北师大版初中七年级数学上册第5章第4节应用一元一次方程——打折销售教案
- 格式:doc
- 大小:400.00 KB
- 文档页数:2
数学初一北师大版必修,第5章第4节《应用一元一次方程—打折销售》一、课题:应用一元一次方程—打折销售二、教材分析:本节课是北师大版初一数学第五章第4节,是本章的重点和难点之一,共一课时。
本节课以“打折销售问题”为例展开探索,关键在于搞清成本、售价、标价、利润、利润率等术语的含义,分析“打折销售问题”中的数量关系,建立数学模型,用方程最终解决实际问题,使学生进一步领悟到方程解实际问题的关键是找到“等量关系”。
由于打折销售问题是学生日常生活中常见的问题,可以在课前安排学生进行一次社会调查,让学生深入商店,感受有关打折销售的现实情景,了解成本、售价、标价、利润、利润率等之间的关系,同时由于此类问题所涉及的数量关系及数据较复杂,在讨论数量关系的过程中,学生可能会遇到困难,教师可以出示常用公式:利润=售价-成本,利润率=利润÷本金等,帮助学生分析和找到等量关系,然后引导学生列出方程。
同时,要求学生在解决问题的过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系,感受成功,增强自信。
三、学情分析:有关打折销售的实际应用问题学生在生活中接触过,在小学的学习中也有初步认识,只是在解法上仅限制用算术方法解,对于运用方程解这类问题还是第一次。
同时,因为打折销售是新教材在一元一次方程的应用中新增加的内容,是发生在学生身边的事情,学生对此的兴趣是很高的,但亲自经历打折销售的往往是少数学生,因此,本节采用小组自主探究课堂教学体系进行教学设计,通过提前让学生进行调查,然后给他们一定的时间和空间进行讨论、交流、质疑,从而达到教学任务、形成能力的目的。
四、教学目标:知识与能力:能力目标: 1、灵活应用一元一次方程解决实际问题的一般步骤。
2、能列出一元一次方程解决打折销售问题。
知识目标:了解销售问题,掌握利润、成本、售价之间的数量关系并识记这些公式。
公式:①商品打x 折出售:是按标价的10x出售。
4 应用一元一次方程——打折销售1.理解成本、售价、利润、利润率之间的关系.2.会列一元一次方程解决有关商品打折销售的问题.重点理解售价、成本、利润、利润率之间的关系.难点列一元一次方程解决有关商品打折销售的问题.一、复习导入教师:列方程解决实际问题的关键是什么呢?学生回答,教师点评.教师:今天,我们学习一元一次方程的一个应用——打折销售.二、探究新知课件出示问题:商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%;另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?教师提示:如果进价大于售价就亏损,反之就盈利.要求学生列出方程,写出解题过程.教师点评,并讲解:本题中,设盈利25%的那件衣服的进价是x元,它的利润就是0.25x元,根据进价+利润=售价,列出方程x+0.25x=60.由此得x=48.类似地,可以设另一件衣服的进价为y元,它的利润是-0.25y元,列出方程y-0.25y =60.由此得y=80.两件衣服的进价是x+y=128元,而两件衣服的售价是60+60=120元,进价大于售价,由此可知卖这两件衣服总共亏损8元.课件出示练习:在商品市场经常可以听到小贩的叫卖声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利2元卖了,他还能获利20%,求一个玩具赛车的进价是多少元?要求学生独立思考后列出方程汇报答案,教师点评.教师:在打折销售问题中的利润、利润率、成本、售价之间有怎样的关系?引导学生得出等量关系:①利润=售价-成本;②利润率=利润成本×100%.教师:通过上面的讲解和练习,你能总结出列一元一次方程解决实际问题的步骤吗?引导学生总结:①分析问题,找出等量关系式;②列出方程,求出方程的解;③验证方程的解是否合理.三、举例分析例(课件出示教材第146页例题)要求学生独立完成后汇报答案,教师点评.四、练习巩固1.教材第146页“随堂练习”.2.某服装店以135元的价格卖出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这两件衣服的成本价会一样吗?算一算.五、小结1.通过本节课的学习,你有什么收获?2.成本、售价、利润、利润率之间有怎样的关系?3.列一元一次方程解实际问题的步骤有哪些?六、课外作业教材第146页习题5.7第1~4题.本节课是对前面所学的一元一次方程的一个应用——打折销售.对于打折问题,学生在小学阶段已有所接触和认识,本节课是进一步地延伸此知识.在教学过程中,通过由具体实例的分析、思考与合作学习的过程培养学生理论联系实际的辩证唯物主义思想以及善于分析问题、利用知识解决实际问题的良好学习习惯.根据具体问题中的数量关系,形成方程的模型,初步培养学生利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,让学生学会在活动中与他人合作,并能与他人交流思维的过程与结果.调动学生学习的积极性和主动性,充分体现“自主、合作、交流、探究”的新课程理念.。
5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
5.4 应用一元一次方程——打折销售1.能列出一元一次方程解决打折销售问题.2.了解用一元一次方程解决实际问题的一般步骤.3.进一步建立运用方程解决实际问题的过程,培养逻辑思维能力.一、情境导入1.展示日常生活中的销售实例,学生回忆知识.打折后的商品售价=商品的原标价×折扣数.2.展示常用数量关系:①利润=售价-进价;②利润率=利润/进价×100%;③利润=进价×利润率;④售价=进价+利润=进价+进价×利润率.二、合作探究探究点一:求成本价一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?解析:先用成本价表示出标价,然后根据等量关系:标价×80%=60,列出方程即可.解:设这批夹克每件的成本价为x元,则标价为(1+50%)x元.根据题意,得(1+50%)x·80%=60.解得x=50.答:这批夹克每件的成本价是50元.方法总结:按标价8折出售即按标价的80%出售.探究点二:求折扣书店里每本定价10元的书,成本是8元.为了促销,书店决定让利10%给读者,问该书应打多少折?解析:本题中的利润为10-8=2(元),因为让利10%给读者,所以书店的利润为(1-10%)×2(元),此时的售价为(10×折扣)元.根据商品利润=商品售价-商品进价,就能建立起方程.解:设该书应打x折,根据题意,得10×x10-8=(10-8)×(1-10%). 解得x=9.8.答:该书应打九八折.方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.。
4 应用一元一次方程——打折销售这节课是北师版七年级上第五章第四节的内容,前面已经完成了一元一次方程定义和解法的初步学习,同学们会解方程,能对简单的实际问题建立方程模型,上节课在等积变换问题上应用了列表的方法分析等量关系,学生已经积累了部分活动经验,这节课的学习进一步强化学生的建模意识,能从实际问题中理清数量关系,能把具体情景中等量关系找出来,教学的重点就是列方程,感受方程在解决实际问题中的有效模型作用,难点就是理清销售问题中数量关系,突破难点的手段就是运用合适的方法辅助分析数量关系,让学生感悟各个量之间的关联,同时进一步积累活动经验,提升解决实际问题的能力。
让学生了解商品标价、进价、售价等概念,掌握他们之间的关系,通过商场体验、情景模拟等方式方法感悟概念的内涵,体验商品交易过程中的数学背景,探究商品交易过程中的数学原理,感悟方程建模在实际生活中的有效模型作用,通过合作交流互助,积累活动经验,提升概括销售问题数量关系的能力,进一步建立合作的能力和意识。
学生积累的经验还是很少的,很多概念很生疏,比如标价和售价,利润和利润率等等,概念比较多,开始几个可能还比较容易理解,一旦混在一块,估计很多孩子就会理不清楚,第二就是具体到列方程的过程,如何找关键语句,如何将关键语句数学化数量化,如何清晰的表述他们之间的关系,这些都是教学中会遇到的问题,可以借助上节课的列表分析,课本是用填空的形式把数量一一拽出来,化繁为简,一步一理,分解难点,第一个例题我也想这样,搞清楚了数量关系,其他就好办了,通过两个变式进行强化,最后进行方法的提炼,化解难点,肯定还有生活经验不足的孩子理解有困难,我想课后再组织一次我做推销员的活动课,让孩子进入商场,亲身感受一下。
这节课的重点是建立方程模型,我想视频展示、图片展示,实物展示都需要计算机辅助,另外,设计了两个情景模拟,准备一点道具。
首先是兴趣激发,通过视频和图片展示,让孩子平时常见的打折促销的情景再现在学生脑海,激发学生的探究欲望,这里面有什么样的数学知识呢,整个教学过程的线索就是了解生活的促销方法-----体验商品的促销过程-------认识商品销售中的相关概念----------分析商品交易过程中的数量关系--------建立方程解决销售问题(列方程)---------体验方程的有效模型作用(变式训练+编一道应用题)------方法归纳--------方法应用(练习+小测)1、展示拍摄的视频和图片。
示范教案教学重点与难点教学重点:学会用一元一次方程解简单的打折销售问题,经历用方程解决实际问题的过程.教学难点:正确分析打折销售问题的数量关系列出方程.学情分析认知基础:通过上节课的学习,学生已经历运用方程解决实际问题的过程,知道寻找等量关系是解决问题的关键.《打折销售》是学生学习了代数式、简易方程及一元一次方程的解法后一个理论联系实际的最好教材,也是前一部分知识的应用与巩固.打折销售是生活中常见的但不是很熟悉的一个问题,学生缺少丰富的生活体验,因此布置学生进行课前调查很有必要.学生根据切身体会和实践经验体会应用一元一次方程解决实际问题的过程,更为深刻.活动经验基础:学生具备良好的合作交流意识,能在学习过程中积极思考、大胆实践、勇于探索、敢于创新,并在解决问题的过程中积累了一定的方法技巧和数学活动经验.教学目标1.使学生经历探索打折销售中的已知量和未知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用.2.使学生进一步了解列出一元一次方程解应用题这种代数方法;培养学生的分析问题和解决问题的能力.教学方法由于“打折销售”是学生日常生活中常见的问题,尤其是生活在城市的学生,所以如果有条件的话,可以在课前安排学生进行一次社会调查,让学生深入商店,感受打折销售的现实情境.通过情景剧引入新课,学生在研讨分析中明白折扣的含义,进一步了解利润、售价、成本价的关系,同时也调动了学生的学习热情和求知欲.基础演练——实践应用——巩固提高的层层递进的学习过程,学生可以在教师指导下结合具体情境发现和解决数学问题,体验数学与日常生活的密切联系.教学过程一、课前调查设计说明亲身体验,感受数学与社会生活的联系,了解打折销售的基本概念,为上课作知识铺垫和感性经验,为课后练习打下坚实的基础,同时培养学生走向社会、适应社会的能力.活动目的:了解有关打折销售的知识以及广大消费者对打折销售是否能得到实惠的看法.活动地点:各商店或各大商场.活动方式:以学习小组为单位分工协作:一部分学生运用摄像、拍照等手段对商场的广告牌、标语等进行记录;一部分学生采用口头交流等方式对消费者、营业员进行随访调查;组长组织组员对数字信息进行归纳总结,并准备素材汇报调查结果.教学说明由于“打折销售”是学生日常生活中常见的问题,在课前安排学生进行一次社会调查,让学生深入商店、商场,感受打折销售的现实情境,对商场出现的折扣进行了解,明白折扣的含义,进一步了解利润、售价、成本价的关系,同时要求学生在感受体验的过程中能提出数学问题.二、情境引入设计说明教师从学生课前调查的兴趣点出发,安排几名学生进行类似商业活动的表演,激发学生强烈的好奇心和求知欲,让抽象的数学概念具体化,让学生通过观看形象直观的表演来感受和体会.教师直入主题:这节课我们学习“打折销售”,通过课前调查,同学们对本节课产生了浓厚的兴趣,非常想弄清楚打折销售到底给消费者带来了多少实惠,商家到底还有多少利可赚.要想弄清楚这些问题,就要弄明白打折销售的一些相关概念,以及它们之间的内在联系.情景剧:教师(批发商)桌前摆出一盒铅笔,旁边立一小牌:只批发,不零售,每捆10支,一捆1.6元.学生甲(小商贩)肩背一尼龙编织袋上场批发铅笔:“我批发10捆,共16元.”(他背回批发的商品,将铅笔包装拆开散放到一个纸盒中,把写有“每只0.25元”字样的纸牌贴于纸盒前,在教室里来回走动,进行零售叫卖.学生乙(消费者)走向前看了看价格说:“铅笔价格贵点了,便宜点吧?”学生甲回答:“小本买卖没几分利,你多买点,我给你八折优惠,0.20元一支.”学生乙掏出一元钱买走了5支铅笔.学生丙提出问题:在刚才的表演中,铅笔的成本价、标价、实际售价、利润分别是多少?它们之间有什么等量关系?你是怎么理解商品“八折优惠”的?小商贩在这笔买卖中获得利润率是多少?教学说明教师了解各小组课前调查情况,整体把握学生对成本价、现价、几折优惠、利润等基本概念的认识程度,组织编排情景剧,为学生更好的掌握这些基本概念以及它们之间的内在联系提供直观的感性素材.三、研讨分析设计说明通过小组内讨论交流,明确情境剧中涉及各量的含义,理顺各量之间的关系,为解决实际问题作好铺垫.学生通过分组讨论,加上课前调查积累的经验很容易得出“0.16元是成本价、0.25元是标价、0.20元为打折后的实际售价、一支铅笔所获利润为0.20-0.16=0.04元.根据学生对这些概念的理解,教师可作适当补充: 成本价又称进价或本金,是指商家为销售而购进货物时的价钱;标价是指商家出售商品时所标明的价格,不一定是实际卖出的价格,有时称作原价;售价是指商品成交时的实际价格;利润是指商品售价与进价之间的差额,即利润=售价-进价,一般情况下,商家不做无利的买卖;打折即买卖货物时,降低商品的定价,打几折就是按原标价的十分之几售出商品. 它们之间的关系有:成本价0.16元+提高的价钱=标价0.25元;标价0.25元×打折数810=折后售价0.20元; 实际售价0.20元-成本价0.16元=利润0.04元;利润0.04元成本0.16元×100%=利润率25%.(因此,利润=成本×利润率) 在刚才的表演中,商贩进行的“八折优惠”的意思是按标价0.25元的0.8倍出售,即每支铅笔的售价为0.25×0.8=0.20元.小商贩在这笔买卖中获得的利润率为每支铅笔获得利润0.04元每支铅笔的成本0.16元×100%=25%. 教学说明教师参与学生交流,根据学生生活经验和课前调查的感性积累,学生不难理解打折销售的基本概念,而对于它们之间的内在联系的建立,学生存在个体差异,教师对部分学生可单独进行指导,为应用题解题确定已知量和未知量的等量关系排忧解难.四、典例解析设计说明进一步体验“打折销售”问题的分析与解决过程,规范列一元一次方程解应用题的格式与步骤.例 某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1 800元,那么这种商品的原价是多少?分析:利润率=利润成本=售价-成本成本,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”.解:设商品原价是x 元,根据题意,得80%x -1 8001 800=10%. 解这个方程,得x =2 475.因此,这种商品的原价为2 475元.教学说明教师组织学生积极讨论、交流与展示,从多角度领会利润率的计算方法,掌握“打折销售”问题的常见类型,不断提升分析问题与解决问题的能力,养成良好的解题习惯. 五、基础演练设计说明利用填空题进行基本概念的练习,熟练应用基本等量关系解题.1.一件商品的进价为45元,利润为10元,则售价应为__________元.2.一件衣服的售价为130元,进价为80元,则利润为__________元.3.一件商品的标价为50元,现以八折销售,售价为__________元;如果进价为32元,则它的利润为__________元,利润率是__________. 4.一块手表的成本价是70元,利润率是30%,则这块手表的利润是__________元,售价应是__________元.5.一部小灵通的利润为150元,售价为600元,则这部小灵通的成本价是__________元,利润率为__________.6.一款诺基亚手机原价1 080元,现在打折促销,售价为810元,则商家打______折销售.答案:1.55 2.50 3.40 8 25% 4.21 91 5.450 33.33% 6.7.5教学说明教学时使用课件展示,增大课堂容量和密度.鼓励学生独立思考解题,先找出问题中的等量关系,再列式解答,学生讲解反馈.这些问题的顺利解答,强化了打折销售问题中基本概念和基本关系的理解应用,学生解决应用问题便水到渠成了.第6题在解答中易出现下面错误:设商家打x 折销售,则1 080x =810,x =0.75.教师要注意及时设疑、纠错,注意打折数的含义的强化及在计算中的正确表达.六、总结反思本节课你有什么感受和收获?1.知道了打折、利润的含义,了解了利润、售价、成本价之间的关系,学会了利润率的计算方法.2.对于一些实际问题,可以选设未知数,并表示其他未知量,利用一般等量关系(如公式等)构建一元一次方程求解.3.用方程模型可以帮助我们解决商品营销中的打折问题,数学来源于生活,服务于生活.评价与反思这堂课在学生进行商场调查,有一定感性认识的基础上,从最简单的问题着手,让学生理解打折销售中常见的名称及相互关系,为后续的学习打下坚实的基础.通过适当改变实际背景让学生从多方面体会打折销售中的各种数量关系,逐步领悟运用一元一次方程解决实际问题的一般步骤,教学效果较好.教学过程中学生通过体验商业活动、提出数学问题、解决实际问题,感受到数学来源于生活、数学服务于生活,数学与社会生活的密切联系.教学过程各环节环环相扣、层层递进,每一个教学环节都是下一个环节的有力铺垫.。
七年级数学上册第五章一元一次方程 5-4 应用一元一次方程—打折销售学案北师大版教师寄语:成功的人是跟别人学习经验,失败的人只跟自己学习经验一、学习目标——目标明确、行动有效1. 通过分析打折销售中的数量关系,经历应用方程解决实际问题的过程;2. 了解商品销售中相关概念的含义,通过分析打折销售中的数量关系,利用成本、售价、标价、利润、利润率之间的关系,列方程解决实际问题.课标要求:能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型.二、温馨提示——方法得当,事半功倍学习重点:运用方程解决实际问题,了解用一元一次方程解决实际问题的一般步骤.学习难点:对商品销售价、成本价、利润之间关系的理解.三、课前热身——温故而知新解下列方程:⑴⑵()()x x+⨯-=+150%80%100300+⨯-=()x120%120%96四、课堂探究——质疑解疑、合作探究探究点1:商品的成本例题:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少?(1)商品的利润= 元,利润率=___________.(2)设每件服装的成本价为X元,根据题意得:每件服装的标价为___________.每件服装的实际售价为___________元.每件服装的利润为___________元.由利润是15元,可得方程为___________ ,解得X=___________.练习:1.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,销售价为240元,设这件商品成本价为元,根据题意,下列所列的方程正确的是()xA.40%×80%=240 B.240×40%×80%= x xC.80%×(1+40%)=240 D.40%=240×80%x x 2.一件衣服标价132元,若以9折降价出售,仍可获利10%,•则这件衣服的进价是()A.106元 B.105元C.118元 D.108元探究点2:商品的利润例题:一件商品的成本是200元,提高30%后标价,然后打9折销售,则这件商品的利润为_______元.练习:一件商品按成本提高50%后标价,再打8折销售,售价为600元,则这件商品的利润为_______元.探究点3:求商品的利润率例题:某超市将每台空调先按进价提高40%标出售价,然后再以售价的八折优惠出售,结果每台空调赚了300元,求该超市出售空调的利润率是多少?练习:甲商品的进价是1 400元,按标价1700元的9折出售;乙商品的进价是400元,•按标价560元的8折出售,两种商品_______利润率较高些?探究点4:商品的打折数例题:一件商品,如果它的标价为1000元,进价600元,为了保证利润不低于10%,最低可打几折销售?练习:某商品进价为2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_____折出售此商品?探究点5:商品的标价(原价)例题:商店对某商品进行调价,按原价的8折出售,仍可获利10%,此商品的进价为160元。
北师大版数学七年级上册5.4《应用一元一次方程——打折销售》教案一. 教材分析北师大版数学七年级上册5.4《应用一元一次方程——打折销售》这一节主要让学生了解打折销售的实际背景,掌握用一元一次方程解决实际问题的方法。
教材通过实例引入,让学生了解商品原价、折后价、折扣等概念,并学会建立一元一次方程来求解实际问题。
二. 学情分析七年级的学生已经学习了简单的一元一次方程,对解方程有一定的了解。
但解决实际问题的能力还不够,需要通过实例来引导学生理解实际问题与数学知识的联系,培养他们运用数学知识解决实际问题的能力。
三. 教学目标1.了解打折销售的实际背景,理解商品原价、折后价、折扣等概念。
2.学会建立一元一次方程来解决打折销售的实际问题。
3.培养学生的数学建模能力和解决实际问题的能力。
四. 教学重难点1.重点:了解打折销售的实际背景,掌握用一元一次方程解决打折销售实际问题的方法。
2.难点:建立正确的数学模型,求解一元一次方程。
五. 教学方法采用问题驱动法,通过实例引导学生了解实际问题与数学知识的联系,培养他们运用数学知识解决实际问题的能力。
在教学过程中,注重启发式教学,引导学生主动思考,积极参与。
六. 教学准备1.准备相关实例,如商品原价、折后价、折扣等。
2.准备教学PPT,展示实例和讲解过程。
七. 教学过程1.导入(5分钟)利用PPT展示商品原价、折后价、折扣等实例,引导学生了解打折销售的实际背景。
2.呈现(10分钟)呈现具体实例,如一件商品原价为100元,打八折后的价格为80元。
引导学生思考,如何用数学知识来表示这个问题。
3.操练(10分钟)让学生分组讨论,尝试建立一元一次方程来解决这个问题。
引导学生理解,打八折相当于原价的0.8,所以可以建立方程100 * 0.8 = 80。
4.巩固(10分钟)让学生解答其他类似的打折销售问题,如商品原价为200元,打七折后的价格为多少。
引导学生运用一元一次方程解决问题。
4 应用一元一次方程——打折销售●情景导入 同学们,请帮我解决一个问题: 一批服装的进价是每件80元,按成本价提高50%后标价,后来,又按标价的八折进行销售.请你帮老师计算一下,这批服装在打完折后还能赚到钱吗?【教学与建议】教学:通过实际问题,熟悉销售问题中涉及的有关概念,并能简单计算.建议:通过这个活动让学生感受到数学就在身边,极大地激发学生学习数学的热情和积极性.●复习导入1.与销售有关的几个概念:(1)进价:__购进__商品时的价格(有时也叫成本价). (2)售价:在销售商品时的__售出价__(有时也叫成交价、卖出价).(3)标价:在销售时__标出的价__(有时称原价、定价).(4)利润:在销售商品的过程中的纯收入,一般情况下利润=__售价-进价__.(5)利润率:__利润__占__进价__的百分率,即利润率=__利润÷进价×100%__.(6)折扣:销售价占__标价__的百分率(如打九折,即按标价的90%出售).2.填空:(1)原价100元的商品提价30%后的价格为__130__元;提价后若打九折销售,则售价为__117__元;此商品的利润为__17__元,利润率是__17%__.(2)一件商品打折出售,就是用原价乘__折扣__.【教学与建议】教学:复习相关概念,为新课的学习打好基础.建议:通过简单的习题,使同学们体会概念的意义.*命题角度1 利润率问题 打折销售问题中应注重学生对利润率概念的理解.利润率公式:商品利润率=商品利润商品进价×100%. 【例1】商店对某种手机的售价作了调整,按原售价的八折出售,此时的利润率为14%.若此种手机的进价为1 200元,设该手机的原售价为x 元,则下列方程正确的是(A)A .0.8x -1 200=1 200×14%B .0.8x -1 200=14%xC .x -0.8x =1 200×14%D .0.8x -1 200=14%×0.8x【例2】一家商店将某款棉衣按进价提高40%标价,又以八折卖出,结果每件棉衣可获利15元,则这款棉衣每件的进价是__125__元.*命题角度2 折扣问题在打折销售问题中,比如打九折,就是用售价乘90%或0.9,但是如果要求打几折,学生列方程,设折数为x 时,方程中应该用售价乘x 10. 【例3】某服装的进价为80元/件,标价为200元/件,商店将此服装打x 折销售后仍获利50%,则x 为(B)A .5B .6C .7D .8【例4】某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打多少折?解:设商店应打x 折.根据题意,得180×x 10-120=120×20% 解得x =8.答:商店应打八折.*命题角度3 打折销售中的分类讨论问题判断所购商品价格在哪个区间内,对应的折扣是多少,直接通过“商品售价=商品标价×折扣数10”计算即可.针对“复式折扣”问题,根据“商品售价=某一区间商品折扣价+商品价格超出部分×另一区间的商品折扣数10”进行计算. 【例5】超市推出如下优惠方案:①一次性购物不超过100元,不享受打折优惠;②一次性购物超过100元但不超过300元,一律打九折;③一次性购物超过300元,一律打八折.如果李明两次购物分别付款80元、252元,那么他一次购买与上两次购买相同的物品应付款__288元或316元__.高效课堂 教学设计 1.理解商品销售中所涉及的进价、标价、售价、利润及利润率的含义.2.能列一元一次方程解决有关商品打折销售的问题.理解商品销售中的进价、标价、售价、利润、利润率的关系.列一元一次方程解决商品打折销售的问题. 活动一:创设情境 导入新课某经销商将进价为50元的商品标价165元,却打着“5折亏本大甩卖”的广告,小明妈妈看见广告觉得很划算,但小明觉得经销商在欺骗顾客.你同意小明的观点吗?你遇到过这样的事情吗?活动二:实践探究 交流新知【探究】应用一元一次方程解决打折销售问题多媒体出示教材P 145内容学生通过思考、分析 ,与同伴进行交流,解决下面的问题.设每件服装的成本价为x 元,你能用含x 的代数式表示其他的量吗?问题中有怎样的等量关系?每件服装的标价为:__(1+40%)x __; 每件服装的实际售价为:__0.8×(1+40%)x __;每件服装的利润为:__0.8×(1+40%)x -x __;由此,列出方程:__0.8×(1+40%)x -x =15__;解方程,得x =__125__;因此每件服装的成本价是__125__元.【归纳】进价是进货时的价格,标价是出售时所标明的价格,售价是出售时的实际价格.售价=标价×打折数10,利润=售价-进价.活动三:开放训练 应用举例【例1】(教材P 146例题)某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1 800元,那么这种商品的原价是多少?【方法指导】利润率=利润成本 ×100%=售价-成本成本×100%,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”. 解:设商品原价是x 元.则该商品的实际售价为:__80%x __;该商品的利润为:__80%x -1__800__; 该商品的利润率为:__80%x -1 8001 800__; 由此,列出方程:__80%x -1 8001 800=10%; 解方程,得x =__2__475__;因此,这种商品的原价为__2__475__元.【例2】一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?【方法指导】先用成本价表示出标价,然后根据等量关系式“标价×0.8=售价”列方程.解:设这批夹克每件的成本价是x 元,则标价为(1+50%)x 元.根据题意,得(1+50%)x ·0.8=60.解这个方程,得x =50.因此,这批夹克每件的成本价是50元.活动四:随堂练习1.新生活超市元旦实行货物6折优惠销售,定价为9元的物品,售价为__5.4__元.售价为15元的物品,定价为__25__元.2.一件商品进价为40元,售价为60元,其利润是__20__元,利润率是__50%.3.某商品进价为105元,若按进价的150%标价,要获得此商品20%的利润,商店可以打几折销售(B) A.7 B.8 C.6 D.54.某服装商贩同时卖出两套服装,每套均卖180元,按成本计算,其中一套盈利25%,另一套亏损25%,则该商贩在这次经营中(A)A.亏损24元B.盈利24元C.不亏不盈D.盈利20元5.某商店把某种商品按进价加20%作为定价,按定价的1.5倍标价后再8折出售,最终售出10件,总营业额为720元,则这次生意盈利还是亏损?盈利或亏损多少元?解:设进价为x元.根据题意,得x·(1+20%)×1.5×0.8×10=720,解得x=50.故这次生意共盈利720-50×10=220(元).活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?教学说明:教师引导学生回顾进价、标价、售价、利润、利润率这几个量的关系,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.作业:课本P146习题5.7中的T1、T2、T3本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在实际生活中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活运用有关的公式解决实际问题,提高学生的数学能力.。
5.4 应用一元一次方程——打折销售教学目标1.理解成本、售价、利润、利润率之间的数量关系,并能复述。
2.能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。
3.通过调查,体验和分析,充分感受身边的数学,尝试用数学的眼光分析生活中的打折现象,理性消费。
4.会从问题情境中探索等量关系,经历和体验运用一元一次方程解决实际问题的过程,培养抽象、概括、分析问题、解决问题的能力。
教学重难点能在具体打折问题中准确找出等量关系列方程求解,并根据所求方程的解来解释和分析打折销售中的具体现象。
教学过程设计:一 情景引入进价减利润售价加提高价标价乘以打折数 商品利润= 商品售价—商品进价商品售价= 商品标价X 折扣商品售价= 成本+ 利润= 成本(1+利润率)目的:二、活动探究根据调查了解到的有关商品打折销售实际,解答学生自己编拟的题目.学生编题选:1.一件商品原价为120元,按八折(即原价的80%)出售,则现售价应为元。
2.某件商品进价是270元,八折销售可获利润50元,则原售价为元。
3.某商品的进价是1530元,若按商品标价的九折出售,利润率是15%。
求该商品的标价。
4.某老板先把一件商品按成本提高50%后标价,再打八折销售,售价为600元,这种商品的成本是多少?商家的利润为多少元?5.某商场售货员同时卖出两件衣服,每件都以135元售出,若按成本计算,其中一件盈利25%,另一件亏损25%,问这次售货员是赔了还是赚了?(这里选了四人小组中比较有代表性的五道题,学生们都准备得很充分。
)目的:设置了比教科书更开放的问题。
实际生活中的数学问题往往可以有不同的方案,通过小组合作的形式,每个学生都有机会提出自己的解题方案,都有可能获得成功的体验。
同时又分享别人的解题方案,共同讨论不同方案的优缺点,这对于发展学生的解题思路、增强学生的自信心、培养创造性思维十分有利。
实际效果:学生经过研究后回答了对方编写的题目。
北师大版七年级上册数学5.4《应用一元一次方程——打折销售》教学设计一. 教材分析《应用一元一次方程——打折销售》这一节的内容,主要让学生学会运用一元一次方程解决实际生活中的打折销售问题。
通过前面的学习,学生已经掌握了一元一次方程的基本概念和解法,本节内容是对前面知识的巩固和应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析七年级的学生已经具备了一元一次方程的基础知识,对生活中的打折销售也有一定的了解。
但学生在解决实际问题时,可能会对问题中的关键信息提取不准确,对利润的计算公式理解不清晰。
因此,在教学过程中,教师需要引导学生正确理解问题,找出问题中的等量关系,从而列出一元一次方程。
三. 教学目标1.知识与技能:让学生掌握运用一元一次方程解决打折销售问题的方法。
2.过程与方法:通过解决实际问题,培养学生从实际问题中提取信息,建立数学模型的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
四. 教学重难点1.重点:运用一元一次方程解决打折销售问题。
2.难点:正确找出问题中的等量关系,列出方程。
五. 教学方法采用问题驱动法,引导学生从实际问题中找出等量关系,列出方程,并通过小组合作、讨论,培养学生解决问题的能力。
六. 教学准备1.教师准备相关案例,用于引导学生解决实际问题。
2.准备打折销售的实际数据,用于让学生练习计算。
七. 教学过程1.导入(5分钟)教师通过展示一件商品的原价和打折后的价格,引导学生思考:如何计算打折后的利润?让学生意识到实际问题中的等量关系,为建立方程做准备。
2.呈现(10分钟)教师呈现一组打折销售的实际数据,让学生计算打折后的利润。
学生在计算过程中,自然会发现需要建立一元一次方程来解决问题。
3.操练(10分钟)教师引导学生找出问题中的等量关系,让学生独立列出方程,并求解。
教师在这个过程中,对学生进行个别指导,帮助学生理解问题,找出等量关系。
北师大版七年级数学上册教案第四节应用一元一次方程——打折销售【教学目标】进一步经历运用方程解决实际问题的一般过程.【教学重难点】重点:进一步熟练运用方程解决实际问题.难点:理解经济问题中打折的意义.【教学过程】一、创设情境,导入新课本节基本关系量:(1)成本价:有时也称进价,是商家进货时的价格;(2)标价:商家在出售时,标注的价格;(3)售价:消费者购买时真正花的钱数;(4)商品利润=商品售价-商品成本价;(5)利润率:商品出售后利润与成本的比值;(6)打折:商家为了促销所采用的一种销售手段,若打3折,就在标价的基础上乘以30%.初步练习:(1)原价100元的商品打8折后价格为________元;(2)原价100元的商品提价40%后的价格为________元;(3)进价100元的商品以150元卖出,利润是________元,利润率是________;(4)进价a元的商品以b元卖出,利润是________元,利润率是________.二、师生互动,探究新知1.店主站在一张桌子后,桌子上放着两件衣服,身后立着一块醒目的牌子:“放血大处理”,“血”字是红色的.店主喊:“大家过来看一看,瞧一瞧,走过的、路过的不要错过,本店不计成本挥泪大甩卖,所有服装两折处理,每件只卖48元……”一工商人员上前对店主说:“你这是违法行为,请把牌子收起来,不能这么喊.”店主:“我确实是两折处理呀!”工商人员:“你把衣服的成本价提高了多少?”店主:“我提高了500%以后标价的.”工商人员:“同学们,他将每件衣服按成本价提高了500%进行标价,再按两折处理,每件衣服卖48元,你们算一算,他到底是赚还是亏?”(表演结束)2.学生猜测:小品中的店主是赚是亏?(独立思考)3.学生讨论与思考:(1)如果一件衣服的成本价为100元,按成本价提高500%标价,标价是多少?再按标价打两折销售,实际售价是多少?(2)假设一件衣服的成本价为x元,按成本价提高500%标价,标价是多少?再按标价打两折销售,实际售价是多少?(3)你所列出的实际售价与小品中的商家的售价有什么关系?(4)根据这个等量关系列出方程,并解出方程;验证你的猜测是否正确.4.进一步引申.如果不知道小品中店主的售价是多少,但知道他每件衣服赚了20元钱,其他条件不变,那么每件衣服的成本是多少元?启发学生:这20元的利润是怎么来的?引导学生探索出等量关系:利润=售价-成本.进而列出方程:x(1+500%)×20%-x =20.深入思考:在现实生活中,你见过哪些打折销售活动?是否所有的“打折销售”都存在欺诈行为?你认为哪些存在欺诈行为?通过这一讨论让学生分清哪些是正常的销售手段,哪些是不正常的欺诈行为.在讨论过程中,教师要旗帜鲜明地表明“诚实为人,立信为本”,达到教育学生“求真”“求实”的目的.三、运用新知,解决问题例 某商场将某种商品按原价的8折出售,此时商品的利润率是10%.已知这种商品的进价为1800元,那么这种商品的原价是多少?分析:利润率=利润成本×100%=售价-成本成本×100%,在解决这类问题的过程中,要抓住这个等量关系.由于本例中只提到售价、进价和利润率,因此我们可以用“进价”代替“成本”.解:设商品原价是x元.根据题意,得80%x-18001800=10%.解这个方程,得x=2475.因此,这种商品的原价为2475元.四、课堂小结,提炼观点1.回顾本节课解决问题的过程,反思解题策略是否得当,是否有更恰当的解法.2.师生共同回顾以前用方程解决实际问题的过程,以加深理解每一步的含义,并反思一元一次方程解决实际问题的一般步骤:(1)从实际问题中抽象出数学问题;(2)分析数学问题中的等量关系(关键);(3)列出方程;(4)解出方程的解;(5)检验解的合理性.五、布置作业,巩固提升1.一件商品按成本价提高20%后标价,又以九折销售,售价为270元,这种商品的成本价是多少?2.一件夹克按成本价提高50%后标价,后因季节关系按标价的六折出售,结果每件亏了10元,这批夹克每件的成本价是多少元?3.提高题:请你根据自己在日常生活中遇到的问题自编一道“打折销售”的方程应用题,并解答出来.(此题留给学有余力的同学做) 【板书设计】应用一元一次方程——打折销售(1)成本价:有时也称进价,是商家进货时的价格;(2)标价:商家在出售时,标注的价格;(3)售价:消费者购买时真正花的钱数;(4)商品利润=商品售价-商品成本价;(5)利润率:商品出售后利润与成本的比值;(6)打折:商家为了促销所采用的一种销售手段,若打3折,就在标价的基础上乘以30%.。
5.4应用一元一次方程——打折销售
1.能列出一元一次方程解决打折销售问题.
2.了解用一元一次方程解决实际问题的一般步骤.
3.进一步建立运用方程解决实际问题的过程,培养逻辑思维能力.
一、情境导入
1.展示日常生活中的销售实例,学生回忆知识.打折后的商品售价=商品的原标价×折扣数.
2.展示常用数量关系:①利润=售价-进价;②利润率=利润/进价×100%;③利润=进价×利润率;④售价=进价+利润=进价+进价×利润率.
二、合作探究
探究点一:求成本价
一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60
元卖出,这批夹克每件的成本价是多少元?
解析:先用成本价表示出标价,然后根据等量关系:标价×80%=60,列出方程即可.
解:设这批夹克每件的成本价为x元,则标价为(1+50%)x元.
根据题意,得(1+50%)x·80%=60.
解得x=50.
答:这批夹克每件的成本价是50元.
方法总结:按标价8折出售即按标价的80%出售.
探究点二:求折扣
书店里每本定价10元的书,成本是8元.为了促销,书店决定让利10%给读者,问该书应打多少折?
解析:本题中的利润为10-8=2(元),因为让利10%给读者,所以书店的利润为(1-10%)×2(元),此时的售价为(10×折扣)元.根据商品利润=商品售价-商品进价,
就能建立起方程.
解:设该书应打x折,根据题意,得
10×x
10-8=(10-8)×(1-10%).
解得x=9.8.
答:该书应打九八折.
方法总结:让利10%,即利润为原来的90%.
探究点三:求原价
某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进
价为2000元,那么它的原价为多少元?
解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.
解:设原价为x元,根据题意,得
80%x-2000=2000×10%.
解得x=2750.
答:它的原价为2750元.
方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).
三、板书设计
本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.。