基于Inventor 2009的盘形凸轮轮廓设计
- 格式:pdf
- 大小:489.86 KB
- 文档页数:3
基于Autodesk Inventor的共轭凸轮设计与运动仿真笔者结合工作中的实际案例——一位使用Inventor产品多年的印刷机械设备用户,困惑于如何借助3D软件提升设计能力——分析其设计难题,例如比较普遍的凸轮设计问题,其中一个共轭凸轮的机构设计尤为难以实现。
本文就是基于解决用户共轭凸轮设计难题的真实案例,介绍了借助Autodesk Inventor设计共轭凸轮的方法及思路。
一、设计要求用户设计某胶订机,其中一台设备使用到一对共轭凸轮,其中一个凸轮是顶升凸轮,带动机构在垂直方向运动,另一个凸轮带动一个连杆机构,连杆机构的末端带动一个滑块做水平运动,机构简图如图1。
T形结构FF’E中,端点E与凸轮1的从动件连结,连杆AB的端点A 连接在滑块上,沿FF’平面做水平往复运动,连杆BCD绕C点转动,D点与凸轮2从动件连结,凸轮1和凸轮2绕同一根轴旋转。
1.凸轮1(垂直运动)盘式顶升凸轮(沟槽)做垂直方向往复运动。
凸轮基圆半径为50mm,凸轮升程为30mm,带动T形结构做垂直方向运动,其在一个周期内的运动规律如表所示。
2.凸轮2(水平运动)凸轮驱动连杆机构运动,连杆机构的末端连结到一个滑块,滑块的设计要求为一个往复行程为400mm,为配合机构的运动要求,其速度按照如图2所示规律运动。
本文重点在于说明设计的思路,对于机构的具体尺寸以及系统转速等不做说明,上述的设计参数也仅作示意,不代表实际设计数值。
二、设计分析常见的凸轮形式,包括线性凸轮、盘式凸轮及圆柱凸轮三大类,很多CAD软件没有直接提供凸轮设计工具,需要用户去创建凸轮的轮廓线(通过创建公式曲线,以数据点拟合样条曲线),而轮廓的几何外形仅仅表达了凸轮的位移变化,还无法满足对凸轮性能分析的需求(速度曲线、加速度曲线和压力角变化等)的分析,造成用户设计效率低下,凸轮优化困难。
Inventor凸轮设计模块集凸轮设计、计算校验于一身,支持上述三种凸轮,其自带了多达13种拟合函数,最高支持七阶多项式,无需用户推导解析函数,即能生成高质量的凸轮轮廓。
偏置盘型凸轮创新课程设计课程名称:机械原理设计题目:偏置盘型凸轮设计院系:机电学院班级: 09机41设计者:彭辉学号: 09294040指导教师:王卫辰学校:江苏师范大学前言凸轮轮廓曲线的设计,一样可分为图解法和解析法.利用图解法能比较方便地绘制出各类平面凸轮的轮廓曲线.但这种方式仅适用于比较简单的结构,用它对复杂结构进行设计那么比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能知足设计要求.解析法能够依照设计要求,通过推导机构中各部份之间的几何关系,成立相应的方程,精准地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精准地绘制出来.可是,当从动件运动规律比较复杂时,利用解析法取得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了壮大的矩阵处置和画图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简练直观,操作简易,人机交互性能好,且能够方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路口。
因此,基于MATLAB软件进行凸轮机构的解析法设计,能够解决设计工作量大的问题。
本此课程设计基于MATLAB软件进行凸轮轮廓曲线的解析法设计,并对的运动规律凸轮进行仿真,其具体方式为第一精准地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线和推杆的位移、速度及加速度曲线和仿真。
目录前言 1第一章:工作意义 31.1本次课程设计意义31.2 已知条件4第二章:工作设计进程 5 2.1:设计思路 5 2.2:滚子从动件各个时期相关方程 6 2.3:盘型凸轮理论与实际轮廓方程 7第三章:工作程序进程 7 3.1:滚子从动件各各时期MATLAB程序编制 8 3.2:凸轮的理论实际运动仿真程序编制 12 第四章:运行结果 17 4.1:滚子运动的位移图 17 4.2:滚子运动的速度图 17 4.3:滚子运动的加速度图,局部加速度图 18 4.4:滚子运动的仿真图 19 4.5:滚子运动的理论与实际轮廓图 20第五章:设计总结 21 5.1:总结 21第六章:参考文献 22 6.1:参考文献 22第一章:工作意义1.1本次课程设计意义凸轮是一个具有曲线轮廓或凹槽的构件,一样为主动件,作等速回转运动或往复直线运动。
基于Inventor的凸轮轮廓参数化设计及性能分析作者:金兴伟石存秀侯玉荣来源:《十堰职业技术学院学报》2012年第01期[摘要]通过分析凸轮从动件的运动规律,利用Inventor软件设计凸轮轮廓,并根据生成的位移、速度、加速度曲线图判断凸轮轮廓曲线性能的优劣。
该方法融合了图解法和解析法两者的优点,使得凸轮轮廓曲线设计更为简便、精确,对缩短设计周期以及后续凸轮数控加工都有着重要的实际意义。
[关键词]Inventor;凸轮轮廓;参数化;性能分析[中图分类号]TH122[文献标识码]A[文章编号]1008-4738(2012)01-0101-03凸轮机构结构简单、紧凑,只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,因此在自动机床、轻工机械、纺织机械、印刷机械、食品机械、包装机械和机电一体化产品中得到广泛应用。
其设计方法主要有图解法和解析法。
图解法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,故按图解法所得的凸轮轮廓在加工方面比较困难。
解析法精度高,能够精确计算出凸轮轮廓曲线和刀具运动轨迹上各点的坐标值,方便在数控机床上加工,但计算繁杂。
利用Inventor软件的参数化设计功能,则可将上述两种方法进行优化组合,从而实现既简单又精确的目标,同时输出位移、速度及加速度曲线,由此分析凸轮轮廓曲线动态性能。
凸轮轮廓设计完成之后可以导出设计所得的数据,方便数控加工。
本文将通过Inventor软件介绍按从动件的运动规律设计盘形凸轮轮廓的方法。
1.盘形凸轮机构的设计条件及要求从动件在推程过程中作等加速等减速运动,在回程过程中作简谐运动,凸轮转向为逆时针方向,设计参数见表1。
2.参数化设计过程参数化设计就是以其强有力的尺寸驱动修改模型,为初始产品设计、产品建模和修改系列产品设计提供有效手段,同时可满足设计具有相同或相近几何拓扑结构的工程系列产品及相关工艺装备的需要。
2.1基本参数的输入打开Inventor软件,新建零部件后进入“设计”界面,选择“盘形凸轮生成器”,在相应的对话框中输入凸轮设计的基本参数,如图1所示。
基于Autodesk Inventor的共轭凸轮设计与运动仿真笔者结合工作中的实际案例——一位使用Inventor产品多年的印刷机械设备用户,困惑于如何借助3D软件提升设计能力——分析其设计难题,例如比较普遍的凸轮设计问题,其中一个共轭凸轮的机构设计尤为难以实现。
本文就是基于解决用户共轭凸轮设计难题的真实案例,介绍了借助Autodesk Inventor设计共轭凸轮的方法及思路。
一、设计要求用户设计某胶订机,其中一台设备使用到一对共轭凸轮,其中一个凸轮是顶升凸轮,带动机构在垂直方向运动,另一个凸轮带动一个连杆机构,连杆机构的末端带动一个滑块做水平运动,机构简图如图1。
T形结构FF’E中,端点E与凸轮1的从动件连结,连杆AB的端点A 连接在滑块上,沿FF’平面做水平往复运动,连杆BCD绕C点转动,D点与凸轮2从动件连结,凸轮1和凸轮2绕同一根轴旋转。
1.凸轮1(垂直运动)盘式顶升凸轮(沟槽)做垂直方向往复运动。
凸轮基圆半径为50mm,凸轮升程为30mm,带动T形结构做垂直方向运动,其在一个周期内的运动规律如表所示。
2.凸轮2(水平运动)凸轮驱动连杆机构运动,连杆机构的末端连结到一个滑块,滑块的设计要求为一个往复行程为400mm,为配合机构的运动要求,其速度按照如图2所示规律运动。
本文重点在于说明设计的思路,对于机构的具体尺寸以及系统转速等不做说明,上述的设计参数也仅作示意,不代表实际设计数值。
二、设计分析常见的凸轮形式,包括线性凸轮、盘式凸轮及圆柱凸轮三大类,很多CAD软件没有直接提供凸轮设计工具,需要用户去创建凸轮的轮廓线(通过创建公式曲线,以数据点拟合样条曲线),而轮廓的几何外形仅仅表达了凸轮的位移变化,还无法满足对凸轮性能分析的需求(速度曲线、加速度曲线和压力角变化等)的分析,造成用户设计效率低下,凸轮优化困难。
Inventor凸轮设计模块集凸轮设计、计算校验于一身,支持上述三种凸轮,其自带了多达13种拟合函数,最高支持七阶多项式,无需用户推导解析函数,即能生成高质量的凸轮轮廓。
本文档下载自文库下载网,内容可能不完整,您可以点击以下网址继续阅读或下载:/doc/0a9c0aa6c77da26925c5b070.html盘型凸轮轮廓曲线参数化设计系统的开发盘型凸轮轮廓曲线参数化设计系统的开发第34卷第8期文章编号:1004—2539(2010)∞一0029一∞盘型凸轮轮廓曲线参数化设计系统的开发盘型凸轮轮廓曲线参数化设计系统的开发王林艳沈云波李少康(西安工业大学机电工程学院,陕西西安710032)摘要盘形凸轮轮廓曲线是复杂的非圆平面曲线,为高效、精确的实现其设计自动化,利用Auto.om二次开发功能,开发了界面友好、扩展性强的盘形凸轮轮廓曲线参数化设计系统,实现了参数的输入、参数合理性校核、设计计算及绘图输出等功能。
依据凸轮设计理论,研究了参数校核方法,导出了按照要求的曲线拟合精度确定步长值的算法。
最后以偏置直动滚子推杆盘型凸轮轮廓曲线为例对系统进行了测试和验证,并给出了运行结果。
关键词盘形凸轮参数化设计vi蚍alKspDcL曲线拟合DevelO畔ntofPa翰m矧翻ti伽D吲驴S0:‟诅refor也emmeCuⅣeof恤Di∞C锄shenYunb0“Shaokang(ScI?ool0fMeclla虮Hlic脚eerillg,)(i’舯R:cllmlo影Univ洲ty,)(i’跚710032,C卫li眦)0ftlleWangUIly锄自哪is瞅dized胡&tiVeIycunredisc锄isasonofnon—rourldc0Ⅱll舨cllI、re.Its伽训iIlg0ftllelerlg出fbrandacc锄lcelybytIlesecondaI)rdevehDpI胁entof:///doc/0a9c0aa6c77da26925c5b070.htmlarcunepa脚neterizedd豁ignsys-AutIDCAD.’nle缸endlyime而ce锄ddleexte璐ibili哆systemofdiscete瑙inpm,tIlep吸m烈e塔check,d伪igncalc心onarIddl_a=wingo呻utcheckisres朗IcIledarldpa脚_Iletrizationdesi驴isdevel叩ed,andthemctionofaredisc咖,t王lemetllodf.ortIle耻IrameterstIle舀venfittingprecisionisthe蛔tllmtlleprofileIeal捌.Acc优dingto山eofp咖?designmeoryofdiscIe鹅onablest印ecIuc捌.FiIlaIlly,tlle枷hgm】崎pushillgKeywordshris惜edtoDisc锄Parar瞅riz撕0nveri匆t}lesys胁锄ddesi印tlle咖ltisshown.e)r舢pleoncuIvec锄埘tIlo任幽昀璐-VisualU叩DCLCun圯fitting0引言盘型凸轮机构可以实现多种复杂的运动,在各种机械,特别是自动机械中有着广泛应用。
设计盘形凸轮的轮廓时常用的方法设计盘形凸轮的轮廓时常用的方法可以说是机械工程设计中非常重要的一环。
盘形凸轮是一种机械传动装置,通过其轮廓形状的设计,可以实现不同的轴向位移或转矩传递。
在实际工程设计中,常用的方法有很多种,包括基本轮廓设计、轮廓修正、尺寸计算等。
在本文中,我将简要介绍一些设计盘形凸轮的轮廓时常用的方法,并共享一些个人观点和理解。
一、基本轮廓设计1. 根据运动要求:设计盘形凸轮的首要任务是要根据运动规律和要求确定轮廓形状。
不同的运动要求可能会对轮廓形状有不同的要求,比如有些情况需要正弧,有些情况需要余弦曲线。
在设计之初需要首先明确轮廓的基本形状。
2. 考虑受力情况:在确定基本轮廓形状之后,需要考虑受力情况,根据承受的载荷确定凸轮的弧形和高度的比例关系,以保证凸轮在工作时能够承受所需的载荷并保持安全。
二、轮廓修正1. 加工余量考虑:设计盘形凸轮的轮廓时,需要考虑到加工余量,尤其是在实际加工中难免会有一些误差,因此需要对轮廓进行适当的修正,以保证在加工后能够满足实际的使用要求。
2. 润滑和磨损:凸轮在工作时需要不断地与其他机械零部件接触,因此轮廓设计时需要考虑到润滑和磨损的情况,尽量减小接触面积,以降低摩擦,延长零部件的使用寿命。
三、尺寸计算1. 轴向位移和转矩传递计算:设计盘形凸轮的轮廓时需要考虑到其在工作时的轴向位移和转矩传递情况,通过相关的尺寸计算,可以确定每个点的坐标和曲线的方程,从而实现所需的运动规律。
2. 运动学分析:在进行尺寸计算时,还需要进行运动学分析,确定凸轮与从动件之间的相对运动情况,保证从动件能够按照设计要求作出相应的运动。
总结和回顾设计盘形凸轮的轮廓时常用的方法包括基本轮廓设计、轮廓修正和尺寸计算。
在实际设计中,需要根据具体的运动要求和受力情况进行综合考虑,保证设计的轮廓能够满足实际的使用要求。
还需要考虑加工余量、润滑和磨损情况,以及进行相关的尺寸计算和运动学分析。
课前提问: 1、等速运动规律
2、等加速运动规律
新授:
一、作图原理
反转法:在整个机构上加上一个反转的角速度,机构中的各件的相对运动不变,凸轮不动,从动件一方面绕圆心作–ω,另一方面在自己的导路中按预定的规律运动。
尖顶的轨迹就是凸轮的轮廓。
二、作图
1、尖顶对心移动从动件盘形凸轮
(1)、选取适当比例尺作位移线图和基圆
(2)、作位移线图和基圆取分点保持等分角度一致
(3)、沿导路方向量取各点的位移量
(4)、光滑连接各点,形成轮廓曲线
对心移动从动件盘形凸轮轮。
本科生毕业设计(论文)( 2015 届)学生姓名院(系)湖北理工学院独立本科段专业机电一体化工程学号导师论文题目盘形凸轮轮廓曲线的设计目录第1章绪论 (7)1.1 凸轮机构的概述 (7)1.2 研究背景 (7)1.3 研究内容和意义 (8)第2章从动件运动规律 (9)2.1 等速运动规律 (9)2.2 等加速等减速运动规律 (10)2.3 余弦加速度(简谐)运动规律 (12)第3章盘形凸轮机构的类型分析 (14)3.1 对凸轮的类型分析 (14)3.2.对从动件分析 (15)3.3 对运动形式的分析 (15)第4章盘形凸轮的设计方法 (18)4.1 盘形凸轮轮廓设计方法的确定 (18)4.2 盘形凸轮轮廓曲线的分析 (18)4.3 五种盘形凸轮机构的轮廓曲线 (22)第5章凸轮机构设计中应该注意的几个问题 (26)5.1 滚子半径的选择 (26)5.2 压力角的校验 (26)5.3 基圆半径对凸轮半径的影响 (28)5.4 凸轮机构的材料 (29)第6章前景展望 (30)致谢 (32)参考文献 (33)盘形凸轮轮廓曲线设计【摘要】盘形凸轮是具有曲线轮廓或沟槽的构件,当它运动时,通过其上的曲线轮廓与从动件的高副接触,使从动件获得预期的运动。
它由凸轮、从动件、机架组成。
由于盘形凸轮机构结构简单、紧凑,设计方便,只需设计适当的凸轮轮廓,便可以使从动件实现预期运动规律。
因此盘形凸轮机构广泛的应用于各种机械和自动控制装置中。
本设计是为了总结出盘形凸轮机构轨迹综合的理论基础,从而指导不同类型盘形凸轮机构的轮廓曲线设计;深入研究盘形凸轮机构轮廓曲线设计,从而指导实践。
改变以往单纯手工计算、手工绘图,减少了劳动力,提高了生产效率!而本盘形凸轮轮廓曲线的设计是为了提高盘形凸轮的运动精度,满足从动件的运动规律的情况下孕育而成的。
本文从章盘形凸轮轮廓曲线设计方案的确定为切入点,介绍各种盘形凸轮轮廓曲线设计的具体设计步骤,最后得出结论。
对心尖顶凸轮机构凸轮机构的工作过程
教学过程及内容
反转法画凸轮的原理
对应转角的基圆向径上描点,光滑连接所描各点即得轮廓曲
一般长度比例为1mm/5mm或,前者用于较大凸轮,后者用于较小凸轮;角度比
长度比例与角度比例的大小无关。
(温馨提示:比例越大,作图越准确。
)
凸轮的位移曲线
教学过程及内容
远停程和近停程对应的凸轮轮廓半径不变;
从动件有位移则说明凸轮轮廓半径有变化;
要使轮廓半径发生变化,在取各点时就应延长各相反方向基圆半径的基础上加上各段对应位移。
对心滚子移动从动件盘形凸轮
第三关:拓展训练,闯过此关的学生再加
项目条件:选择有较高难度的偏置尖顶(或偏置滚子)移动从动件盘形凸轮的画法作为拓展训练事体,学生只要做其中一个,总分即为120
拓展试题:一偏置尖顶(或偏置滚子)移动从动件盘形凸轮机构,凸轮的基圆半径
偏置尖顶移动从动件盘形凸轮
九、板书设计
十、座位编排
十、教学后记
1、从作业情况看,学生的自学能力较强,因第十题为“摆动滚子从动件盘形凸轮的绘制”,0832班有5人没有做对该题,0835班有3人,原因是学生对此类型凸轮机构的理解还欠缺,以及在课堂上没有接触过这种类型的作图。
2、附近农村学生做的几种移动从动件盘形凸轮机构的模型能正常工作,制作效果好。
附件1 学生自评用表
附件2 作品展示顺序表。