA是解题关键,又利用了勾股定理.25.已知直线l1、l2,l1∥l2,点A是l1上的点,B、C是l2上的点,AC⊥BC,∠ABC=60°,AB=4,O 是AB的中点,D是CB延长线上的点,将△DOC沿直线CO翻折,点D与D′重合.(1)如图1,当点D′落在直线l1上时,求DB的长;(2)延长DO交l1于点E,直线OD′分别交l1、l2于点M、N.①如图2,当点E在线段AM上时,设AE=x,DN=y,求y关于x的函数解析式及其定义域;②若△DON的面积为时,求AE的长.【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)过D′作D′H⊥l2,如图1所示,可得DH=AC,由折叠的性质及平角定义得到∠D′CH=60°,D′C=DC,求出D′C的长,即为DC的长,再由三角形BOC为等边三角形,且OC等于斜边AB的一半,求出BC的长,由DC﹣BC求出BD的长即可;(2)①利用两对角相等的三角形相似得到△BOD∽△CND′,由相似得比例列出关系式,即可确定出y与x的函数解析式,并求出定义域即可;②过O作OP⊥BC,如图3所示,由OP的长及已知三角形DON的面积,求出DN的长,分两种情况考虑:当点E在线段AM上时,如图3所示,根据DN的长,求出AE的长即可;当点E在线段AM的延长线上时,如图4所示,同理可得△BOD∽△CND′,由相似得比例求出此时AE的长即可.【解答】解:(1)过D′作D′H⊥l2,如图1所示,可得DH=AC=2,∵∠DCO=∠D′CO=60°,∴∠D′CH=60°,∴CD=CD′=4,∵∠DCO=∠ABC=∠D′CO=60°,∴△OBC为等边三角形,即BO=CO=BC,∵O为Rt△ABC斜边AB上的中点,∴OC=AB=2,即BC=2,∴BD=CD﹣BC=2;(2)①∵∠DCO=∠D′CO=∠BOC=60°,∴∠OBD=∠NCD′=120°,∵∠ODC=∠ODC′,∴△BOD∽△CND′,∴=,即=,则y=﹣x(0<x≤2);②过O作OP⊥BC,如图3所示,∴S△DON=DN•OP=,OP=,∴DN=3,当点E在线段AM上时,如图3所示,可得DN=y=3,∴﹣x=3,解得:x=1(负值舍去),即AE=1;当点E在线段AM的延长线上时,如图4所示,21 同理可得△BOD∽△CND′,∴=,即=,解得:AE=4,综上,AE 的长为1或4.【点评】此题属于相似形综合题,涉及的知识有:等边三角形的判定与性质,直角三角形斜边上的中线性质,相似三角形的判定与性质,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.。
2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣22.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( ) A.B.C.D.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=__________.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=__________.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=__________.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是__________cm.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=__________.12.计算:sin60°﹣cot30°=__________13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=__________.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为__________.15.抛物线y=﹣2x2+4x﹣1的对称轴是直线__________.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1__________y2(填“<”或者“>”)17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为__________.18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是__________.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.2016年上海市杨浦区中考数学一模试卷一、选择题(本题共6个小题,每个小题4分,共24分)1.将抛物线y=2x2向上平移2个单位后所得抛物线的解析式是( )A.y=2x2+2 B.y=2(x+2)2C.y=2(x﹣2)2D.y=2x2﹣2【考点】二次函数图象与几何变换.【分析】只要求得新抛物线的顶点坐标,就可以求得新抛物线的解析式了.【解答】解:原抛物线的顶点为(0,0),向上平移2个单位,那么新抛物线的顶点为(0,2),可设新抛物线的解析式为:y=2(x﹣h)2+k,代入得:y=2x2+2.故选A.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.2.以下图形中一定属于互相放缩关系的是( )A.斜边长分别是10和5的两直角三角形B.腰长分别是10和5的两等腰三角形C.边长分别是10和5的两个菱形D.边长分别是10和5的两个正方形【考点】相似图形.【分析】根据相似图形的概念进行判断即可.【解答】解:斜边长分别是10和5的两直角三角形,直角边不一定成比例,所以不一定属于互相放缩关系,A不正确;腰长分别是10和5的两等腰三角形不一定属于互相放缩关系,B不正确;边长分别是10和5的两个菱形不一定属于互相放缩关系,C不正确;边长分别是10和5的两个正方形属于互相放缩关系,D正确,故选:D.【点评】本题考查的是相似图形的概念,形状相同的图形称为相似形.3.如图,已知在△ABC中,D是边BC的中点,,,那么等于( )A.B.C.D.【考点】*平面向量.【分析】首先由在△ABC中,D是边BC的中点,可求得,然后由三角形法则求得.【解答】解:∵在△ABC中,D是边BC的中点,∴==,∴=﹣=﹣.故选B.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用是关键.4.坡度等于1:的斜坡的坡角等于( )A.30°B.40°C.50°D.60°【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度就是坡角的正切值即可求解.【解答】解:坡角α,则tanα=1:,则α=30°.故选A.【点评】本题主要考查了坡度的定义,理解坡度和坡角的关系是解题的关键.5.下列各组条件中,一定能推得△ABC与△DEF相似的是( )A.∠A=∠E且∠D=∠F B.∠A=∠B且∠D=∠FC.∠A=∠E且D.∠A=∠E且【考点】相似三角形的判定.【分析】根据三角形相似的判定方法:①两角法:有两组角对应相等的两个三角形相似可以判断出A、B的正误;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出C、D的正误,即可选出答案.【解答】解:A、∠D和∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C、由可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E且不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误;故选:C.【点评】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.6.下列图象中,有一个可能是函数y=ax2+bx+a+b(a≠0)的图象,它是( )A.B.C.D.【考点】二次函数的图象.【专题】探究型.【分析】根据函数y=ax2+bx+a+b(a≠0),对a、b的正负进行分类讨论,只要把选项中一定错误的说出原因即可解答本题.【解答】解:在函数y=ax2+bx+a+b(a≠0)中,当a<0,b<0时,则该函数开口向下,顶点在y轴左侧,一定经过点(0,a+b),点(0,a+b)一定在y轴的负半轴,故选项A、B错误;当a>0,b<0时,若函数过点(1,0),则a+b+a+b=0,得a与b互为相反数,则y=ax2﹣ax=ax(x﹣1),则该函数与x轴的两个交点是(0,0)或(1,0),故选项D错误;当a>0,b<0时,若函数过点(0,1),则a+b=1,只要a、b满足和为1即可,故选项C 正确;故选C.【点评】本题考查二次函数的图象,解题的关键是运用分类讨论的数学思想解答问题.二、填空题(本大题共12个小题,每个小题4分,共48分)7.如果,那么=.【考点】比例的性质.【分析】先由已知条件可得2y=3(x﹣y),整理后再根据比例的性质即可求得的值.【解答】解:∵,∴2y=3(x﹣y),整理,得3x=5y,∴=.故答案为.【点评】本题是基础题,考查了比例的基本性质,比较简单.比例的基本性质:两内项之积等于两外项之积.即若a:b=c:d,则ad=bc.8.如图,点G为△ABC的重心,DE过点G,且DE∥BC,EF∥AB,那么CF:BF=1:2.【考点】三角形的重心.【分析】连接AG并延长,交BC于H.先根据重心的性质,得出AG=2GH.再由平行线分线段成比例定理,得出CF:BF=CE:AE=GH:AG=1:2.【解答】解:如图,连接AG并延长,交BC于H.∵点G为△ABC的重心,∴AG=2GH.∵DE∥BC,∴CE:AE=GH:AG=1:2,∵EF∥AB,∴CF:BF=CE:AE=1:2.故答案为1:2.【点评】此题主要考查了重心的概念和性质以及平行线分线段成比例定理,难度中等.三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.9.已知在△ABC中,点D、E分别在AB和BC上,AD=2,DB=1,BC=6,要使DE和AC 平行,那么BE=2.【考点】平行线分线段成比例;相似多边形的性质;相似三角形的性质.【分析】求出=,根据相似三角形的判定得出△BED∽△BCA,推出∠BED=∠C,根据平行线的判定得出即可.【解答】解:BE=2,理由是:如图:∵AD=2,DB=1,∴AB=2+1=3,∵BC=6,BE=2,∴=,∵∠B=∠B,∴△BED∽△BCA,∴∠BED=∠C,∴DE∥AC.故答案为:2.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定,平行线的判定的应用,能推出△BED∽△BCA是解此题的关键.10.如果△ABC与△DEF相似,△ABC的三边之比为3:4:6,△DEF的最长边是10cm,那么△DEF的最短边是5cm.【考点】相似三角形的性质.【专题】计算题.【分析】设△DEF的最短边为x,由△ABC的三边之比为3:4:6,则可设△ABC的三边分别为3a,4a,6a,由于△ABC与△DEF相似,根据相似三角形的性质得到3a:x=6a:10,即可求出x=5.【解答】解:设△DEF的最短边为x,△ABC的三边分别为3a,4a,6a,∵△ABC与△DEF相似,∴3a:x=6a:10,∴x=5,即△DEF的最短边是5cm.故答案为5.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等.11.如果AB∥CD,2AB=3CD,与的方向相反,那么=﹣.【考点】*平面向量.【分析】由AB∥CD,2AB=3CD,与的方向相反,可得2=﹣3,继而求得答案.【解答】解:∵AB∥CD,2AB=3CD,与的方向相反,∴2=﹣3,∴=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意根据题意得到2=﹣3是解此题的关键.12.计算:sin60°﹣cot30°=【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:原式=﹣=﹣.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.13.在△ABC中,∠C=90°,如果sinA=,AB=6,那么BC=2.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【解答】解:sinA==,得BC=AB×=6×=2,故答案为:2.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.如果二次函数y=x2+bx+c配方后为y=(x﹣2)2+1,那么c的值为5.【考点】二次函数的三种形式.【分析】把配方后的函数解析式转化为一般形式,然后根据对应项系数相等解答.【解答】解:∵y=(x﹣2)2+1=x2﹣4x+4+1=x2﹣4x+5,∴c的值为5.故答案是:5.【点评】本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.抛物线y=﹣2x2+4x﹣1的对称轴是直线x=1.【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴是x=﹣进行计算.【解答】解:抛物线y=﹣2x2+4x﹣1的对称轴是直线x=﹣=1.故答案为x=1.【点评】此题考查了抛物线的对称轴的求法,能够熟练运用公式法求解,也能够运用配方法求解.16.如果A(﹣1,y1),B(﹣2,y2)是二次函数y=x2+m图象上的两个点,那么y1<y2(填“<”或者“>”)【考点】二次函数图象上点的坐标特征.【分析】根据函数解析式的特点,其对称轴为x=0,图象开口向上;利用对称轴左侧y随x 的增大而减小,可判断y1<y2.【解答】解:∵二次函数y=x2+m中a=1>0,∴抛物线开口向上.∵x=﹣=0,﹣1<﹣2,∴A(﹣1,y1),B(﹣2,y2)在对称轴的左侧,且y随x的增大而减小,∴y1<y2.故答案为:<.【点评】本题考查的是二次函数图象上点的坐标特点,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y 轴的交点在x轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【考点】二次函数的性质.【专题】开放型.【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=﹣1;∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;∴函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.【点评】本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a <0时,抛物线开口向下;二次函数与y轴交于点(0,c).18.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是.【考点】翻折变换(折叠问题).【分析】设AM与BE交点为D,过M作MF∥BE交AC于F,证出MF为△BCE的中位线,由三角形中位线定理得出MF=BE,由翻折变换的性质得出:AM⊥BE,AD=MD,同理由三角形中位线定理得出DE=MF,设DE=a,则MF=2a,AM=BE=4a,得出BD=3a,MD=AM=2a,即可得出结果.【解答】解:设AM与BE交点为D,过M作MF∥BE交AC于F,如图所示:∵M为BC的中点,∴F为CE的中点,∴MF为△BCE的中位线,∴MF=BE,由翻折变换的性质得:AM⊥BE,AD=MD,同理:DE是△AMF的中位线,∴DE=MF,设DE=a,则MF=2a,AM=BE=4a,∴BD=3a,MD=AM=2a,∵∠BDM=90°,∴tan∠EBC===.故答案为:.【点评】本题考查了翻折变换的性质、三角形中位线定理、平行线的性质、三角函数;熟练掌握翻折变换的性质,通过作辅助线由三角形中位线定理得出MF=BE,DE=MF是解决问题的关键.三、解答题(共78分)19.如图,已知两个不平行的向量.先化简,再求作:.(不要求写作法,但要指出所作图中表示结论的向量)【考点】*平面向量.【分析】首先利用平面向量的加减运算法则化简原式,再利用三角形法则画出图形.【解答】解:=+3﹣﹣=﹣+2.如图:=2,=﹣,则=﹣+2,即即为所求.【点评】此题考查了平面向量的运算法则以及作法.注意作图时准确利用三角形法则是关键.20.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:x …﹣1 0 2 4 …y …﹣5 1 1 m …求:(1)这个二次函数的解析式;(2)这个二次函数图象的顶点坐标及上表中m的值.【考点】待定系数法求二次函数解析式;二次函数的性质.【分析】(1)用待定系数法求出二次函数的解析式;(2)把x=4,y=m代入解析式即可求得m的值,用配方法或公式法求二次函数的顶点坐标.【解答】解:(1)依题意,得,解得;∴二次函数的解析式为:y=﹣2x2+4x+1.(2)当x=4时,m=﹣2×16+16+1=﹣15,由y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故其顶点坐标为(1,3).【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.21.如图,梯形ABCD中,AD∥BC,BC=2AD,点E为边DC的中点,BE交AC于点F.求:(1)AF:FC的值;(2)EF:BF的值.【考点】相似三角形的判定与性质.【专题】计算题.(1)延长BE交直线AD于H,如图,先由AD∥BC得到△DEH∽△CEB,则有=,【分析】易得DH=BC,加上BC=2AD,所以AH=3AD,然后证明△AHF∽△CFB,再利用相似比可计算出AF:FC的值;(2)由△DEH∽△CEB得到EH:BE=DE:CE=1:1,则BE=EH=BH,由△AHF∽△CFB得到FH:BF=AF:FC=3:2;于是可设BF=2a,则FH=3a,BH=BF+FH=5a,EH=a,接着可计算出EF=FH﹣EH=a,然后计算EF:BF的值.【解答】解:(1)延长BE交直线AD于H,如图,∵AD∥BC,∴△DEH∽△CEB,∴=,∵点E为边DC的中点,∴DE=CE,∴DH=BC,而BC=2AD,∴AH=3AD,∵AH∥BC,∴△AHF∽△CFB,∴AF:FC=AH:BC=3:2;(2)∵△DEH∽△CEB,∴EH:BE=DE:CE=1:1,∴BE=EH=BH,∵△AHF∽△CFB,∴FH:BF=AF:FC=3:2;设BF=2a,则FH=3a,BH=BF+FH=5a,∴EH=a,∴EF=FH﹣EH=3a﹣a=a,∴EF:BF=a:2a=1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A,C两点测得该塔顶端F 的仰角分别为和β,矩形建筑物宽度AD=20m,高度DC=33m.求:(1)试用α和β的三角比表示线段CG的长;(2)如果α=48°,β=65°,请求出信号发射塔顶端到地面的高度FG的值.(结果精确到1m)(参考数据:sin48°=0.7,cos48°=0.7,tan48°=1.1,sin65°=0.9,cos65°=0.4,tan65°=2.1)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)将题目中所涉及到的仰角转换为直角三角形的内角,利用解直角三角形的知识表示出线段CG的长即可.(2)根据三角函数值求得CG的长,代入FG=x•tanβ即可求得.【解答】解:(1)设CG=xm,由图可知:EF=(x+20)•tanα,FG=x•tanβ,则(x+20)tanα+33=xtanβ,解得x=;(2)x===55,则FG=x•tanβ=55×2.1=115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.【点评】本题考查了仰角问题,解决此类问题的关键是正确的将仰角转化为直角三角形的内角并选择正确的边角关系解直角三角形.23.已知:如图,在△ABC中,点D.E分别在AB,AC上,DE∥BC,点F在边AB上,BC2=BF•BA,CF与DE相交于点G.(1)求证:DF•AB=BC•DG;(2)当点E为AC的中点时,求证:.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)由BC2=BF•BA,∠ABC=∠CBF可判断△BAC∽△BCF,再由DE∥BC可判断△BCF∽△DGF,所以△DGF∽△BAC,然后利用相似三角形的性质即可得到结论;(2)作AH∥BC交CF的延长线于H,如图,易得AH∥DE,由点E为AC的中点得AH=2EG,再利用AH∥DG可判定△AHF∽△DGF,则根据相似三角形的性质得=,然后利用等线段代换即可得到.【解答】证明:(1)∵BC2=BF•BA,∴BC:BF=BA:BC,而∠ABC=∠CBF,∴△BAC∽△BCF,∵DE∥BC,∴△BCF∽△DGF,∴△DGF∽△BAC,∴DF:BC=DG:BA,∴DF•AB=BC•DG;(2)作AH∥BC交CF的延长线于H,如图,∵DE∥BC,∴AH∥DE,∵点E为AC的中点,∴AH=2EG,∵AH∥DG,∴△AHF∽△DGF,∴=,∴.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.24.已知在平面直角坐标系中,抛物线y=﹣+bx+c与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=﹣1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.【解答】解:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=﹣4,即A(﹣4,0),将A、C点坐标代入函数解析式,得,解得,抛物线的表达式为y=﹣x+4;(2)PQ=2AO=8,又PQ∥AO,即P、Q关于对称轴x=﹣1对称,PQ=8,﹣1﹣4=﹣5,当x=﹣5时,y=×(﹣5)2﹣(﹣5)+4=﹣,即P(﹣5,﹣);﹣1+4=3,即Q(3,﹣);P点坐标(﹣5,﹣),Q点坐标(3,﹣);(3)∠MCO=∠CAB=45°,①当△MCO∽△CAB时,=,即=,CM=.如图1,过M作MH⊥y轴于H,MH=CH=CM=,当x=﹣时,y=﹣+4=,∴M(﹣,);当△OCM∽△CAB时,=,即=,解得CM=3,如图2,过M作MH⊥y轴于H,MH=CH=CM=3,当x=3时,y=﹣3+4=1,∴M(﹣3,1),综上所述:M点的坐标为(﹣,),(﹣3,1).【点评】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴的直线与抛物线的交点关于对称轴对称得出P、Q关于直线x=﹣1对称是解题关键;利用两组对边对应成比例且夹角相等的两个三角形得出CM的长是解题关键.25.(14分)已知菱形ABCD的边长为5,对角线AC的长为6,点E为边AB上的动点,点F在射线AD上,且∠ECF=∠B,直线CF交直线AB于点M.(1)求∠B的余弦值;(2)当点E与点A重合时,试画出符合题意的图形,并求出BM的长;(3)当点M在边AB的延长线上时,设BE=x,BM=y,求y关于x的函数解析式,并写出定义域.【考点】相似形综合题.【分析】(1)连接BD、AC交于点O,作AH⊥BC于H,由菱形的性质得出AO=OC=3,BO=4,由△ABC的面积求出AH=,由勾股定理得出BH,即可得出结果;(2)由菱形的性质得出∠FAC=∠ACB,证出△ABC∽△ECF,得出对应边成比例=,求出EF,由平行线得出△MBC∽△MAF,得出==,即可得出结果;(3)作EM⊥BC于M,作EG∥BC交CF于G,由(1)知cos∠B=,BE=x,得出BM=x,由勾股定理得出EM=x,CE==,由平行线得出∠GEC=∠ECB,,证出△BCE∽△CEG,得出对应边成比例,得出EG==,代入比例式即可得出y关于x的函数解析式为y=(<x≤5).【解答】解:(1)连接BD、AC交于点O,作AH⊥BC于H,如图1所示:则AO=OC=3,BO=4,∵S△ABC=BC×AH=AC×BO=×6×4=12,∴×5×AH=12,解得:AH=,由勾股定理得:BH===,∴cos∠B===;(2)当点E与点A重合时,符合题意的图形,如图2所示:∵四边形ABCD为菱形,∴∠FAC=∠ACB,∵∠ECF=∠B,∴△ABC∽△ECF,∴=,即=,解得:EF=,∵BC∥AF,∴△MBC∽△MAF,∴===,∴=,解得:BM=;(3)作EH⊥BC于H,作EG∥BC交CF于G,如图3所示:由(1)知cos∠B=,BE=x,∴BH=x,EH===x,∴CE===,∵EG∥BC,∴∠GEC=∠ECB,,∴△BCE∽△CEG,∴,则EG==,∴,整理得:y=,即y关于x的函数解析式为y=(<x≤5).【点评】本题是相似形综合题目,考查了菱形的性质、相似三角形的判定与性质、平行线的性质、勾股定理、三角函数等知识;本题综合性强,难度较大,特别是(3)中,需要运用勾股定理和证明三角形相似得出比例式才能得出结果.。