山东省日照市2020届高三上学期期末数学试卷(及答案)
- 格式:pdf
- 大小:2.18 MB
- 文档页数:15
专题03 充分、必要、充要问题的研究一、题型选讲题型一 、充分、不要条件的判断充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p⇒q 与非q⇒非p ,q⇒p 与非p⇒非q ,p⇔q 与非q⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 例1、【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选A .1-1、【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<, 易知由05x <<推不出02x <<, 由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件, 即“250x x -<”是“|1|1x -<”的必要而不充分条件. 故选B.1-2、(2020届浙江省台州市温岭中学3月模拟)已知,x y 是非零实数,则“x y >”是“11x y<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】D 【解析】 因为11x y <,所以00x y x y xy xy >⎧->⇒⎨>⎩或0x y xy <⎧⎨<⎩ ,所以x y >是“11x y <”的既不充分也不必要条件,选D 1-3、(2020·浙江省温州市新力量联盟高三上期末)已知0a >且1a ≠,则“()log 1a a b ->”是“()10a b -⋅<”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由()log 1a a b ->当1a >时,a b a ->得0b <,推出()10a b -<, 当01a <<时,0a b a <-<得0b >,推出()10a b -<, 则()log 1a a b ->是()10a b -<的充分条件,但当()10a b -<时不一定能推出()log 1a a b ->(比如:01a <<,1b >,这时0a b -<无意义) 则()log 1a a b ->是()10a b -<的不必要条件, 故选:A.1-4、(2020届浙江省温丽联盟高三第一次联考)已知m 为非零实数,则“11m<-”是“1m >-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由11m <-,得10m m +<,解得10m -<<,故“11m<-”是“1m >-”的充分不必要条件.故选A.例2、【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选B.2-1、(2020·浙江学军中学高三3月月考)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】当“直线a 和直线b 相交”时,平面α和平面β必有公共点,即平面α和平面β相交,充分性成立; 当“平面α和平面β相交”,则 “直线a 和直线b 可以没有公共点”,即必要性不成立. 故选A.例3、【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】(1)当存在k ∈Z 使得π(1)kk αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)kk αβ=+-.所以,“存在k ∈Z 使得π(1)kk αβ=+-”是“sin sin αβ=”的充要条件.故选C .3-1、(2020届浙江省宁波市余姚中学高考模拟)在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由题意可得,在ABC ∆中,因为tan tan 1A B >, 所以sin sin 1cos cos A BA B>,因为0,0A B ππ<<<<,所以sin sin 0A B >,cos cos 0A B >,结合三角形内角的条件,故A,B 同为锐角,因为sin sin cos cos A B A B >, 所以cos cos sin sin 0A B A B -<,即cos()0A B +<,所以2A B ππ<+<,因此02C <<π,所以ABC ∆是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若ABC ∆是钝角三角形,也推不出“tan tan 1B C >,故必要性不成立, 所以为既不充分也不必要条件,故选D.3-2、(2020·浙江温州中学3月高考模拟)“”αβ≠是”cos cos αβ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】cos cos αβαβ=⇒=所以cos cos αβαβ≠⇒≠ (逆否命题)必要性成立当cos cos αβαβ=-⇒=,不充分 故是必要不充分条件,答案选B3-3、(江苏省南通市通州区2019-2020学年高三第一次调研抽测)将函数()sin 4f x x π⎛⎫=+⎪⎝⎭的图象向右平移ϕ个单位,得到函数y g x =()的图象.则“34πϕ=”是“函数()g x 为偶函数”的________条件,(从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中选填一个) 【答案】充分不必要【解析】由题意,将函数()sin 4f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移ϕ个单位,可得sin 4()=πϕ⎛⎫+- ⎪⎝⎭gx x 的图像, 当34πϕ=时,可得3sin sin cos 442()=πππ⎛⎫⎛⎫+-=-=- ⎪ ⎪⎝⎭⎝⎭gx x x x ,显然()g x 为偶函数, 所以“34πϕ=”是“函数()g x 为偶函数”的充分条件; 若函数()g x 为偶函数,则,42ππϕπ-=+∈k k Z ,即,4πϕπ=--∈k k Z ,不能推出34πϕ=, 所以“34πϕ=”不是“函数()g x 为偶函数”的必要条件, 因此“34πϕ=”是“函数()g x 为偶函数”的充分不必要条件. 故答案为:充分不必要例4、【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC 的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件. 故选C.4-1、(2020届山东省日照市高三上期末联考)设,a b 是非零向量,则2a b =是a abb =成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B 【解析】由2a b =可知:a b , 方向相同,a ba b , 表示 a b , 方向上的单位向量所以a b a b=成立;反之不成立. 故选B例5、(2020届浙江省嘉兴市高三5月模拟)已知,R a b ∈,则“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】直线10ax y +-=和直线2(2)10x a y +--=垂直, 则()220a a +-=,解得2a =-或1a =,所以,由“1a =”可以推出“直线10ax y +-=和直线2(2)10x a y +--=垂直”,由 “直线10ax y +-=和直线2(2)10x a y +--=垂直”不能推出“1a =”,故“1a =”是“直线10ax y +-=和直线2(2)10x a y +--=垂直”的充分不必要条件, 故选:A.5-1、(2020·浙江温州中学高三3月月考)“直线()1330m x y +-+=与直线220x my -+=平行”的充要条件是m =( ) A .-3 B .2 C .-3或2 D .3或2【答案】A【解析】当0m =或1m =-时,显然直线不平行, 由132m m+=,解得:3m =-或2m =, 3m =-时,直线分别为:2330x y --+=和2320x y ++=,平行, 2m =时,直线分别为:3330x y -+=和2220x y -+=,重合,故3m =-, 故选:A .例6、(2020届浙江省宁波市鄞州中学高三下期初)已知等比数列{}n a 的前n 项和为n S ,则“10a >”是“990S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】设等比数列{}n a 公比为q ,当1q =时,19910990a S a >⇔=>,当1q ≠时,999999111,011q q S a q q --=⋅>--, 19900a S >⇔>∴,所以“10a >”是“990S >”的充要条件. 故选:C.6-1、(2020·浙江高三)等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,则“d =0”是“2nnS S ∈Z ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】等差数列{a n }的公差为d ,a 1≠0,S n 为数列{a n }的前n 项和,若d =0,则{a n }为常数列,故a n =1a , 即2112,n n S na S na ==⇒“2nnS S ∈Z ”,当2nnS S ∈Z 时,d 不一定为0, 例如,数列1,3,5,7,9,11中,631357911135S S +++++==++4,d =2, 故d =0是2nnS S ∈Z 的充分不必要条件. 故选:A .题型二、根据充分、必要条件判断含参的问题解决此类问题要注意以下两点:(1)把充分、不要条件转化为集合之间的关系;(2)根据集合之间的关系列出关于参数的不等式。
专题5 三角函数与解三角形1.近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.2.高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.预测2020年将突出考查恒等变换与三角函数图象和性质的结合、恒等变换与正弦定理和余弦定理的结合.一、单选题1.(2020届山东省潍坊市高三上期中)sin 225︒= ( )A .12-B .2-C .D .1-2.(2020届山东省泰安市高三上期末)“1a <-”是“0x ∃∈R ,0sin 10+<a x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.(2020届山东省潍坊市高三上期末)已知345sin πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A .10B .10C .2 D .104.(2020届山东省枣庄市高三上学期统考)设函数2sin cos ()(,0)x x xf x a R a ax +=∈≠,若(2019)2f -=,(2019)f =( )A .2B .-2C .2019D .-20195.(2020届山东省枣庄市高三上学期统考)已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭…恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是( ) A .π6 B .π3C .2π3D .5π66.(2020届山东省滨州市三校高三上学期联考)若π1sin 34α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( ).A .78-B .14-C .14 D .787.(2020届山东省潍坊市高三上期中)已知函数()sin cos f x x x =+,则( ) A .()f x 的最小正周期为π B .()y f x =图象的一条对称轴方程为4x π=C .()f x 的最小值为2-D .()f x 的0,2π⎡⎤⎢⎥⎣⎦上为增函数8.(2020届山东省九校高三上学期联考)如图是一个近似扇形的鱼塘,其中OA OB r ==,弧AB 长为l (l r <).为方便投放饲料,欲在如图位置修建简易廊桥CD ,其中34OC OA =,34OD OB =.已知1(0,)2x ∈时,3sin 3!x x x ≈-,则廊桥CD 的长度大约为( )A .323432r r l - B .323432l l r - C .32324l l r-D .32324r r l-9.(2020·武邑县教育局教研室高三上期末(理))已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为() A .-7B .7C .1D .-110.(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位11.(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .12.(2020届山东省济宁市高三上期末)在ABC ∆中,1,3,1AB AC AB AC ==⋅=-u u u r u u u r,则ABC ∆的面积为( )A .12B .1CD .213.(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图像,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π2414.(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( ) A .13B .16C .43D .5615.(2020届山东省潍坊市高三上学期统考)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是A .1B C .2D .416.(2020届山东省烟台市高三上期末)若x α=时,函数()3sin 4cos f x x x =+取得最小值,则sin α=( )A .35B .35-C .45D .45-17.(2020届山东实验中学高三上期中)在ABC △中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1B .2C .3D .418.(2020届山东实验中学高三上期中)已知()cos 2cos 2παπα⎛⎫-=+ ⎪⎝⎭,且()1tan 3αβ+=,则tan β的值为( ) A .-7B .7C .1D .-119.(2020届山东省济宁市高三上期末)函数22cos cos 1y x x =-++,,22x ππ⎡⎤∈-⎢⎥⎣⎦的图象大致为( ) A . B .C .D .20.(2020届山东师范大学附中高三月考)泉城广场上矗立着的“泉标”,成为泉城济南的标志和象征.为了测量“泉标”高度,某同学在“泉标”的正西方向的点A 处测得“泉标”顶端的仰角为45︒,沿点A 向北偏东30︒前进100 m 到达点B ,在点B 处测得“泉标”顶端的仰角为30︒,则“泉标”的高度为( ) A .50 mB .100 mC .120 mD .150 m21.(2020届山东实验中学高三上期中)已知函数()sin 23f x a x x =的图象关于直线12x π=-对称,若()()124f x f x ⋅=-,则12a x x -的最小值为( ) A .4πB .2π C .πD .2π22.(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 二、多选题23.(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( ) A .π-是()f x 的一个周期 B .()f x 的图像可由sin 2y x =的图像向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图像关于直线1712x π=对称 24.(2020届山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+25.(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为26.(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点27.(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称28.(2020届山东省潍坊市高三上期末)已知()()22210f x cos x x ωωω=->的最小正周期为π,则下列说法正确的有( ) A .2ω= B .函数()f x 在[0,]6π上为增函数C .直线3x π=是函数()y f x =图象的一条对称轴D .5π,012骣琪琪桫是函数()y f x =图象的一个对称中心29.(2020届山东省潍坊市高三上学期统考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列B C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列30.(2020届山东省济宁市高三上期末)将函数()sin 2f x x =的图象向右平移4π个单位后得到函数()g x 的图象,则函数()g x 具有性质( )A .在0,4π⎛⎫⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=-对称 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称 31.(2020届山东实验中学高三上期中)己知函数()()()sin 0,023f x x f x ππωϕωϕ⎛⎫=+><<- ⎪⎝⎭,为的一个零点,6x π=为()f x 图象的一条对称轴,且()()0f x π在,上有且仅有7个零点,下述结论正确..的是( ) A .=6πϕB .=5ωC .()()0f x π在,上有且仅有4个极大值点D .()042f x π⎛⎫⎪⎝⎭在,上单调递增32.(2019·山东师范大学附中高三月考)在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是( ) A .sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα+33.(2020届山东省烟台市高三上期末)已知函数()()sin 322f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线4x π=对称,则( ) A .函数12f x π⎛⎫+⎪⎝⎭为奇函数 B .函数()f x 在,123ππ⎡⎤⎢⎥⎣⎦上单调递增 C .若()()122f x f x -=,则12x x -的最小值为3πD .函数()f x 的图象向右平移4π个单位长度得到函数cos3y x =-的图象 三、填空题34.(2020届山东省枣庄市高三上学期统考)已知1sin 4x =,x 为第二象限角,则sin 2x =______. 35.(2020届山东省日照市高三上期末联考)已知tan 3α=,则sin cos sin cos αααα-+的值为______.36.(2020届山东师范大学附中高三月考)已知1tan 3α=,则2sin 2sin 1cos 2ααα-+的值为________.37.(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,角α的顶点是O ,始边是x 轴的非负半轴,02απ<<,点1tan,1tan1212P ππ⎛⎫+- ⎪⎝⎭是α终边上一点,则α的值是________. 38.(2020·全国高三专题练习(文))已知sin cos 11cos 2ααα=-,1tan()3αβ-=,则tan β=________.39.(2020届山东实验中学高三上期中)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,若32sin sin sin ,cos 5B AC B =+=,且6ABC S ∆=,则b =__________. 40.(2020届山东省日照市高三上期末联考)已知函数()9sin 26f x x π⎛⎫=-⎪⎝⎭,当[]0,10x π∈时,把函数()()6F x f x =-的所有零点依次记为123,,,,n x x x x ⋅⋅⋅,且123n x x x x <<<⋅⋅⋅<,记数列{}n x 的前n 项和为n S ,则()12n n S x x -+=______.41.(2020届山东省德州市高三上期末)已知函数()()sin f x A x =+ωϕ0,0,||2A πωϕ⎛⎫>><⎪⎝⎭的最大值2π,且()f x 的图象关于直线3x π=-对称,则当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为______.42.(2020届山东省泰安市高三上期末)在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若cos cos sin A B C a b c +=,22265b c a bc +-=,则tan B =______. 四、解答题43.(2020届山东省临沂市高三上期末)在①3cos 5A =,cos C =,②sin sin sin c C A b B =+,60B =o,③2c =,1cos 8A =三个条件中任选一个补充在下面问题中,并加以解答. 已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若3a =,______,求ABC V 的面积S . 44.(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin θ=()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.45.(2020届山东省枣庄市高三上学期统考)ABC ∆的内角A ,B ,C 的对边分别为,,a b c ,已知()2cos cos 0a c B b A ++=.(I )求B ;(II )若3,b ABC =∆的周长为3ABC +∆的面积.46.(2020届山东省滨州市三校高三上学期联考)已知函数()sin()f x A x ωϕ=+,其中0A >,0>ω,(0,)ϕπ∈,x ∈R ,且()f x 的最小值为-2,()f x 的图象的相邻两条对称轴之间的距离为2π,()f x 的图象过点,03π⎛-⎫ ⎪⎝⎭.(1)求函数()f x 的解析式和单调递增区间; (2)若[0,2]x πÎ函数()f x 的最大值和最小值.47.(2020届山东省潍坊市高三上期中)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知10a b +=,5c =,sin 2sin 0B B +=.(1)求a ,b 的值: (2)求sin C 的值.48.(2020届山东省烟台市高三上期末)在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答. 在ABC ∆中,角,,A B C 的对边分别为,,a bc ,6b c +=,a =, . 求ABC ∆的面积.49.(2020届山东省泰安市高三上期末)如图所示,有一块等腰直角三角形地块ABC ,90A ∠=o ,BC 长2千米,现对这块地进行绿化改造,计划从BC 的中点D 引出两条成45°的线段DE 和DF ,与AB 和AC 围成四边形区域AEDF ,在该区域内种植花卉,其余区域种植草坪;设BDE α∠=,试求花卉种植面积()S α的取值范围.50.(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .51.(2020届山东省滨州市三校高三上学期联考)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,23sin 2cos02A CB +-=. (1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为3ABC ∆的周长.52.(2020届山东省德州市高三上期末)已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,若ABC ∆同时满足下列四个条件中的三个:①2633()b a ac c a b -+=+;②2cos 22cos 12A A +=;③6a =④2b =(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC ∆的面积. (若所选条件出现多种可能,则按计算的第一种可能计分)53.(20203(cos )sin b C a c B -=;②22cos a c b C +=;③sin 3sin2A Cb A a += 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________________,23,b =4a c +=,求ABC ∆的面积.54.(2020届山东师范大学附中高三月考)ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足cos cos 2c A a C a +=.(1)求a b的值; (2)若1a =,7c =,求ABC V 的面积. 55.(2020·蒙阴县实验中学高三期末)在非直角ABC ∆中,a ,b ,c 分别是A ,B ,C 的对边.已知4a =,5AB AC ⋅=u u u r u u u r ,求:(1)tan tan tan tan A A B C+的值; (2)BC 边上的中线AD 的长.56.(2020届山东师范大学附中高三月考)设函数5()2cos()cos 2sin()cos 122f x x x x x ππ=++++. (1)设方程()10f x -=在(0,)π内有两个零点12,x x ,求12x x +的值;(2)若把函数()y f x =的图象向左平移6π个单位,再向下平移2个单位,得函数()g x 图象,求函数()g x 在[,]33ππ-上的最值. 57.(2020届山东省潍坊市高三上期末)在①34asinC ccosA =;②252B C bsinasinB +=这两个条件中任选-一个,补充在下面问题中,然后解答补充完整的题.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知 ,32a =.(1)求sinA ;(2)如图,M 为边AC 上一点,,2MC MB ABM π=∠=,求ABC V 的面积58.(2020·山东省淄博实验中学高三上期末)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知4cos cos cos a A c B b C =+.(1)若4a =,ABC ∆的面积为15,求b ,c 的值; (2)若()sin sin 0B k C k =>,且角C 为钝角,求实数k 的取值范围.59.(2020届山东省潍坊市高三上学期统考)已知函数()()23sin cos sin 10f x x x x ωωωω=-+>图象的相邻两条对称轴之间的距离为2π.(1)求ω的值及函数()f x 的单调递减区间;(2)如图,在锐角三角形ABC 中有()1f B =,若在线段BC 上存在一点D 使得2AD =,且6AC =,31CD =-,求三角形ABC 的面积.60.(2020届山东省济宁市高三上期末)已知()()23sin sin cos 2f x x x x ππ⎛⎫=-+- ⎪⎝⎭. (1)若1210f α⎛⎫= ⎪⎝⎭,求2cos 23πα⎛⎫+ ⎪⎝⎭的值; (2)在△ABC 中,角A ,B ,C 所对应的边分别,,a b c ,若有()2cos cos a c B b C -=,求角B 的大小以及()f A 的取值范围.61.(2020届山东省济宁市高三上期末)如图,某市三地A ,B ,C 有直道互通.现甲交警沿路线AB 、乙交警沿路线ACB 同时从A 地出发,匀速前往B 地进行巡逻,并在B 地会合后再去执行其他任务.已知AB =10km ,AC =6km ,BC =8km ,甲的巡逻速度为5km /h ,乙的巡逻速度为10km /h .(1)求乙到达C 地这一时刻的甲、乙两交警之间的距离;(2)已知交警的对讲机的有效通话距离不大于3km ,从乙到达C 地这一时刻算起,求经过多长时间,甲、乙方可通过对讲机取得联系.62.(2020·全国高三专题练习(文))在ABC V 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )(3sin sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③3=c b 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积.63.(2020届山东实验中学高三上期中)己知函数()23sin cos sin 244f x x x x a ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭的最大值为1.(1)求实数a 的值;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.64.(2020届山东实验中学高三上期中)“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形ABCD 的麦田里成为守望者,如图所示,为了分割麦田,他将BD 连接,设ABD ∆中边BD 所对的角为A ,BCD ∆中边BD 所对的角为C ,经测量已知2AB BC CD ===,23AD =.(1)霍尔顿发现无论BD 3cos A C -为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记ABD ∆与BCD ∆的面积分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出2212S S +的最大值.。
2019—2020学年度高三校际联合考试数学2020.01一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}221,0,1,2=1A B x x A B =-->⋂=,,,则A .{}0B .{}2C .{}22-,D .{}11x x x <->或2.已知复数z 满足31z i -=-(i 为虚数单位),则复数z 的模为A .2BC .5D3.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是A .2.55尺B .4.55尺C .5.55尺D .6.55尺4.函数()312x f x x ⎛⎫=- ⎪⎝⎭的零点所在区间为A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(1,2)5.三个数0.870.87,0.8log 7,的大小关系为A .70.80.8log 70.87<<B .0.870.8log 7<7<0.8C .70.80.80.87log 7<<D .0.870.870.8log 7<<6.两个实习生每人加工一个零件,加工为一等品的概率分别为5364和,两个零件是否加工为一等品互不影响,则这两个零件中恰有一个一等品的概率为A .12B .13C .512D .167.设a ,b 是非零向量,则“2a b =”是“a b a b =”成立的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件8.已知四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为A .BCD .二、多项选择题:本题共4小题,每小题5分,共20分。
山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3C .D .46.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2C D8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是A .()12f x π−为奇函数 B .()f x 的最小正周期为πC .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点 11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是 A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32π D .直线PB 1与平面BCC 1B 112.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白 第11题球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 . 15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积. 18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)如图,在三棱柱ABC—A 1B 1C 1中,AB =AC =2,D 为BC 的中点,平面BB 1C 1C ⊥平面ABC ,设直线l 为平面AC 1D 与平面A 1B 1C 1的交线.(1)证明:l ⊥平面BB 1C 1C ;(2)已知四边形BB 1C 1C 为边长为2的菱形,且∠B 1BC =60°,求二面角D—AC 1—C 的余弦值.某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率; (2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性; (2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围.山东省济南市2021届高三第一学期期末检测数学试卷一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上) 1.设集合{}2A |60x x x =−−≤,{}B |10x x =−<,则AB =A .{}|3x x ≤B .{}|31x x −≤<C .{}|21x x −≤<−D .{}|21x x −≤< 答案:D解析:{}2A |60x x x =−−≤=[﹣2,3],{}B |10x x =−<=(−∞,1),故AB =[﹣2,1).选D .2.已知复数i1i z =+(其中i 为虚数单位),则z 的共轭复数为 A .11i 22−+ B .11i 22−− C .11i 22+ D .11i 22−答案:D解析:i i(1i)1i1i (1i)(1i)22z −===+++−,则1i 22z =−.选D . 3.已知直线l 过点(2,2),则“直线l 的方程为y =2”是“直线l 与圆224x y +=相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A解析:“直线l 的方程为y =2”⇒“直线l 与圆224x y +=相切”, “直线l 与圆224x y += 相切”“直线l 的方程为y =2”,故选A .4.十二生肖是中国特有的文化符号,有着丰富的内涵,它们是成对出现的,分别为鼠和牛、虎和兔、龙和蛇、马和羊、猴和鸡、狗和猪六对.每对生肖相辅相成,构成一种完美人格.现有十二生肖的吉祥物各一个,按照上面的配对分成六份.甲、乙、丙三位同学依次选一份作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢.如果甲、乙、丙三位同学选取的礼物中均包含自己喜欢的生肖,则不同的选法种数共有A .12种B .16种C .20种D .24种答案:B解析:甲若选牛,则有1124C C 种;甲若选马,则有1124C C 种.故共有16种,选B .5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BEEC =,CD 2CF =,则AE AF +=AB .3 C.D .4答案:B解析:由题意知△AEF 的等边三角形,故AE AF +=3,选B .6.把物体放在空气中冷却,如果物体原来的温度是1C θ︒,空气的温度是0C θ︒,那么min t后物体的温度θ(单位:C ︒)满足公式010()e kt θθθθ−=+−(其中k 为常数).现有52C ︒的物体放在12C ︒的空气中冷却,2min 后物体的温度是32C ︒.则再经过4min 该物体的温度可冷却到A .12C ︒B .14.5C ︒ C .17C ︒D .22C ︒ 答案:C解析:221321240e e 2k k −−=+⇒=,6311240e 1240()172k θ−=+=+⨯=,故选C . 7.已知双曲线C :22221(00)x y a b a b−=>>,的左、右顶点分别为A ,B ,其中一条渐近线与以线段AB 为直径的圆在第一象限内的交点为P ,另一条渐近线与直线PA 垂直,则C 的离心率为A .3B .2CD 答案:B解析:将直线AP 与斜率为正数的渐近线方程联立:()a y x a bb y x a ⎧=+⎪⎪⎨⎪=⎪⎩,解得P(322a b a −,222a b b a −),因为OP =a ,则322222222()()a a b a b a b a+=−−,化简得2222222334a b a c a c a =⇒=−⇒=2e ⇒=,选B .8.已知函数()(1)e x f x a x x =+−,若存在唯一的正整数0x ,使得0()0f x <,则实数a 的取值范围是 A .[12e −,334e ) B .[334e ,223e ) C .[223e ,12e ) D .[12e ,12) 答案:C解析:0()0f x <,参变分离得:000(1)e x x a x <+,令000()(1)(1)e x x g x x x =≥+,2000201()0(1)e x x x g x x +−'=−<+,所以0()g x 在[1,+∞)且0x Z ∈单调递增, 求得1(1)2e g =,22(2)3eg =,故要使存在唯一的正整数0x ,使得0()0f x <, 则223e ≤a <12e,选C . 二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.为落实《山东省学生体质健康促进条例》的要求,促进学生增强体质,健全人格,锤炼意志,某学校随机抽取了甲、乙两个班级,对两个班级某一周内每天的人均体育锻炼时间(单位:分钟)进行了调研.根据统计数据制成折线图如下:下列说法正确的是A .班级乙该周每天的人均体育锻炼时间的众数为30B .班级甲该周每天的人均体育锻炼时间的中位数为72C .班级甲该周每天的人均体育锻炼时间的极差比班级乙的小D .班级甲该周每天的人均体育锻炼时间的平均值比班级乙的大 答案:AC解析:班级甲该周每天的人均体育锻炼时间的中位数为65,故B 错误;班级甲该周每天的人均体育锻炼时间的平均值比班级乙的小,故D 错误.综上选AC .10.已知函数12()sin(2)cos(2)f x a x b x ϕϕ=+++(()f x 不恒为0),若()06f π=,则下列说法一定正确的是 A .()12f x π−为奇函数 B .()f x 的最小正周期为π C .()f x 在区间[12π−,125π]上单调递增 D .()f x 在区间[0,2021π]上有4042个零点答案:BD解析:()12f x π−为偶函数,故A 错误;()f x 在区间[12π−,125π]上单调,但不一定是单调递增,故C 错误.综上选BD .11.如图,在正四棱柱ABCD—A 1B 1C 1D 1中,AA 1=2AB =2,点P 为线段AD 1上一动点,则下列说法正确的是A .直线PB 1∥平面BC 1DB .三棱锥P—BC 1D 的体积为13C .三棱锥D 1—BC 1D 外接球的表面积为32πD .直线PB 1与平面BCC 1B 1答案:ABD解析:因为平面AB 1D 1∥平面BC 1D ,PB 1⊂平面AB 1D 1,所以直线PB 1∥平面BC 1D ,A 正确;V P—BC1D =V A—BC1D =V C1—ABD =111112=323⨯⨯⨯⨯,故B 正确;三棱锥D 1—BC 1D=S 球=246ππ=,故C 错误;PB 1min 点P 到平面BCC 1B 1的距离为1,所以直线PB 1与平面BCC 1B 1所成角的正弦值的最,故D 正确.综上选ABD .12.已知红箱内有5个红球、3个白球,白箱内有3个红球、5个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,依次类推,第k +1次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.记第n 次取出的球是红球的概率为n P ,则下列说法正确的是A .21732P =B .117232n n P P +=+C .211221()2n n n n n n P P P P P P ++++−=−+D .对任意的i ,j N *∈且1i j n ≤<≤,11111()()(14)(14)22180n n i ji j nP P −−≤<≤−−=−−∑ 答案:ACD解析:第n 此取出球是红球的概率为n P ,则白球概率为(1)n P −,对于第1n +次,取出红球有两种情况. ①从红箱取出1(1)58n n P P +=⋅(条件概率), ②从白箱取出2(1)3(1)8n nP P +=−⋅, 对应121(1)(1)3184n n n n P P P P +++=+=+(转化为数列问题), 所以1111()242n n P P +−=−, 令12n n a P =−,则数列{n a 为等比数列,公比为14,因为158P =,所以118a =, 故2(21)2n n a −+=即对应(21)122n n P −+=+, 所以21732P =,故选项A 正确; [2(1)1](21)231111112[2]222224n n n n n P P −++−+−−+−=+−⨯+=−,故117232n n P P +=+不成立,故选项B 错误; 经验证可得,211221()2n n n n n n P P P P P P ++++−=−+,故选项C 正确;1(21)(21)11111()()2222n ni j i j i j n i j i P P −−+−+<==+−−=⋅∑∑∑ 1(21)(23)(23)142[22]3n i i n i −−+−+−+==⋅−∑11(44)(23)(21)114[222]3n n i n i i i −−−+−+−+===−∑∑ 844(23)3214164[(22)2(22)]3153n n n −−−−+−−−=−−⋅− 424141122218045369n n n −−−=−⋅−⋅+⋅ 421(14252)180n n −−=+⋅−⋅ 221(142)(12)180n n −−=−⋅−11(14)(14)180n n −−=−−,故D 正确. 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.已知1sin()63απ+=,则5sin()6απ−的值为 . 答案:13解析:51sin()sin[()]sin()6663ππαπααπ−=−+=+=. 14.若实数x ,y 满足lg lg lg()x y x y +=+,则xy 的最小值为 .答案:4解析:11lg lg lg()1x y x y xy x y x y+=+⇒=+⇒+=, 11()()24y xxy x y x y x y x y=+=++=++≥,当且仅当x =y =2时取“=”.15.已知奇函数()f x 在(0,+∞ )上单调递减,且(4)0f =,则不等式(1)0xf x +>的解集为 .答案:(0,3)(﹣5,﹣1)解析:0(1)0(1)0x xf x f x >⎧+>⇒⎨+>⎩或003(1)0x x f x <⎧⇒<<⎨+<⎩或51x −<<−,故原不等式的解集为(0,3)(﹣5,﹣1).16.已知直线l 与抛物线C :28y x =相切于点P ,且与C 的准线相交于点T ,F 为C 的焦点,连接PF 交C 于另一点Q ,则△PTQ 面积的最小值为 ;若|TF |5=,则|PQ |的值为 .(本小题第一空2分,第二空3分)答案:16,252解析:当PQ 为抛物线通径时△PTQ 的面积最小,为16;当TF =5时,可得线段PQ 中点的纵坐标为3或﹣3,故PQ 的斜率为43或43−,故PQ =2228254sin 2()5p α==. 四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在平面四边形ABCD 中,AB =2,BC =5,∠ABC =120°,AD,∠ADC =2∠ACD ,求△ACD 的面积.解:在△ABC 中,由余弦定理可得:所以在△ACD 中,由正弦定理可得:,即所以所以 因为,所以所以所以18.(本小题满分12分)已知数列{}n a 的前n 项和2n S n =. (1)求数列{}n a 的通项公式; (2)在①218()n n n nb a a +=⋅,②2n n n b a =⋅,③(1)n n n b S =−⋅这三个条件中任选一个,补充在下面的问题中,并求解该问题.若 ,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:(1)因为所以所以当时,适合上式,所以(2)若选①: 因为所以若选②:因为所以则两式相减可得:所以若选③:当n为偶数时,当n为奇数时,综上:19.(本小题满分12分)如图,在三棱柱ABC—A1B1C1中,AB=AC=2,D为BC的中点,平面BB1C1C⊥平面ABC,设直线l为平面AC1D与平面A1B1C1的交线.(1)证明:l⊥平面BB1C1C;(2)已知四边形BB1C1C为边长为2的菱形,且∠B1BC=60°,求二面角D—AC1—C的余弦值.解:(1)证明:因为AB=AC=2,D为BC的中点,所以AD⊥BC,又因为平面BB1C1C⊥平面ABC,且平面BB1C1C平面ABC=BC,AD 平面ABC,所以AD⊥平面BB1C1C,而AD∥平面A1B1C1,且AD⊂平面AC1D,平面AC1D平面A1B1C1=l,所以AD∥l,所以l⊥平面BB1C1C;(2)因为AD⊥平面BB1C1C,AD⊂平面AC1D,所以平面AC1D⊥平面BB1C1C,在平面BB1C1C内,过C作CH⊥DC1于点H,则CH⊥平面AC1D,过C作CG⊥AC1于点G,则G为线段AC1的中点,连接HG,则∠CGH就是二面角D—AC1—C的平面角,在直角中,在中,,在中,,在直角中,,所以所以二面角D—AC1—C的余弦值为20.(本小题满分12分)某县在实施脱贫工作中因地制宜,着力发展枣树种植项目.该县种植的枣树在2020年获得大丰收,依据扶贫政策,所有红枣由经销商统一收购.为了更好的实现效益,县扶贫办从今年收获的红枣中随机选取100千克,进行质量检测,根据检测结果制成如图所示的频率分布直方图.右表是红枣的分级标准,其中一级品、二级品统称为优质品.经销商与某农户签订了红枣收购协议,规定如下:从一箱红枣中任取4个进行检测,若4个均为优质品,则该箱红枣定为A 类;若4个中仅有3个优质品,则再从该箱中任意取出1个,若这一个为优质品,则该箱红枣也定为A 类;若4个中至多有一个优质品,则该箱红枣定为C 类;其它情况均定为B 类.已知每箱红枣重量为10千克,A 类、B 类、C 类的红枣价格分别为每千克20元、16元、12元.现有两种装箱方案:方案一:将红枣采用随机混装的方式装箱;方案二:将红枣按一、二、三、四等级分别装箱,每箱的分拣成本为1元. 以频率代替概率解决下面的问题.(1)如果该农户采用方案一装箱,求一箱红枣被定为A 类的概率;(2)根据所学知识判断,该农户采用哪种方案装箱更合适,并说明理由. 解:(1)从红枣中任意取出一个,则该红枣为优质品的概率是,记“如果该农户采用方案一装箱,一箱红枣被定为A 类”为事件A ,则(2)记“如果该农户采用方案一装箱,一箱红枣被定为B 类”为事件B ,“如果该农户采用方案一装箱,一箱红枣被定为C 类”为事件C ,则所以如果该农户采用方案一装箱,每箱红枣收入的数学期望为:元;由题意可知,如果该农户采用方案二装箱,则一箱红枣被定为A 类的概率为,被定为C 类的概率也为,所以如果该农户采用方案二装箱,每箱红枣收入的数学期望为: 元;所以该农户采用方案二装箱更合适.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>(1)求椭圆C 的标准方程;(2)若折线0)y k x =≠与C 相交于A ,B 两点(点A 在直线x =的右侧),设直线OA ,OB 的斜率分别为1k ,2k ,且212k k −=,求k 的值.解:(1)由题可知22c a b a⎧=⎪⎪⎨⎪=⎪⎩,又因为,所以所以椭圆C 的标准方程为(2)因为折线与椭圆C 相交于A ,B 两点,设点B 关于x 轴的对称点为B′, 则直线与椭圆C 相交于A ,B′两点,设则由得所以所以整理得解得22.(本小题满分12分)已知函数()ln(1)f x a x x =−+. (1)讨论()f x 的单调性;(2)若1()e 1x f x x −≥−+对任意的x ∈(0,+∞)恒成立,求实数a 的取值范围. 解:(1)若,,此时在上单调递减;若,由得,此时在上单调递减,在上单调递增;综上所述,,在上单调递减;,在上单调递减,在上单调递增;(2)因为记所以在上单调递增,所以,所以恒成立;若不合题意;若,由(1)知,在上单调递减,所以不合题意;若,记记所以在上单调递增,所以所以符合题意;综上实数a的取值范围是.。
2019-2020学年度第一学期期末学业水平诊断高三数学注意事项:1. 本试题满分150分,考试时间为120分钟。
2. 答卷前务必将姓名和准考证号填涂在答题纸上。
3. 使用答题纸时,必须使用0.5毫米的黑色签字笔书写,要字迹工整,笔迹淸晰。
超出答题区书写的答案无效;在草稿纸、试题卷上答题无效。
一、单项选择题:本题共8小題,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合題目要求的。
1. 己知集合A={X|X2-X-2≤0}, B={x|y= ,则A∪B=A. {x|-l≤x≤2}B. {x|0≤x≤2}C. {x|x≥-l}D. {x|x≥0}2. “x∈R,x2-x+l>0”的否定是A. x∈R, X2-X+1≤0B. x∈R, x2-x+1<0C. x∈R, x2-x+l<0D. x∈R, x2-x+l≤03. 若双曲线(a>0,b>0)的离心率为,则其渐近线方程为A. 2x±3y=0B. 3x±2y=0C. x±2y=0D. 2x±y=04.设a=log0.53,b=0.53,c= ,则a,b,c的大小关系为A.a<b<cB. a<c<bC. b<a<cD. b<c<a5.为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为A. 216B. 480C. 504D. 6246. 函数y=|x|+sinx的部分图象可能是7.若x=α时,函数f(x)=3sinx+4cosx取得最小值,则sinα=A. B. C. D.8.函数,若方程f(x)=-2x+m有且只有两个不相等的实数根,则实数m的取值范围是A. (-∞,4)B. (-∞,4]C. (-2,4)D. (-2,4]二、多项选择题:本題共4小题,每小题5分,共20分。
绝密★启用前2020届山东省日照市高三一模数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 3.考试结束后.将本试卷和答题卡一并交回。
一、单选题1.已知复数z 满足()12z i i +=,则复数z 在复平面内对应点所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限答案:A把已知变形等式,再由复数代数形式的乘除运算化简得答案. 解:由()12z i i +=,得()122=1255i i ii z i -+==+, ∴复数z 在复平面内对应的点的坐标为2155⎛⎫⎪⎝⎭,,在第一象限. 故选:A . 点评:本题考查复数的代数表示法及其几何意义,属于基础题.2.已知集合{}2|20M x x x =-<,{2,1,0,1,2}N =--,则M N =I ( ) A .∅ B .{}1C .{0}1,D .{101}-,, 答案:B可以求出集合M ,然后进行交集的运算即可. 解:由M 中不等式得()20x x -<,解得02x <<,即(0,2)M =,{}1M N ∴⋂=,故选B .点评:考查描述法、列举法的定义,以及一元二次不等式的解法,交集的运算.3.南北朝时代的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为12,V V ,被平行于这两个平面的任意平面截得的两个截面的面积分别为12,S S ,则“12,S S 总相等”是“12,V V 相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案:A根据充分条件和必要条件的定义,结合祖暅原理进行判断即可. 解:根据祖暅原理,当12,S S 总相等时,12,V V 相等,所以充分性成立;当两个完全相同的四棱台,一正一反的放在两个平面之间时,此时体积固然相等但截得的面积未必相等,所以必要性不成立.所以“12,S S 总相等”是“12,V V 相等”的充分不必要条件. 故选:A 点评:本题考查充分条件与必要条件的判断,属于基础题.4.已知圆22:1C x y +=,直线:40l ax y -+=.若直线l 上存在点M ,以M 为圆心且半径为1的圆与圆C 有公共点,则a 的取值范围( ) A .(][),33,-∞-+∞UB .[]3,3-C .(),33,⎤⎡-∞-⋃+∞⎦⎣D .3,3⎡-⎣答案:C由已知可得直线l 上存在点M ,使得||2MC ≤,转化为圆心C 到直线l 的距离2≤d ,求解即可. 解:直线l 上存在点M ,以M 为圆心且半径为1的圆与圆C 有公共点, 则||2MC ≤,只需min ||2MC ≤,即圆22:1C x y +=的圆心到直线:40l ax y -+=的距离2≤d ,222,3,31d a a a =≤≥≤-+或3a ≥.故选:C. 点评:本题考查圆与圆的位置关系、直线与圆的位置关系,考查计算求解能力,属于基础题. 5.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( )A .B .C .D .答案:D根据指数型函数和对数型函数单调性,判断出正确选项. 解:由于1a >,所以1xxa y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D. 点评:本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.6.已知()2xf x x =⋅,(log 5a f =,31log 2b f ⎛⎫= ⎪⎝⎭,()ln3c f =,则,,a b c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .c a b >>答案:D分类讨论得到分段函数解析式,可确定当0x <时,()0f x <,由此得到0b <;利用导数可求得()f x 在[)0,+∞上单调递增,由对数函数性质可确定3log ln3<,由此得到大小关系. 解:由题意得:()2,01,02x x x x f x x x ⎧⋅≥⎪=⎨⎛⎫⋅<⎪ ⎪⎝⎭⎩,∴当0x ≥时,()0f x ≥;当0x <时,()0f x <;331log log 102<=Q ,31log 02b f ⎛⎫∴=< ⎪⎝⎭;当0x ≥时,()()22ln 221ln 20xxxf x x x '=+⋅=+>,()f x ∴在[)0,+∞上单调递增,30log 1log 1ln ln3e =<=<Q ,()(3ln 3log 0f f ∴>>;综上所述:c a b >>. 故选:D . 点评:本题考查根据函数的单调性比较函数值大小的问题,涉及到对数函数性质的应用,关键是能够利用导数求得函数的单调性,将函数值的大小关系问题转化为自变量的大小的比较.7.已知函数()f x x ω=和()g x x ω=(0>ω)图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点.为了得到()y g x =的图象,只需把()y f x =的图象( )A .向左平移1个单位B .向左平移2π个单位 C .向右平移1个单位 D .向右平移2π个单位答案:A如图所示,计算()()f x g x =得到,4k x k Z ππωω=+∈,取靠近原点的三个交点,3,14A πω⎛⎫-- ⎪⎝⎭,,14B πω⎛⎫ ⎪⎝⎭,5,14C πω⎛⎫- ⎪⎝⎭,得到532444πππωωω+==,故2πω=,根据平移法则得到答案. 解:如图所示:()2sin ()2cos f x x g x x ωω===,故tan 1x ω=,,4k x k Z ππωω=+∈. 取靠近原点的三个交点,3,14A πω⎛⎫-- ⎪⎝⎭,,14B πω⎛⎫ ⎪⎝⎭,5,14C πω⎛⎫- ⎪⎝⎭, ABC ∆为等腰直角三角形,故532444πππωωω+==,故2πω=,故()2sin2f x x π=,()2cos2sin 222g x x x πππ⎛⎫==+ ⎪⎝⎭, 故为了得到()y g x =的图象,只需把()y f x =的图象向左平移1个单位 . 故选:A .点评:本题考查了三角函数图像,三角函数平移,意在考查学生对于三角函数知识的综合应用. 8.如图,在直角坐标系xOy 中,一个质点从()12,A a a 出发沿图中路线依次经过()34,B a a ,()56,C a a ,()78,D a a ,L ,按此规律一直运动下去,则2017201820192020a a a a +++=( )A .2017B .2018C .2019D .2020答案:C由已知点坐标,得出{}n a 的前8项,归纳出数列{}n a 项的规律,即可求解. 解:由直角坐标系可知,()1,1A ,()1,2B -,()2,3C ,()2,4D -,()3,5E ,()3,6F -,即11a =,21a =,31a =-,42a =,52a =,63a =,72a =-,84a =,…,由此可知,数列中偶数项是从1开始逐渐递增的, 且都等于其项数除以2,每四个数中有一个负数, 且为每组的第三个数,每组的第一个数为其组数, 每组的第一个数和第三个数是互为相反数, 因为20204505÷=,则2019505a =-,所以2017505a =,20181009a =,20201010a =, 20172018201920202019a a a a +++=.故选:C . 点评:本题考查归纳推理问题,关键是找到规律,属于基础题. 二、多选题9.为了解运动健身减肥的效果,某健身房调查了20名肥胖者,测量了他们的体重(单位:千克).健身之前他们的体重情况如三维饼图(1)所示,经过半年的健身后,他们的体重情况如三维饼图(2)所示,对比健身前后,关于这20名肥胖者,下面结论正确的是( )A .他们健身后,体重在区间[)90,100内的人数不变B .他们健身后,体重在区间[)100,110内的人数减少了2个。
山东省日照市2025届高三上学期开学校际联考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={x∣1<x <2},N ={x∣x <3},则M ∩N =( )A. {x∣x <2}B. {x∣x <3}C. {x∣1<x <2}D. {x∣1<x <3}2.下列函数既是幂函数,又在(−∞,0)上单调递减的是( )A. y =−xB. y =x −2C. y =(12)xD. y =x 23.已知数列{a n }是公差不为0的等差数列,则“k =2”是“a 1+a 11=a k +a 10”成立的( )A. 充分必要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.已知sin A +cos B =23,cos A +sin B =1,则sin (A +B)=( )A. −518B. 49C. −13D. 165.已知a =log 63,b =sin π6,c =0.5−0.1,则( )A. a <b <cB. b <c <aC. c <a <bD. b <a <c6.定义在R 上的偶函数f(x)满足:对任意的x 1,x 2∈(−∞,0](x 1≠x 2),有f (x 2)−f (x 1)x 2−x 1<0,且f (2)=0,则不等式f (x )+f (−x )2x<0的解集是( )A. (−∞,−2)∪(2,+∞)B. (−2,0)∪(2,+∞)C. (−∞,−2)∪(0,2)D. (−2,0)∪(0,2)7.已知函数f(x)=sin 4ωx2+cos 4ωx2(ω>0),对任意的实数a ,f(x)在(a,a +3)上的值域是[12,1],则整数ω的最小值是( )A. 1B. 2C. 3D. 48.数列{a n }满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m = ( )A. 99B. 103C. 107D. 198二、多选题:本题共3小题,共15分。
专题8 数列数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要. 预测2020年将保持稳定,注意主观题与不等式、函数等相结合.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC.D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3-B .1-C .3D .13.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路若存在两项,m n a a32=,则14m n+的最小值为 A .34B .910C .32D .955.(2020届山东省青岛市高三上期末)已知数列{}n a 中,32a =,71a =.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a =( ) A .23B .32C .43D .34二、多选题6.(2020届山东省潍坊市高三模拟一)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则下列正确的是( ) A .12a =-B .12a =C .4d =D .4d =-7.(2020·山东曲阜一中高三3月月考)在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路B .此人第三天走的路程站全程的18C .此人第一天走的路程比后五天走的路程多六里D .此人后三天共走了42里路8.(2020届山东省潍坊市高三模拟二)将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 9.(2020届山东省济宁市第一中学高三一轮检测)等差数列{}n a 是递增数列,满足753a a =,前n 项和为n S ,下列选择项正确的是( ) A . 0d >B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为810.(2020·山东滕州市第一中学高三3月模拟)已知数列{}{},n n a b 满足1111312,2ln(),0n n n n n n n a a b b a b n N a b n*+++=+=++∈+> 给出下列四个命题,其中的真命题是( ) A .数列{}n n a b -单调递增; B .数列{}n n a b + 单调递增; C .数{}n a 从某项以后单调递增; D .数列{}n b 从某项以后单调递增.三、填空题11.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.12.(2020届山东省潍坊市高三模拟一)九连环是我国从古至今广泛流传的一种益智游戏.在某种玩法中,用n a 表示解下()*9,n n n N≤∈个圆环所需移动的最少次数,{}na 满足11a=,且()()112122n n n a n a a n --⎧-⎪=⎨+⎪⎩为偶数为奇数,则解下5个圆环需最少移动________次.四、解答题13.(2020·山东高三模拟)已知各项均不相等的等差数列{}n a 的前4项和为414S =, 且137,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .14.(2020届山东省烟台市高三模拟)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 15.(2020届山东省高考模拟)已知数列{}n a 的前n 项和为n S ,且12n n S a a =-(*n N ∈),数列{}n b 满足16b =,14n n nb S a =++(*n N ∈). (Ⅰ)求数列{}n a 通项公式; (Ⅱ)记数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:12nT <. 16.(2020届山东省济宁市第一中学高三一轮检测)已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =.(1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.17.(2020届山东省济宁市第一中学高三二轮检测)已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+.(1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .18.(2020·山东滕州市第一中学高三3月模拟)已知等差数列{}n a 的公差0d ≠,其前n 项和为n S ,若2822a a +=,且4712,,a a a 成等比数列.(1)求数列{}n a 的通项公式; (2)若12111n n T S S S =+++,证明:34n T <. 19.(2020届山东省泰安市肥城市一模)记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式;(2)求n S 的最大值及对应n 的大小.20.(2020届山东省济宁市高三3月月考)已知数列{}n a 为公差不为0的等差数列,且139a a a 、、成等比数列,246a a +=.(1)求数列{}n a 的通项n a ; (2)设()21cos3n n n a b a π+=,求数列{}nb 的前2020项的和2020S.21.(2020届山东省菏泽一中高三2月月考)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N . (1)证明:{}1n S +为等比数列,求出{}n a 的通项公式; (2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.22.(2020届山东省潍坊市高三模拟一)已知等差数列{}n a 的前n 项和为n S ,34a =,627S =. (1)求{}n a 的通项公式;(2)设2n an b =,记n T 为数列{}n b 的前n 项和.若124m T =,求m .23.(2020届山东省潍坊市高三模拟二)已知数列{a n }的首项为a 1=1,且*12(1)()n n a a n N +=+∈.(Ⅰ)证明:数列{a n +2}是等比数列,并求数列{a n }的通项公式; (Ⅱ)设b n =log 2(a n +2)﹣log 23,求数列32n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和n T .24.(2020届山东省六地市部分学校高三3月线考)数列{}n a 满足:123a a a +++()1312nn a +=- (1)求{}n a 的通项公式; (2)若数列{}n b 满足3n na b n a =,求{}n b 的前n 项和n T .25.(2020届山东省潍坊市高三下学期开学考试)已知函数()log k f x x =(k 为常数,0k >且1k ≠). (1)在下列条件中选择一个________使数列{}n a 是等比数列,说明理由; ①数列(){}n f a 是首项为2,公比为2的等比数列; ②数列(){}n f a 是首项为4,公差为2的等差数列;③数列(){}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 26.(2020届山东济宁市兖州区高三网络模拟考)在①325256a a a b =+=,;②234323b a a b =+=,;③345298S a a b =+=,,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为()1d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b d q ==,,____________.(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}n c ,的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 27.(2020·山东高三下学期开学)已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<. 28.(2020届山东省淄博市高三二模)已知数列{}n a 满足132a =,且()1112,22n n n a a n n *--=+≥∈N .(1)求证:数列{}2nn a 是等差数列,并求出数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .29.(2020届山东省淄博市部分学校高三3月检测)已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+.(1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和.30.(2020·2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中, 11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.一、单选题1.(2020届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为 ABC. D.【答案】D 【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为所以1(2,)n n a n n N -+=≥∈, 又1a f =,则7781a a q f === 故选D.2.(2020届山东省潍坊市高三下学期开学考试)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的最大值为( ) A .3- B .1-C .3D .1【答案】C 【解析】当2n ≥ 时,1121,,33n n n n n n S a S a --++== 两式作差可得:11211213311n n n n n a n n n a a a a n n --+++=-⇒==+-- , 据此可得,当2n = 时,1nn a a -的最大值为33.(2020届山东省济宁市高三3月月考)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( )A .此人第二天走了九十六里路B .此人第一天走的路程比后五天走的路程多六里.C .此人第三天走的路程占全程的18D .此人后三天共走了42里路【答案】C 【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由S 6=378求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.4.(2020届山东省济宁市第一中学高三二轮检测)已知正项等比数列{}n a 满足:2853516,20a a a a a =+=,若存在两项,m n a a 32=,则14m n+的最小值为 A .34B .910C .32D .95【答案】A 【解析】因为数列{}n a 是正项等比数列,28516a a a ,3520a a +=,所以2285516a a a a ,516a =,34a =,所以253a a q =,2q ,451a a q ,11a =,1112n n n a a q --==,32=,所以1110222m n,12m n +=,414114112125n m mnm n mnm n431124520,0n m mnm n ,当且仅当2n m =时“=”成立, 所以14mn的最小值为34,故选A 。
人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。
专题2 相等关系与不等关系高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式;二是基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查.预测2020年独立考查的内容将是不等式的性质或基本不等式的应用问题,不等式的解法将与集合、函数等其它知识点综合考查.第一部分 相等关系与不等关系一、单选题1.(2020届山东省日照市高三上期末联考)如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈10=尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是( )A .2.55尺B .4.55尺C .5.55尺D .6.55尺2.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,23.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .1634.(2020·全国高三专题练习(文))“[]1,2x ∀∈,210ax +≤”为真命题的充分必要条件是( )A .1a ≤-B .14a -≤ C .2a ≤- D.0a ≤5.(2020届山东省枣庄、滕州市高三上期末)已知a R ∈,则“01a <<”是“,x R ∀∈2210ax ax ++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )A .22a b >B .1ba<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.(2020届山东省枣庄市高三上学期统考)不等式220ax bx ++>的解集为{12}x x -<<,则不等式220x bx a ++>的解集为( )A .{1x <-或1}2x > B .1{1}2x x -<<C .{21}x x -<<D .{2x <-或1}x >9.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .1810.(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +u u u r u u u rx AB y AC =+u u u r u u u r ,则14x y+的最小值为( )A .32B .2C .52D .9211.(2020届山东省枣庄市高三上学期统考)不等式3ln 1x x e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-12.(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .913.(2020届山东师范大学附中高三月考)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( ) A .9B .8C .7D .614.(2020届山东实验中学高三上期中)设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集个数有 A .2B .3C .4D .815.(2020届山东实验中学高三上期中)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3) B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞二、多选题16.(2020届山东省泰安市高三上期末)已知a b c d ,,,均为实数,则下列命题正确的是( ) A .若,a b c d >>,则ac bd > B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 17.(2020届山东省滨州市三校高三上学期联考)设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >18.(2020届山东省潍坊市高三上期中)若x y ≥,则下列不等式中正确的是( ) A .22x y ≥B .2x yxy +≥ C .22x y ≥ D .222x y xy +≥19.(2020届山东省九校高三上学期联考)下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤20.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 三、填空题21.(20201x x +x =______. 22.(2020届山东省枣庄市高三上学期统考)函数2245()(1)1x x f x x x -+=>-的最小值是__________.23.(2020届山东省潍坊市高三上期中)“x R ∃∈,220x x a --<” 为假命题,则实数a 的最大值为__________.24.(2020·全国高三专题练习(理))谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数13与115的和表示25等.从11111,,,,,234100101⋅⋅⋅这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)25.(2020·全国高三专题练习(理))已知圆()()22212x y -+-=关于直线()10,0ax by a b +=>>对称,则21a b+的最小值为__________. 26.(2020届山东实验中学高三上期中)设命题21:01x p x -<-,命题()()2:2110q x a x a a -+++≤,若p 是q 的充分不必要条件,则实数a 的取值范围是_____________.27.(2020·山东省淄博实验中学高三上期末)设()()201x a x f x x x x ⎧-≤⎪=⎨+⎪⎩,,>. (1)当12a =时,f (x )的最小值是_____; (2)若f (0)是f (x )的最小值,则a 的取值范围是_____. 四、解答题28.(2020届山东师范大学附中高三月考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件a 元进货后又以每件b 元销售, ()b a c a λ=+-,其中c 为最高限价()a b c <<,λ为销售乐观系数,据市场调查,λ是由当b a -是c b -,c a -的比例中项时来确定.(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值; (2)求乐观系数λ的值;(3)若600c =,当厂家平均利润最大时,求a 与b 的值.29.(2020届山东省潍坊市高三上期中)在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-.某医疗设备公司生产某医疗器材,已知每月生产x 台()x N *∈的收益函数为()2300020R x x x =- (单位:万元),成本函数()5004000C x x =+(单位:万元),该公司每月最多生产100台该医疗器材.(利润函数=收益函数-成本函数)(1)求利润函数()P x 及边际利润函数()MP x ;(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到0.1) (3)求x 为何值时利润函数()P x 取得最大值,并解释边际利润函数()MP x 的实际意义. 30.(2020届山东省枣庄市高三上学期统考)非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<(Ⅰ)当3a =时,求A B I ;(Ⅱ)命题p :x A ∈,命题q :x B ∈,若q 是p 的必要条件,求实数a 的取值范围.第二部分 计数原理一、单选题1.(2020届山东省烟台市高三上期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为( ) A .216B .480C .504D .6242.(2020届山东省九校高三上学期联考)汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为A 、B 、C 、D 、E (在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个,则不同固定螺栓顺序的种数为( ) A .20 B .15 C .10D .53.(2020·全国高三专题练习(理))已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲只会用现金结账,顾客乙只会用现金和银联卡结账,顾客丙与甲.乙结账方式不同,丁用哪种结账方式都可以若甲乙丙丁购物后依次结账,那么他们结账方式的组合种数共有( ) A .36种B .30种C .24种D .20种4.(2020·山东省淄博实验中学高三上期末)“总把新桃换旧符”(王安石)、“灯前小草写桃符”(陆游),春节是中华民族的传统节日,在宋代人们用写“桃符”的方式来祈福避祸,而现代人们通过贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿,某商家在春节前开展商品促销活动,顾客凡购物金额满50元,则可以从“福”字、春联和灯笼这三类礼品中任意免费领取一件,若有4名顾客都领取一件礼品,则他们中有且仅有2人领取的礼品种类相同的概率是( )A .59B .49C .716D .9165.(2020届山东省潍坊市高三上学期统考)6本不同的书摆放在书架的同一层上,要求甲、乙两本书必须摆放在两端,丙、丁两本书必须相邻,则不同的摆放方法有( )种 A .24B .36C .48D .606.(2020届山东省滨州市高三上期末)展开式中项的系数为( )A .B .C .D .7.(2020届山东省九校高三上学期联考)吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15 B .815 C .35D .3208.(2020届山东省临沂市高三上期末)6324x x ⎛⎝的展开式的中间项为( ) A .-40B .240x -C .40D .240x9.(2020届山东省潍坊市高三上期中)(82x 展开式中3x 的系数为( )A .-112B .28C .56D .112二、多选题 三、填空题10.(2020届山东省日照市高三上期末联考)二项式261(2)x x-的展开式中的常数项是_______.(用数字作答)11.(2020届山东省潍坊市高三上学期统考)在32nx x ⎛ ⎝的展开式中,只有第五项的二项式系数最大,则展开式中的常数项是 .12.(2020届山东省德州市高三上期末)6212x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______;系数最大的项是______. 13.(2020届山东省临沂市高三上期末)现将七本相同的书分给甲、乙、丙三人,每人至少一本,则甲分得的书不少于3本的概率是______.14.(2020·全国高三专题练习(理))在()8x 的展开式中,含44x y 项的系数是_______.。
绝密★启用前2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.测试范围:高中全部内容。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=A.{3} B.{2,3} C.{﹣1,3} D.{1,2,3}2.已知复数312iz=-(i是虚数单位),则z=A.36i55+B.36i55-C.12i55-D.12i55+3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为A.35B.34C.710D.454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.已知实数x0是函数f(x)6x=的一个零点,若0<x1<x0<x2,则A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>06.已知等比数列{a n}的公比12q=,该数列前9项的乘积为1,则a1=A.8 B.16 C.32 D.647.若函数f(x)=x2ln2x,则f(x)在点(12,)处的切线方程为A.y=0 B.2x﹣4y﹣1=0 C.2x+4y﹣1=0 D.2x﹣8y﹣1=08.过正方体ABCD﹣A1B1C1D1的顶点A作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作A.1 个B.2 个C.3 个D.4 个9.执行如图所示的程序框图,输出的结果为A.22019﹣1 B.22019﹣2 C.22020﹣2 D.22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|=A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积. 18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点;(2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量;(2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)求直线l 及曲线C 1的直角坐标方程,并判断曲线C 1的形状; (2)已知点P (1,1),直线l 交曲线C 1于A ,B 两点,求11PA PB+的值. 23.(本小题满分10分)选修4-5:不等式选讲已知f (x )=|x ﹣1|+|2x +3|. (1)求不等式f (x )>4的解集;(2)若关于x 的不等式|x +1|﹣|x ﹣m |≥|t ﹣1|+|2t +3|(t ∈R )能成立,求实数m 的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2,3},B ={x |x 2﹣2x >0},则A ∩B = A .{3} B .{2,3}C .{﹣1,3}D .{1,2,3}2.已知复数312iz =-(i 是虚数单位),则z = A .36i 55+ B .36i 55- C .12i 55- D .12i 55+ 3.袋中有形状、大小都相同且编号分别为1,2,3,4,5的5个球,其中1个白球,2个红球,2个黄球.从中一次随机取出2个球,则这2个球颜色不同的概率为 A .35B .34C .710D .454.移効支付、高铁、网购与共享单车被称为中国的新“四大发明”,某中学为了解本校学生中新“四大发 明”的普及情况,随机调査了100位学生,共中使用过移功支付或共享单车的学生共90位,使用过移动支付的学生共有80位,使用过共享单车的学生且使用过移动支付的学生共有60位,则该校使用共享单车的学生人数与该校学生总数比值的估计值为 A .0.5B .0.6C .0.7D .0.85.已知实数x 0是函数f (x )6x x=-的一个零点,若0<x 1<x 0<x 2,则 A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>06.已知等比数列{a n }的公比12q =,该数列前9项的乘积为1,则a 1=A .8B .16C .32D .647.若函数f (x )=x 2ln2x ,则f (x )在点(102,)处的切线方程为 A .y =0B .2x ﹣4y ﹣1=0C .2x +4y ﹣1=0D .2x ﹣8y ﹣1=08.过正方体ABCD ﹣A 1B 1C 1D 1的顶点A 作平面α,使每条棱在平面α的正投影的长度都相等,则这样的平面α可以作 A .1 个B .2 个C .3 个D .4 个9.执行如图所示的程序框图,输出的结果为A .22019﹣1B .22019﹣2C .22020﹣2D .22020﹣110.已知双曲线2211620x y -=的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,且PF 2的中点M 在以O 为圆心,OF 1为半径的圆上,则|PF 2|= A .12B .6C .4D .211.已知命题p :∃x ∈R ,使x 2+x +1<0;命题q :∀x ∈R ,都有e x ≥x +1.下列结论中正确的是A .命题“p ∧q ”是真命题B .命题“p ∧¬q ”是真命题C .命题“¬p ∧q ”是真命题D .命题“¬p ∨¬q ”是假命题12.若函数()()231sin 1f x m x m x =+++是偶函数,则y =f (x )的单调递增区间是A .(﹣∞,1)B .(1,+∞)C .(﹣∞,0)D .(0,+∞)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (3,﹣2),=b (m ,1).若向量(-a 2b )∥b ,则m =__________. 14.数列{a n }中,a n ﹣a n ﹣1=2(n ≥2),S 10=10,则a 2+a 4+a 6+…+a 20=__________.15.已知椭圆2295x y +=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是__________.16.在Rt △ABC 中,∠ABC =90°,∠C =30°,AB =1,D 和E 分别是边BC 和AC 上一点,DE ⊥AC ,将△CDE 沿DE 折起使点C 到点P 的位置,则该四棱锥P ﹣ABDE 体积的最大值为__________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的所对的边分别为a ,b ,c ,且满足b cos C =(2a ﹣c )cos B . (1)求角B 的大小;(2)若b =4,a +c =8,求△ABC 的面积.18.(本小题满分12分)在四棱锥P ﹣ABCD 中,ABCD 是矩形,PA =AB ,E 为PB 的中点. (1)若过C ,D ,E 的平面交PA 于点F ,求证:F 为PA 的中点; (2)若平面PAB ⊥平面PBC ,求证:BC ⊥PA . 19.(本小题满分12分)为了了解居民用电情况,某地供电局抽查了该市若干户居民月平均用电量(单位:kW •h ),并将样本数据分组为[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],其频率分布直方图如图所示.(1)若样本中月平均用电量在[240,260)的居民有30户,求样本容量; (2)求月平均用电量的中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组居民中,用分层抽样法抽取22户居民,则月平均用电量在[260,280)的居民中应抽取多少户? 20.(本小题满分12分)已知函数f (x )=x ln x +ax 2﹣1,且f '(1)=﹣1. (1)求a 的值;(2)若对于任意x ∈(0,+∞),都有f (x )﹣mx ≤﹣1,求m 的最小值. 21.(本小题满分12分)已知抛物线y =x 2上的A ,B 两点满足OA OB ⋅=u u u r u u u r2,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得|MF |=λ|MO |(λ>0),若存在请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 1:ρ=4cos θ+4sin θ,直线l的参数方程为11212x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).(1)求直线l及曲线C1的直角坐标方程,并判断曲线C1的形状;(2)已知点P(1,1),直线l交曲线C1于A,B两点,求11PA PB的值.23.(本小题满分10分)选修4-5:不等式选讲已知f(x)=|x﹣1|+|2x+3|.(1)求不等式f(x)>4的解集;(2)若关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,求实数m的取值范围.2020届高三上学期期末教学质量检测卷(全国三卷地区适用)文科数学·参考答案13.【答案】2-【解析】∵向量=a (3,﹣2),=b (m ,1),∴()2324m -=--,a b , ∵(-a 2b )∥b ,∴﹣4m =3﹣2m ,∴m 32=-.故答案为:32-.14.【答案】100【解析】由a n ﹣a n ﹣1=2(n ≥2),知数列{a n }是公差为2的等差数列,由S 10=10,得110910102d a ⨯+=,即1912a d +=, a 2+a 4+a 6+…+a20()()11092102da d ⨯=++=10a 1+100d 11910454510452a d d a d d ⎛⎫=++=++ ⎪⎝⎭=10+45×2=100.故答案为:100. 15【解析】椭圆2295x y +=1的a =3,b =c =2,e 23=,设椭圆的右焦点为F ',连接PF ', 线段PF 的中点A 在以原点O 为圆心,2为半径的圆,连接AO ,可得|PF '|=2|AO |=4,设P 的坐标为(m ,n),可得323-m =4,可得m32=-,n 2=,由F (﹣2,0),可得直线PF的斜率为2322=-+ 另解:由|PF '|=2|AO |=4,|PF |=6﹣4=2,|FF '|=2c =4,可得cos ∠PFF'4161612244+-==⨯⨯,sin ∠PFF'== 可得直线PF 的斜率为sin 'cos 'PFF PFF ∠=∠16.【答案】9【解析】在△ABC 中,∵∠ABC =90°,∠C =30°,AB =1,∴AC =2,BC=B 到AC 的距离d ABBC AC ⋅==, 设DE =x ,则0<x 2≤,CE=, ∴四边形ABDE 的面积S 11122x=⨯=(1﹣x2), 显然当平面PDE ⊥平面ABDE 时,棱锥的体积最大,此时,PE ⊥平面ABDE ,∴棱锥的体积V (x )13=S •PE 12=(x ﹣x 3), V ′(x )12=(1﹣3x 2),故当0<x 3<时,V ′(x )>0,当3<x 2<V ′(x )<0,∴当x =V (x )取得最大值12)=.17.【解析】(1)由b cos C=(2a﹣c)cos B,以及正弦定理得sin B cos C+cos B sin C=2sin A cos B,即sin(B+C)=sin A=2sin A cos B(sin A>0),可得cos B12 =,则Bπ3=.(6分)(2)由b=4,a+c=8及余弦定理b2=a2+c2﹣2ac cos B得16=a2+c2﹣ac=(a+c)2﹣3ac=64﹣3ac,可得ac=16,则△ABC的面积S12=ac sin B12=⨯162⨯=12分)18.【解析】(1)因为ABCD是矩形,所以,CD∥AB,又AB⊂平面PAB,CD⊄平面PAB,所以CD∥平面PAB,又CD⊂平面CDEF,平面CDEF∩平面PAB=EF,所以CD∥EF,所以AB∥EF,又在△PAB中,E为PB的中点,所以,F为PA的中点.(6分)(2)因为PA=AB,E为PB的中点,所以AE⊥PB,AE⊂平面PAB又平面PAB⊥平面PBC,平面PAB∩⊥平面PBC=PB,所以AE⊥平面PBC,BC⊂平面PBC,所以AE⊥BC,又ABCD是矩形,所以AB⊥BC,AE∩AB=A,AB,AE⊂平面PAB,所以,BC⊥平面PAB,PA⊂平面PAB,所以BC⊥PA.(12分)19.【解析】(1)由(0.0020+0.0095+0.0110+0.0125+x+0.0050+0.0025)×20=1,解得x=0.0075,∴月平均用电量在[240,260)的频率为0.0075×20=0.15,设样本容量为n,则0.15n=30,解得n=200.(4分)(2)∵(0.0020+0.0095+0.0110)×20=0.45<0.5,∴月平均用电量的中位数[220,240)内,设中位数a,则0.45+0.0125×(a﹣220)=0.5,解得a=224,∴中位数为224.(8分)(3)月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组频率分别为:0.25,0.15,0.1,0.05,∴月平均用电量在[260,280)的用户中应抽取220.10.250.150.10.05⨯=+++4户.(12分)20.【解析】(1)对f(x)求导,得f'(x)=1+ln x+2ax,所以f'(1)=1+2a=﹣1,解得a=﹣1.(4分)(2)由f(x)﹣mx≤﹣1,得x ln x﹣x2﹣mx≤0,因为x∈(0,+∞),所以对于任意x∈(0,+∞),都有ln x﹣x≤m.设g(x)=ln x﹣x,则()1'1g xx=-,令g'(x)=0,解得x=1,(8分)当x变化时,g(x)与g'(x)的变化情况如下表:x(0,1) 1 (1,+∞)g'(x)+ 0 ﹣g(x)增极大值减所以当x =1时,g (x )max =g (1)=﹣1,因为对于任意x ∈(0,+∞),都有g (x )≤m 成立,所以m ≥﹣1, 所以m 的最小值为﹣1.(12分)21.【解析】(1)由题意知,B (2,4),设A (t ,t 2),由OA OB ⋅=u u u r u u u r2,得2t +4t 2=2,解得t 12=(舍)或t =﹣1,∴A (﹣1,1).(4分) (2)由条件知()222221()4x x x y λ+-=+,把y =x 2代入得()2221110216y y λλ⎛⎫-+-+=⎪⎝⎭,∴2234∆λλ⎛⎫=-⎪⎝⎭, 当λ=1时,M有两个点,当λ=M 有两个点,当12λ<<时,M 点有四个,当λ>1,M 点有两个,当0λ<<,M 点不存在.(8分) (3)设B (211x x ,),A (222x x ,),由题意得:2212122x x x x +=,解得x 1x 2=﹣2.设直线AB 的方程为y =kx +m ,联立2y kx my x=+⎧⎨=⎩,得x 2﹣kx ﹣m =0,得x 1x 2=﹣m , 又x 1x 2=﹣2,∴m =2,则直线经过定点(0,2), ∴S 四边形OABC =S △OAB +S △OBC =S △OAB +S △OBF()1211111192232248x x x x x =⨯⨯-+⨯⨯=+≥=, 当且仅当143x =等号成立,四边形OABC 面积最小, ∴B (43,169).(12分) 22.【解析】(1)∵直线l的参数方程为1121x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数).∴直线l的直角坐标方程为)11y x -=-,1y =+-∵曲线C 1:ρ=4cos θ+4sin θ,∴曲线C 1的直角坐标方程为(x ﹣2)2+(y ﹣2)2=8,是以(2,2)为圆心,为半径的圆.(5分) (2)联立直线的参数方程与圆的直角坐标方程得)2160t t --=.记该方程的两根为t 1,t 2,由直线参数方程的几何意义可得|PA |=|t 1|,|PB |=|t 2|,121t t +=,t 1t 2=﹣6,故1212121211t t t t PA PB t t t t +-+===.(10分)23.【解析】(1)由题意可得|x ﹣1|+|2x +3|>4,当x ≥1时,x ﹣1+2x +3>4,解得x ≥1; 当32-<x <1时,1﹣x +2x +3>4,解得0<x <1; 当x 32≤-时,1﹣x ﹣2x ﹣3>4,解得x <﹣2. 可得原不等式的解集为(﹣∞,﹣2)∪(0,+∞).(5分)(2)由(1)可得|t ﹣1|+|2t +3|32134123322t t t t t t ⎧⎪+≥⎪⎪=+-<<⎨⎪⎪--≤-⎪⎩,,,,可得t32=-时,|t﹣1|+|2t+3|取得最小值52,关于x的不等式|x+1|﹣|x﹣m|≥|t﹣1|+|2t+3|(t∈R)能成立,等价为52≤|x+1|﹣|x﹣m|的最大值,由|x+1|﹣|x﹣m|≤|m+1|,可得|m+1|52≥,解得m32≥或m72≤-.(12分)。
参照秘密级管理★启用前 试卷类型:A2020级高三上学期期末校际联合考试数学试题 2023.1考生注意:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束,将试题卷和答题卡一并交回。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}|1216xA x =<<,{}2,3,4,5B =,则A B =A .{}2,3B .{}3,4C .{}2,3,4D .{}2,3,45,2.设a b ,为实数,若复数12i1i ia b +=++,则 A .3122a b ==, B .31a b ==, C .1322a b ==, D .13a b ==, 3.设x ∈R ,则“112x <−”是“3x >”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,则下列结论正确的是A .若α⊥m ,α//n ,则n m //B .若α//m ,βα//,则β//mC .若α⊥m ,,,n m n ⊥⊥β则βα⊥D .若βα⊥,α//m ,则β⊥m5.若曲线1y x =−+在点(0,1)−处的切线与曲线ln y x =在点P 处的切线垂直,则点P 的坐标为A .(e,1)B .(1,0)C .(2,ln 2)D .1(,ln 2)2−6.我们要检测视力时会发现对数视力表中有两列数据,分别是小数记录与五分记录,如图所示(已隐去数据),其部分数据如表: 小数记录x 0.10.120.150.2…?…1.01.21.52.0五分记录y4.0 4.1 4.2 4.3 … 4.7 …5.0 5.1 5.2 5.3现有如下函数模型:①5lg y x =+,②115lg 10y x=+,x 表示小数记录数据,y 表示五分记录数据,请选择最合适的模型解决如下问题: 小明同学检测视力时,医生告诉他的视力为4.7,则小明同学的小数记录数据为(附:0.30.220.1100.550.7100.8−−−===,,)A .0.3B .0.5C .0.7D .0.87.安排4名中学生参与社区志愿服务活动,有4项工作可以参与,每人 参与1项工作,每项工作至多安排2名中学生,则不同的安排方式有 A .168种B .180种C .192种D .204种8.已知12F F ,分别为双曲线22221(00)y x a b a b−=>>,的两个焦点,双曲线上的点P 到原点的距离为b ,且2112sin 3sin PF F PF F ∠=∠,则该双曲线的渐近线方程为 A .22y x =± B .32y x =± C .2y x =± D .3y x =±二、多项选择题:本大题共4小题,每小题5分,共20分。
2020年山东省日照市两城中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设是单位向量,且,则的最小值为( ) A-.B. C.D.参考答案:B略2. 下列函数,其中既是偶函数又在区间上单调递减的函数为( )A.B.C.D.参考答案:B3. 已知集合,,则A∪B=A. [0,+∞)B. [1,+∞)C. D.参考答案:B【分析】一元不等式化简集合B,然后直接利用并集运算得答案.【详解】=,则故选:B【点睛】本题考查并集其运算,考查了不等式的解法,是基础题.4. (5分)(2015?嘉峪关校级三模)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4π B.12π C.16π D.32π参考答案:C【考点】:球的体积和表面积.【专题】:计算题;空间位置关系与距离.【分析】:取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,∴R=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.【点评】:本题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解题的关键.5. 分配4名水暖工去3个不同的居民家里检查暖气管道. 要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A. 种B.种C. 种D. 种参考答案:C6. 已知,则实数分别为A.x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=2参考答案:D7. 设[x]表示不大于x的最大整数, 则对任意实数x, y, 有()A. [-x] =-[x]B.[2x] = 2[x]C.[x+y]≤[x]+[y]D.[x-y]≤[x]-[y]参考答案:D8. 设函数,则f(﹣7)+f(log312)=()A.7 B.9 C.11 D.13参考答案:A【考点】函数的值.【分析】由﹣7<1,1<log312求f(﹣7)+f(log312)的值.【解答】解:∵﹣7<1,1<log312,∴f(﹣7)+f(log312)=1+log39+=1+2+4=7,故选:A.【点评】本题考查了分段函数的应用及对数运算的应用.9. 小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为()A.60 B.72 C.84 D.96参考答案:C【考点】排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.10. 下列函数中,与函数y=x的奇偶性,单调性均相同的是()A. y=x2 B.y=sinx C.y=lnx D.y=参考答案:D二、 填空题:本大题共7小题,每小题4分,共28分11. 下列数阵称为“森德拉姆筛”,其特点是每行每列都是等差数列,则表中数字2010共出现的次数为 .参考答案: 略12. 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若,,且,则A =____;若△ABC 的面积为,则△ABC的周长的最小值为_____.参考答案:6 【分析】先根据向量垂直得出边角关系,然后利用正、余弦定理求解的值;根据面积以及在余弦定理,利用基本不等式,从而得到周长的最小值(注意取等号条件). 【详解】由得得,∴∴;∴又所以(当且仅当时等号成立) 【点睛】(1),若垂直,则有:;(2)取等号的条件是:.13. 在平面直角坐标系xOy 中,已知双曲线()的两条渐近线的方程为,则该双曲线的离心率为_______.参考答案:【分析】由双曲线的两条渐近线方程是y =±2x ,得b =2a ,从而,即可求出双曲线的离心率.【详解】∵双曲线()的两条渐近线方程是y =±2x ,∴,即b =2a ,∴,∴.故答案为:.【点睛】本题考查双曲线的离心率,考查双曲线的性质,考查学生的计算能力,属于基础题. 14. 区域D 是由直线、x 轴和曲线在点(1,0)处的切线所围成的封闭区域,若点区域D 内,则的最大值为 .参考答案:2由题意知,f(x)在(1,0)处的切线方程为y=x-1,如图,可行域为阴影部分,易求出目标函数z=x-2y 的最优解(0,-1),即z 的最大值为2.15. 已知不等式(ax+3)(x 2﹣b )≤0对任意x∈(﹣∞,0)恒成立,其中a ,b 是整数,则a+b 的取值的集合为 .参考答案:{4,10}【考点】一元二次不等式的解法.【分析】对b 分类讨论,当b≤0 时,由(ax+3)(x 2﹣b )≤0得到ax+3≤0,由一次函数的图象知不存在;当b >0 时,由(ax+3)(x 2﹣b )≤0,利用数学结合的思想得出a ,b 的整数解. 【解答】解:当b≤0 时,由(ax+3)(x 2﹣b )≤0 得到ax+3≤0 在x∈(﹣∞,0)上恒成立, 则a 不存在;当b >0 时,由(ax+3)(x 2﹣b )≤0, 可设f (x )=ax+3,g (x )=x 2﹣b , 又g (x ) 的大致图象如下, 那么由题意可知:再由a ,b 是整数得到或因此a+b=10或4. 故答案为{4,10}.16. 若.参考答案:答案: 2解析:17. 在中,角所对的边分别为,已知,,则的面积的最大值为 .参考答案:,,整理得 ,则又,.又,则,,,,当且仅当时取等号.三、 解答题:本大题共5小题,共72分。
山东省日照市实验高级中学2020年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. .已知i为虚数单位,若,则A. 1B.C.D. 2参考答案:C【分析】先根据复数相等得,再代入求结果.【详解】由,得,所以. 故选B.【点睛】本题考查复数相等以及指数运算,考查基本分析求解能力,属基本题.2. 在中,内角,,的对边分别为,,,若,且,则面积的最大值为()A.B. C. D.参考答案:C3.若复数是纯虚数,则实数a的值为() A.6 B.—6 C.5 D.—4参考答案:答案:A4. 等差数列中,,则()A.B.C.5 D.参考答案:D5. 已知函数f(x)=在区间(a,a+)(a>0)上存在极值,则实数a的取值范围是( )A.(0,1)B.(,1)C.(,1)D.(,1)参考答案:B【考点】函数在某点取得极值的条件.【专题】计算题;函数思想;综合法;导数的综合应用.【分析】求导函数,求出函数的极值点,利用函数f(x)在区间(a,a+)上存在极值点,建立不等式,即可求实数a的取值范围.【解答】解:∵f(x)=,x>0,∴f′(x)=﹣,令f′(x)=0,解得x=1,当f′(x)>0,即0<x<1,函数单调递增,当f′(x)<0,即x>1,函数单调递减,∴1是函数的极值点,∵函数f(x)区间(a,a+)(a>0)上存在极值,∴a<1<a+∴<a<1.故选:B.【点评】本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.6. 函数的零点所在的区间是()A. (-2,-1)B. (-1,0)C. (1,2)D. (0,1)参考答案:D因为,,所以根据根的存在性定理可知函数的零点所在的区间在,选D.7. 已知命题p:在△ABC中,“”是“”的充分不必要条件;命题q:“”是“”的充分不必要条件,则下列选项中正确的是( )A.p真q假 B.p假q真 C.“”为假 D.“”为真参考答案:C略8. 下列函数中,图像的一部分如右图所示的是()A.y=sin(x+)B.y=sin(2x-)C.y=cos(4x-)D.y=cos(2x-)参考答案:D略9. 如图已知圆的半径为10,其内接三角形ABC的内角A、B分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC内的概率为()A. B. C. D.参考答案:B略10. (文科)已知,则的最小值为A.12 B.14 C.16 D.18参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在“家电下乡”活动中,某厂要将100台洗衣机运往临近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为元.参考答案:2200略12. “,”的否定是.参考答案:使13. )以下是求函数y=|x+1|+|x-2|的值的流程图.回答以下问题:(Ⅰ)①处应填入的内容是________________;②处应填入的条件是________________;③处应填入的内容是________________;(Ⅱ)若输出的y的值大于7,求输入的x的值的范围.参考答案:解:(Ⅰ)①处应填入的内容是______;②处应填入的条件是_(或)____;③处应填入的内容是______。
山东省日照市2023届高三上学期校际期中联考数学试题一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数2i1iz =-,则复数z 在复平面内对应点的坐标为( ) A .(1,-1)B .(-1,1)C .(1,1)D .(-1,-1)2.已知集合{}24xA x =<,()(){}410B x x x =--<,则()RA B ⋂=( )A .{}12x x << B .{}24x x << C.{}24x x ≤<D .{}24x x x <≥或3.不等式125x x +<-的解集为( ) A .{}115x x x ><或 B .{}511x x << C .{}15x x -<<D .{}15x x x <->或4.函数21cos 122xy x π⎛⎫⎛⎫=-⋅+ ⎪ ⎪+⎝⎭⎝⎭的图象可能为( ) A . B . C .D .5.窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2),若点P 在四个半圆的圆弧上运动,则AB OP ⋅的取值范围是( )A .[-2,2]B .-⎡⎣C .-⎡⎣D .[-4,4]6.“数列{}n a 为等比数列”是“数列{}lg n a 为等差数列”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件7.正项数列{}n a 中,1n n a ka +=(k 为常数),若2021202220233a a a ++=,则222202120222023a a a ++的取值范围是( ) A .[)3,9B .[3,9]C .[)3,15D .[3,15]8.已知平面向量a ,b ,c 满足a ⊥b ,且4a b ==,2a b c +-=,则2a c b c -+-的最小值为( )A .B .C .D二、多项选择题:本大题共4小题,每小题5分,共20分。
2020-2021学年山东省日照市高三(上)期末数学试卷一、单选题(本大题共8小题,共40.0分)1.已知集合A={0,1,2,3},B={x|x2≤4},则A∩B=()A. {−2,−1,0,1,2,3}B. {−1,0,1}C. {0,1,2,3}D. {0,1,2}2.已知复数z=1−i,z−为z的共轭复数,则1+zz−=()A. 3+i2B. 1+i2C. 1−3i2D. 1+3i23.正方形ABCD中,点E,F分别是DC,BC的中点,那么EF⃗⃗⃗⃗⃗ =()A. 12AB⃗⃗⃗⃗⃗ +12AD⃗⃗⃗⃗⃗⃗ B. −12AB⃗⃗⃗⃗⃗ −12AD⃗⃗⃗⃗⃗⃗ C. 12AB⃗⃗⃗⃗⃗ −12AD⃗⃗⃗⃗⃗⃗ D. −12AB⃗⃗⃗⃗⃗ +12AD⃗⃗⃗⃗⃗⃗4.(x−3)(x+2)>0的一个充分不必要条件是()A. x≥4B. x≤0C. x>1D. x<−15.函数y=x2−2sinx的图象大致是()A. B.C. D.6.生物有机体死亡后,体内碳−14元素便以5730年的半衰期(放射性强度达到原值一半所需要的时间)开始衰变并逐渐减少.上世纪50年代,美国化学家利比发明了碳−14元素放射性测年代方法,因此荣获1960年的诺贝尔化学奖.考古学家利用此方法建立了测算年代的数学模型P=t5730(P为碳−14元素剩余量与初始值之比,t为生物死亡后的时间).在日照某处遗址,考古人员从样本组织中检测出碳−14含量P为70%,因此我们推测此遗址大概距今_____年.(lg7=0.8451,lg2=0.3010)()A. 2000B. 3000C. 4000D. 50007.2021年初,某市新冠疫情肆虐,面临医务人员不足和医疗物资紧缺等诸多困难,全国各地志愿者纷纷驰援.现有5名医生志愿者需要分配到两家医院(每人去一家医院,每家医院至少去1人),则共有分配方案种数为()A. 12种B. 30种C. 18种D. 15种8.如图,已知边长为a(a>1)的正方形OABC,y=8x3(x>0)交BC于点P,y=x−13(x>0)交AB于点Q,当|AQ|+|CP|最小时,则a的值为()A. √2B. √3C. 2√2D. 2√3二、多选题(本大题共4小题,共20.0分)9. 如图所示的折线图是2020年1月25日至2020年2月13日F 省及该省K 市新冠肺炎累计确诊病例的折线图,则下列判断正确的是( )A. 1月31日F 省新冠肺炎累计确诊病例中K 市占比超过了13B. 1月25日至2月12日F 省及该省K 市新冠肺炎累计确诊病例都呈递增趋势C. 2月2日至2月10日F 省新冠肺炎累计确诊病例增加了97例D. 2月8日至2月10日F 省及该省K 市新冠肺炎累计确诊病例的增长率大于2月6日至2月8日的增长率10. 下列关于函数f(x)=2sin(3x +π6)+1的结论中正确的是( )A. 图象关于直线x =5π9对称 B. 最小正周期为2π3 C. 图象关于点(11π18,1)对称D. 在[5π3,19π9]上单调递增11. 已知平面α,β,γ两两垂直,直线a ,b ,c 满足a ⊂α,b ⊂β,c ⊂γ,则直线a ,b ,c 可能满足( )A. 两两垂直B. 两两平行C. 两两相交D. 两两异面 12. 已知l 1,l 2是双曲线T :x 2a 2−y 2b2=1(a >0,b >0)的两条渐近线,直线l 经过T 的右焦点F ,且l//l 1,I 交T 于点M ,交l 2于点Q 交y 轴于点N ,则下列说法正确的是( )A. △FOQ 与△OQN 的面积相等B. 若T 的焦距为4,则点M 到两条渐近线的距离之积的最大值为14C. 若FM ⃗⃗⃗⃗⃗⃗ =MQ⃗⃗⃗⃗⃗⃗⃗ ,则T 的渐近线方程为y =±x D. 若|FM||FQ|∈[12,23],则T 的离心率e ∈[2,3]三、单空题(本大题共4小题,共20.0分)13. 二项式(1+x)5的展开式中含x 的项的系数是______ .14. 若数列{a n }为等差数列,且a 1=π6,a 3=π2,则cosa 10= ______ .15.已知函数f(x)=|log2x|,若f(x1)=f(x2),则1x12+4x22的最小值为______ .16.如图,已知△ABC的顶点C∈平面α,点A,B在平面α同一侧,且|AC|=2√3,|BC|=2.若AC,BC与平面α所成的角分别为5π12,π4,则△ABC面积的取值范围是______ .四、解答题(本大题共6小题,共70.0分)17.①S3=12,②a2+a4+a6=24这两个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n}的前n项和为S n,满足a3=6,____.(1)求{a n}的通项公式;(2)设b n=2a n+a n,求{b n}的前n项和T n.18.已知函数f(x)=λsin(ωx+φ)(λ>0,0<φ<π2)的部分图象如图所示,A为图象与x轴的交点,B,C分别为图象的最高点和最低点.△ABC中,角A,B,C所对的边为a,b,c,△ABC的面积S=√32accosB.(1)求△ABC的角B的大小;(2)若b=√3,a=2c,点B的坐标为(13,λ),求f(x)的解析式.19.在四棱锥P−ABCD中,平面PAB⊥底面ABCD,AD//BC,∠ABC=90°,∠APB=90°.(1)证明:AP⊥PC;(2)设AB=5,AP=BC=2AD=4,求直线CB与平面PCD所成角的正弦值.20.“过大年,吃水饺”是我国绝大多数地方过春节的习俗,2021年春节前夕,我市某质检部门随机抽取了200包某种品牌的速冻水饺,检测其某项质量指标绘制成如图所示直方图.(1)求所抽取的200包速冻水饺该项质量指标值的样本平均数x−(同一组中的数据用该组区间的中点值作代表);(2)①该速冻水饺的该项质量指标值Z服从正态分布(μ,σ2),用样本平均数x−作为μ的估计值,利用该正态分布,求Z落在(2.6,50.4)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查得这200包速冻水饺得质量指标得标准差为σ=√142.75≈11.95.(2)Z~N(μ,σ2),P(μ−σ<Z<μ+σ)=0.6826,P(μ−2σ<Z<μ+2σ)=0.9544.21.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,且过点A(2,3),右顶点为B.(1)求椭圆C的标准方程;(2)过点A作两条直线分别交椭圆于点M,N,满足直线AM,AN的斜率之和为−3,求点B到直线MN距离的最大值.22. 已知函数f(x)=e x −ax −1,g(x)=ln(1+x)x.(1)若曲线y =f(x)在点(1,f(1))处的切线于x 轴平行,求实数a 的值; (2)若g(x)>kx+1−1x (k >0)在(0,+∞)上恒成立,求整数k 的取值集合; (3)求证:∑ln n i=1[1+i(i +1)]>2n −3.答案和解析1.【答案】D【解析】解:∵A ={0,1,2,3},B ={x|−2≤x ≤2}, ∴A ∩B ={0,1,2}. 故选:D .可求出集合B ,然后进行交集的运算即可.本题考查了列举法和描述法的定义,一元二次不等式的解法,交集及其运算,考查了计算能力,属于基础题. 2.【答案】C【解析】解:∵z =1−i , ∴1+zz−=2−i 1+i=(2−i)(1−i)(1+i)(1−i)=1−3i 2,故选:C . 把z =1−i 代入1+zz−,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.【答案】C【解析】解:∵E ,F 分别是DC ,BC 的中点,∴EF ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ )==12AB ⃗⃗⃗⃗⃗ −12AD ⃗⃗⃗⃗⃗⃗ , 故选:C .根据向量加法和减法法则进行转化求解即可. 本题主要考查向量基本定理的应用,利用向量加法和减法法则是解决本题的关键,是基础题. 4.【答案】A【解析】∵(x −3)(x +2)>0, ∴A ={x|x <−2或x >3}(x −3)(x +2)>0的一个充分不必要条件为集合A 的真子集, 只要A.x ≥4是集合A 的真子集, 故选:A .利用充分条件必要条件与集合的关系求解.本题考查了解二次不等式,充分条件与必要条件与集合的关系,属于基础题. 5.【答案】C【解析】解:当x =0时,y =0−2sin0=0 故函数图象过原点, 可排除A又∵y′=12−2cosx故函数的单调区间呈周期性变化 分析四个答案,只有C 满足要求 故选:C .根据函数y =x 2−2sinx 的解析式,我们根据定义在R 上的奇函数图象必要原点可以排除A ,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论. 本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.6.【答案】B【解析】解:由题可知P =√0.5t 5730,即0.7=(12)t5730,两边取对数得t =5730×log 120.7=5730×lg0.7lg0.5=5730×lg7−1−lg2≈2949,故选:B . 根据P =√0.5t 5730,令P =0.7,然后解对数方程,同取对数可求出t 的值.本题主要考查了实际应用问题,以及解指数方程,同时考查了运算求解的能力,属于基础题. 7.【答案】B【解析】解:根据题意,不考虑限制条件,将5名医生志愿者需要分配到两家医院, 每名医生有2种分配方法,则5名医生有2×2×2×2×2=25=32种分配方法, 其中5人都去一家医院的情况有2种, 则有32−2=30种分配方法, 故选:B .根据题意,先用分步计数原理计算“将5名医生志愿者需要分配到两家医院”的全部分配方法数目,排除其中“5人都去一家医院”的情况,即可得答案.本题考查排列组合的应用,注意用间接法分析,避免分类讨论,属于基础题. 8.【答案】C【解析】解:由题意可得P(√a 83,a),Q 点坐标为√a 3),所以|AQ|+|CP|=√a 83√a3≥√2,当且仅当√a 83=a3,即a =2√2(a >1)时,取最小值.故选:C .由题意可得P(√a 83,a),Q 点坐标为√a 3),由基本不等式可得|AQ|+|CP|的最小值.本题考查基本不等式的应用,属于基础题.9.【答案】ABC【解析】解:对于A ,1月31日F 省新冠肺炎累计确诊病例为87,K 市为32,计算3287>13,所以A 正确; 对于B ,由折线图知,1月25日至2月12日F 省及该省K 市新冠肺炎累计确诊病例都呈递增趋势,B 正确; 对于C ,2月2日至2月10日F 省新冠肺炎累计确诊病例增加了213−116=97(例),所以C 正确; 对于D ,2月8日至2月10日该省K 市新冠肺炎累计确诊病例的增长为98−88=10(例), 2月6日至2月8日的增长为88−74=14(例),增长率是减小的,所以D 错误. 故选:ABC .根据频率分布折线图,结合题意对选项中的命题真假性判断即可.本题考查了频率分布折线图的应用问题,也考查了数据分析与判断问题,是基础题. 10.【答案】BC【解析】解:对于A :f(5π9)=2sin 11π6+1=0,不是最值,故x =5π9不是对称轴,A 错;对于B :最小正周期T =2π3,故B 正确;对于C :因为2sin(3×11π18+π6)=2sin2π=0,故(11π18,1)是对称中心,故C 正确;对于D :由x ∈[5π3,19π9],则令3x +π6=π2+kπ,k ∈Z ,解得x =5π3+π9时,该极值点落在x 的区间[5π3,19π9]内,故原函数在[5π3,19π9]上单调递增不成立,故D 错误.故选:BC .结合正弦型函数的图像特点与函数性质的联系,逐项判断即可. 本题考查了三角函数的图像与性质,属于中档题. 11.【答案】ACD【解析】解:如图1,a ,b ,c 可能两两垂直.如图2,a ,b ,c 可能两两相交;如图3,a ,b ,c 可能两两异面.故选:ACD .结合已知条件,画出图形判断选项的正误即可.本题考查空间直线与直线的位置关系的判断,是基础题. 12.【答案】AC【解析】解:对于A ,由题可知,F(c,0)不妨记l 1:y =ba x , 由l//l 1可得l 的方程为y =ba (x −c),与l 2的方程联立可解得x Q =c2,y Q =−bc2a ,即点Q(c2,−bc2a ), 对于y =ba (x −c),令x =0,可得y =−bca ,即点N(0,−bca ), 所以S △FOQ =12×c ×bc2a=bc 24a ,S △OQN =12×c 2×bc a=bc 24a,所以S △FOQ =S △OQN ,故A 正确;对于B ,设点M 的坐标为(x 0,y 0),则x 02a2−y 02b2=1,即b 2x 02−a 2y 02=a 2b 2, 所以M 到两条渐近线的距离之积为00√a 2+b 200√a 2+b 2=|b 2x 02−a 2y 02|a 2+b 2=a 2b 2a 2+b 2,因为T 的焦距为4,所以c =2,所以a 2b 2a 2+b 2=a 2b 24,因为4=a 2+b 2≥2ab ,所以ab ≤2,a 2b 2≤4,所以a 2b 2a 2+b 2=a 2b 24≤1,所以点M 到两条渐近线的距离之积的最大值为1,故B 错误; 对于C ,由FM ⃗⃗⃗⃗⃗⃗ =MQ⃗⃗⃗⃗⃗⃗⃗ ,得M 为QF 的中点,则x 0=c2+c 2=3c4,y 0=−bc2a 2=−bc4a,即点M(3c 4,bc4a ),代入曲线T 的方程得(3c 4)2a 2−(−bc 4a )2b 2=1,即c 2a 2=2,又c 2=a 2+b 2,所以a 2=b 2,所以a =b ,所以双曲线T 的渐近线方程为y =±x ,故C 正确; 由y =ba (x −c)与x 2a2−y 2b 2=1,得x M =c 2+a 22c,所以|FM||FQ|=x F −x M x F −x Q=c−c 2+a 22c c−c 2=1−1e 2∈[12,23],得e 2∈[2,3], 所以e ∈[√2,√3],故D 错误. 故选:AC .分别求出两个三角形的面积即可判断选项A ;求出M 到两条渐近线的距离之积为a 2b 2a +b,再证明a 2b 2a +b=a 2b 24≤1即可判断选项B ;求出a =b 即可判断选项C ;求出|FM||FQ|=1−1e 2,从而可求得e 的取值范围,即可判断选项D . 本题主要考查双曲线的性质,考查逻辑推理与数学运算能力,属于中档题. 13.【答案】5【解析】解:由于二项式(1+x)5的展开式的通项公式为T r+1=C 5r⋅x r ,r =0,1,…,5, 故展开式中含x 的项的系数是C 51=5, 故答案为:5.由题意利用二项展开式的通项公式,求得展开式中含x 的项的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.14.【答案】12【解析】解:因为数列{a n }为等差数列,故公差d =a 3−a 12=π6, 所以a 10=a 1+9d =π6+9×π6=5π3,所以cosa 10=cos 5π3=cos(2π−π3)=cos π3=12.故答案为:12.利用等差数列任意两项的关系,求出公差d ,然后求出a 10,再利用诱导公式以及特殊角的三角函数值求解即可. 本题考查了等差数列的通项公式的应用,三角函数诱导公式的应用,考查了逻辑推理能力与化简计算能力,属于基础题.15.【答案】4【解析】解:因为函数f(x)=|log 2x|,f(x 1)=f(x 2),可得|log 2x 1|=|log 2x 2|,所以−log 2x 1=log 2x 2, 可得x 1x 2=1,则1x 12+4x 22=x 1x 2x 12+4x 1x 2x 22=x2x 1+4x 1x 2≥2√x2x 1⋅4x 1x 2=4,当且仅当x 2=2x 1=√22时,取等号.故答案为:4.利用函数值相等,结合基本不等式求解最小值即可.本题考查函数的最小值的求法,基本不等式的应用,对数运算法则的应用,是中档题. 16.【答案】[√3,3]【解析】解:因为AC 、BC 与平面α所成的角分别为5π12,π4,且|AC|=2√3,|BC|=2, 则A 、B 分别在如图所示的两个不同的圆周上运动,当直线AC 、BC 与l 轴在同一平面内时,∠ACB 取到最大值和最小值, 于是π6≤∠ ACB ≤π3,所以sin π6≤sin∠ACB ≤sin π3,即12≤ sin∠ACB ≤√32,△ABC 的面积S =12⋅|AC|⋅|BC|⋅sin∠ACB =2√3sin∠ACB ,所以√3≤ S ≤3. 故答案为:[√3,3].先出得直线AC 、BC 成角的最小值与最大值,再由△ABC 的面积值判定取值范围. 本题考查了直线与平面的成角问题,考查了直线与平面的位置关系,属于中档题. 17.【答案】解:(1)设等差数列{a n }的首项为a 1,公差为d ,若选择条件①S 3=12,则由a 3=6,得{a 1+2d =63a 1+3×22d =12,解得a 1=2,d =2, 所以数列{a n }的通项公式为a n =2+2(n −1)=2n ,n ∈N ∗;若选择②a 2+a 4+a 6=24,则a 4=8,所以{a 1+2d =6a 1+3d =8,解得a 1=2,d =2,所以数列{a n }的通项公式为a n =2+2(n −1)=2n ,n ∈N ∗; (2)由(1)知,选择两个条件中的任何一个,都有a n =2n , 则b n =2a n +a n =22n +2n =4n +2n ,所以数列{b n }的前n 项和T n =(4+42+43+⋯+4n )+2(1+2+3+⋯+n)+2(1+2+3+⋯+n) =4(1−4n )1−4+2×n(n+1)2=13(4n+1−4)+n 2+n .【解析】(1)分别选择①②,根据等差数列的性质求出首项以及公差,进而可以求解;(2)由(1)求出b n 的通项公式,然后分组求和即可.本题考查了等差数列的通项公式以及分组求数列的前n 项和,考查了学生的运算能力,属于中档题.18.【答案】解:(1)∵△ABC 的面积S =√32ac ⋅cosB , 又S =12ac ⋅sinB ,∴√32ac ⋅cosB =12ac ⋅sinB ,即tanB =√3.∵B ∈(0,π),∴B =π3;(2)由题意得,a =2c ,b =√3,B =π3,∴由余弦定理b 2=a 2+c 2−2ac ⋅cosB ,得4c 2+c 2−4c 2cos π3=3,即c =1. 设边BC 与x 轴的交点为D ,则△ABD 为正三角形,∴λ=√32且AD =1.∴函数f(x)的最小正周期为2,则ω=2π2=π,∴f(x)=√32sin(πx +φ),又点B(13,√32)在函数f(x)的图象上,∴f(13)=√32sin(π3+φ)=√32,即sin(π3+φ)=1, ∴π3+φ=π2+2kπ,k ∈Z ,即φ=π6+2kπ,k ∈Z , 又0<φ<π2,∴φ=π6.故f(x)=√32sin(πx +π6).【解析】(1)由三角形的面积列式求得tanB =√3,进一步求得B =π3;(2)由题意结合余弦定理求得c =1,进一步求出B 的纵坐标,再求出周期,可得f(x)=√32sin(πx +φ),再由点B(13,√32)在函数f(x)的图象上求φ,则函数解析式可求.本题考查三角形的解法,考查y =Asin(ωx +φ)型函数的图象,考查运算求解能力,是中档题.19.【答案】解:(1)证明:因为平面PAB ⊥底面ABCD ,∠ABC =90°,所以BC ⊥平面PAB ,即BC ⊥AP ,又因为AP ⊥PB ,且PB ∩BC =B ,故A P ⊥平面PBC ,所以AP ⊥PC ;(2)解:过点P 作PM ⊥平面ABCD ,交AB 于M ,以M 为原点,在平面ABCD 中,过M 作AB 的垂线为x 轴,MB 为y 轴,MP 为z 轴,如图建系M −xyz ,则P(0,0,125),B(0,95,0),C(4,95,0),D(2,−165,0),则CB ⃗⃗⃗⃗⃗ =(−4,0,0),CD ⃗⃗⃗⃗⃗ =(−2,−5,0),CP ⃗⃗⃗⃗⃗ =(−4,−95,125) 设平面PDC 的法向量为m⃗⃗⃗ =(x,y,z), 则{CD ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =2x +5y =0CP ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ =20x +9y −12z =0,取x =30,得m ⃗⃗⃗ =(30,−12,41) 设直线CB 与平面PCD 所成角为θ,则sinθ=|cos <CB ⃗⃗⃗⃗⃗ ,m ⃗⃗⃗ >|=|CB ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||CB ⃗⃗⃗⃗⃗ |⋅|m ⃗⃗⃗ |=6√109109, 即直线CB 与平面PCD 所成角的正弦值为6√109109.【解析】(1)推导出BC ⊥平面PAB ,BC ⊥AP ,AP ⊥PB ,从而AP ⊥平面PBC ,由此能证明AP ⊥PC ;(2)过点P 作PM ⊥平面ABCD ,交AB 于M ,以M 为原点,在平面ABCD 中,过M 作AB 的垂线为x 轴,MB 为y 轴,MP 为z 轴,建系M −xyz ,利用向量法能求出直线CB 与平面PCD 所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)根据频率分布直方图可得各组的频率为:(0,10]的频率为:0.010×10=0.1,(10,20]的频率为:0.020×10=0.2,(20,30]的频率为:0.030×10=0.3,(30,40]的频率为:0.025×10=0.25,(40,50]的频率为:0.015×10=0.15, 所以所抽取的100包速冻水饺该项质量指标值的样本平均数x −为:x −=5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.(2)①∵Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,P(2.6<Z <50.4)=P(26.5−2×11.95<Z <26.5+2×11.95)=0.9544,∴Z 落在(2.6,50.4)内的概率是0.9544.②根据题意得每包速冻水饺的质量指标值位于(10,30)内的概率为0.2+0.3=0.5,∴X ~B(4,12),X 的可能取值分别为:0,1,2,3,4,P(X =0)=C 40(14)4=116, P(X =1)=C 41(14)4=14,P(X =2)=C 42(14)4=38,P(X =3)=C 43(14)4=14, P(X =4)=C 44(14)4=116,∵X ~B(4,12),∴E(X)=4×12=2.【解析】(1)根据频率分布直方图的性质能求出所抽取的100包速冻水饺该项质量指标值的样本平均数.(2)①Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,由此能求出Z 落在(38.45,50.4)内的概率.②根据题意得每包速冻水饺的质量指标值位于(10,30)内的概率为0.2+0.3=0.5,X ~B(4,12),由此能求出X 的分布列和数学期望及方差.本题考查平均数的求法,考查离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、正态分布、二项分布等基础知识,考查运算求解能力,属于中档题.21.【答案】解:(1)由题{b 2+c 2=a 2c a =124a 2+9b 2=1⇒{a =4b =2√3c =2, 所以C 的标准方程为x 216+y 212=1. (2)若直线MN 斜率不存在,设M(x 0,y 0),N(x 0,−y 0),则{x 0216+y 0212=1y 0−3x 0−2+−y 0−3x 0−2=−3⇒{x 0=4y 0=0,此时M ,N 重合,舍去. 若直线MN 斜率存在,设MN :y =kx +t ,M(x 1,y 1),N(x 2,y 2),联立{x 216+y 212=1y =kx +t 得(4k 2+3)x 2+8ktx +4t 2−48=0,所以x 1+x 2=−8kt 4k 2+3,x 1x 2=4t 2−484k 2+3, 由题y 1−3x 1−2+y 2−3x 2−2=−3,即kx 1+t−3x 1−2+kx 2+t−3x 2−2=−3,化简得(2k +3)x 1x 2+(t −2k −9)(x 1+x 2)−4t +24=0,因此(2k +3)4t 2−484k 2+3+(t −2k −9)(−8kt4k 2+3)−4t +24=0,化简得8k 2+6kt +t 2−8k −t −6=0,即(2k +t −3)(4k +t +2)=0,若2k +t −3=0,则t =−2k +3,直线MN 过点A(2,3),舍去,所以4k +t +2=0,即t =−4k −2,因此直线MN 过点P(4,−2),又点B(4,0),所以点B 到直线MN 距离最大值即BP =2,此时MN :y =−2,符合题意,所以点B 到直线MN 距离最大值为2.【解析】(1)利用已知条件列出方程组{b 2+c 2=a 2c a =124a 2+9b 2=1⇒{a =4b =2√3c =2,求解a 、b ,即可得到椭圆方程. (2)若直线MN 斜率不存在,验证求解即可.若直线MN 斜率存在,设MN :y =kx +t ,M(x 1,y 1),N(x 2,y 2),联立{x 216+y 212=1y =kx +t,得(4k 2+3)x 2+8ktx +4t 2−48=0,利用韦达定理,结合斜率关系,推出t =−2k +3,直线MN 过点A(2,3),舍去,t =−4k −2,说明直线MN 过点P(4,−2),然后求解点B 到直线MN 距离最大值. 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 22.【答案】(1)解:函数f(x)=e x −ax −1,所以f′(x)=e x −a ,故f′(1)=e −a ,因为曲线y =f(x)在点(1,f(1))处的切线于x 轴平行,所以f′(1)=e −a =0,解得a =e ;(2)解:因为g(x)>k x+1−1x (k >0)在(0,+∞)上恒成立,即1+ln(1+x)x >k x+1在(0,+∞)上恒成立,即k <(x+1+(x+1)ln(x+1)x )min ,x ∈(0,+∞),设ℎ(x)=x+1+(x+1)ln(x+1)x , 则ℎ′(x)=x−1−ln(x+1)x 2,x >0,令r(x)=x −1−ln(x +1), 则r′(x)=1−1x+1=x x+1>0,x >0,故r(x)在(0,+∞)上为增函数,又r(2)=1−ln3<0,r(3)=2−2ln2>0,故存在唯一的实数根a ,满足r(a)=0且a ∈(2,3),其中r(a)=a −1−ln(a +1)=0,当x >a 时,r(x)>0,ℎ′(x)>0,当0<x <a 时,r(x)<0,ℎ′(x)<0,故函数ℎ(x)在(0,a)上单调递减,在(a,+∞)上单调递增,故ℎ(x)的最小值为ℎ(a)=a+1+(a+1)ln(a+1)a ,因为r(a)=a −1−ln(a +1)=0,且a ∈(2,3),所以a −1=ln(a +1),故ℎ(x)的最小值为ℎ(a)=a +1∈(3,4),所以k ≤ℎ(a)∈(3,4),又k′为正整数,故k ∈{1,2,3}.(3)证明:由(2)可知,ℎ(x)=x+1+(x+1)ln(x+1)x >3,(x >0), 所以ln(x +1)>2x−1x+1=2−3x+1,令x =n(n +1),则有ln[1+n(n +1)]>2−3n(n+1)+1>2−3n(n+1)=2−3(1n −1n+1),所以lm(1+1×2)+ln(1+2×3)+⋯+ln[1+n(n +1)]=2−3(1−1)+2−3(1−1)+⋯+2−3(1−1) =2n −3(1−1n+1)>2n −3,故∑ln n i=1[1+i(i +1)]>2n −3.【解析】(1)利用导数的几何意义得到f′(1)=0,求解即可得到a 的值;(2)利用参变量分离法将不等式转化为k <(x+1+(x+1)ln(x+1)x )min ,x ∈(0,+∞),然后构造函数ℎ(x)=x+1+(x+1)ln(x+1)x ,利用导数研究函数ℎ(x)的性质,进而分析求出k 的取值范围,从而得到答案.(3)利用(2)的结论得到以ln(x +1)>2x−1x+1=2−3x+1,再令x =n(n +1),然后利用不等式的放缩法以及裂项相消法求和进行分析求解,即可证明.本题考查了导数的综合应用,考查了导数几何意义的理解和应用,利用导数研究函数的性质,利用导数研究不等式恒成立问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围,属于难题.。
2019—2020学年度高三校际联合考试
数学
2020.01
一、单项选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}
221,0,1,2=1A B x x A B =-->⋂=,,,则A .{}0B .{}2C .{}22-,D .{}
11x x x <->或2.已知复数z 满足31z i -=-(i 为虚数单位),则复数z 的模为
A .2
B
C .5D
3.如图,《九章算术》中记载了一个“折竹抵地”问题:今
有竹高一丈,末折抵地,去本三尺,问折者高几何?意思
是:有一根竹子原高一丈(一丈=10尺),现被风折断,尖
端落在地上,竹尖与竹根的距离三尺,问折断处离地面的
高是
A .2.55尺
B .4.55尺
C .5.55尺
D .6.55尺
4.函数()312x f x x ⎛⎫=- ⎪⎝⎭
的零点所在区间为A .()
1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .(1,2)5.三个数0.870.87,0.8log 7,
的大小关系为A .70.80.8log 70.87
<<B .0.870.8log 7<7<0.8C .70.80.80.87log 7<<D .0.870.870.8log 7
<<6.两个实习生每人加工一个零件,加工为一等品的概率分别为
5364和,两个零件是否加工为一等品互不影响,则这两个零件中恰有一个一等品的概率为
A .1
2B .1
3C .5
12D .1
6
7.设a ,b 是非零向量,则“2a b =”是“
a b a b =”成立的A .充要条件
B .充分不必要条件
C .必要不充分条件
D .既不充分又不必要条件
8.已知四棱锥P ABCD -的体积是,底面ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为
A .
B
C
D .二、多项选择题:本题共4小题,每小题5分,共20分。
在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分。
9.在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是
A .
sin tan ααB .cos sin αα-C .sin cos ααD .sin cos αα
+10.某大学进行自主招生测试,需要对
逻辑思维和阅读表达进行能力测试.学
校对参加测试的200名学生的逻辑思维
成绩、阅读表达成绩以及这两项的总成
绩进行了排名.其中甲、乙、丙三位同
学的排名情况如图所示,下列叙述正确
的是
A .甲同学的逻辑思维成绩排名比他的
阅读表达成绩排名更靠前
B .乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前
C .甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前
D .甲同学的总成绩排名比丙同学的总成绩排名更靠前
11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则
A .函数()y f x =是周期函数
B .函数()y f x =的图象关于点()1,0-对称
C .函数()y f x =为R 上的偶函数
D .函数()y f x =为R 上的单调函数
12.过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M 为线段AB 的中点,则
A .以线段A
B 为直径的圆与直线y 轴相离
B .以线段BM 为直径的圆与y 轴相切
C .当922
AF FB AB == 时,D .AB 的最小值为4
二、填空题:本题共4小题,每小题5分,共20分。
13.已知sin cos tan 3sin cos ααααα
-=+,则的值为__________.。