6-3 不定积分的分部积分法09.12.8
- 格式:ppt
- 大小:1.48 MB
- 文档页数:30
不定积分的分部积分法不定积分是高等数学中一个重要的概念,它可以用来求解各种形式的积分问题。
在求解不定积分的过程中,有一种常见的方法被称为“分部积分法”。
本文将从以下几个方面介绍不定积分的分部积分法:基本概念和原理、具体步骤、应用案例和进一步拓展。
一、基本概念和原理分部积分法的思想来源于乘法公式:$$(uv)'=u'v+uv'$$将乘法公式中的导数符号替换成积分符号,可得到分部积分公式:$$\int u \, dv=uv-\int v \, du$$其中,$u$和$v$都是函数,$du$和$dv$分别是$u$和$v$的导数。
二、具体步骤以下为分部积分法的具体求解步骤:1. 将被积函数拆分成两个函数的乘积形式:$f(x) = u(x)v(x)$。
2. 选择其中一个函数作为$u$,另一个函数的导数作为$dv$。
常见的选择方式有按照函数的复杂程度或者按照它们的导数是否容易求解。
3. 对$u$求导数,得到$du$。
4. 对$v$求导数,得到$dv$。
5. 将$u$和$v$的导数代入分部积分公式中,即得到:$$\int u \, dv=uv-\int v \, du$$6. 将上式中的各项代入,得到原式的新的积分式子,即:$$\int f(x)dx=u(x)v(x)-\int v(x)du(x)$$7. 对于分部积分法所得的新式子,如果它的形式更为简单,那么就可以再次运用分部积分法进行求解。
三、应用案例以下为使用分部积分法解决典型积分问题的案例:1. 求解$\int x\ln x dx$解法:设$u=\ln x,dv=xdx$,则$du=\frac{1}{x}dx,v=\frac{x^2}{2}$,代入分部积分公式可得:$$\int x\ln x \,dx=x\frac{x^2}{2}\,-\int \frac{x^2}{2}\cdot\frac{1}{x} \,dx=\frac{x^3}{2}-\frac{x^2}{4}+C$$2. 求解$\int e^x\cos x dx$解法:设$u=e^x,dv=\cos xdx$,则$du=e^x,dv=\sin x$,代入分部积分公式可得:$$\int e^x\cos x \,dx=e^x\sin x-\int e^x\sin x \,dx$$再次应用分部积分法,可得:$$\int e^x\cos x \,dx=e^x\sin x-e^x\cos x-\int e^x\cos x \,dx$$两边移项,得到:$$\int e^x\cos x \,dx=\frac{e^x}{2}(\sin x-\cos x)+C$$四、进一步拓展分部积分法是求解不定积分的常见方法之一,在实践中可以根据具体问题灵活运用。
1.有关不定积分用分部积分法做不定积分,有个口诀叫反对幂指三,这个口诀是指的是遇到不定积分,用分部时,按照反对幂指三的顺序来处理,就是类似与加减乘除中,如果同时出现,就先乘除后加减,被积函数是幂函数或指数函数或对数函数或三角函数或反三角函数的乘积,优先考虑使用分部积分法。
2.所谓的“反对幂指三”:反三角函数,对数函数,幂函数,指数函数,三角函数.说明白点就是这五种函数都可以在分部积分法中当做是v`(x)dx中的v`(x).因为将它们五种函数放到d中很容易,一般ln, log, e, 和tan, sec, cos, sin,cot, cosec的单数幂的时候优先考虑分部
3.被积函数是幂函数或指数函数或对数函数或三角函数或反三角函数的乘积,优先考虑使用分部积分法。
不定积分的分部积分法公式“不定积分的分部积分法公式”是一个复杂的数学概念,它用于计算一类曲线函数的定积分的近似值。
不定积分的分部积分法公式也被称为埃尔米特积分公式,是一种广泛应用的积分技术,为计算复杂曲线函数提供了有效的数值计算方法。
首先,我们需要了解什么是不定积分。
不定积分是一类特殊的函数,它可以用来计算曲线的面积,可以表达为:∫ f (x) dx=F (b)-F (a)其中,F (x)表示与x有关的积分函数,a和b分别表示曲线的两个端点。
不定积分不能精确计算,但可以采用分部积分公式来估计积分值。
埃尔米特积分公式是常用的一种不定积分的分部积分法。
它是由数学家埃尔米特博克曼于1851年发明的,埃尔米特积分公式可以用来计算以下积分:∫a^b f(x)dx (f (x_i)Δx)其中,Δx表示曲线上每个分段的x方向距离,f (x_i)表示每个分段上x坐标位置处的函数值,Σ表示求和符号;a和b分别表示曲线的两个端点。
有了不定积分的分部积分公式,我们就可以简单地计算出复杂曲线的积分值了。
我们可以假设曲线在每一部分上都呈线性变化,也就是说,f (x)的图像可以被拆分成N个等距的直线段,称为分段线,然后再分别求每一段的积分,将它们相加就得到了曲线的积分值了。
也就是说,我们可以利用这样的公式来求解曲线函数:∫a^b f (x) dx (f (x_i)Δx)用上面的公式,我们可以对曲线函数进行拆分,将曲线分段,然后求出每个分段的积分值,最后将所有分段的积分值相加得到整个曲线的积分值,也就是不定积分的结果了。
埃尔米特积分公式是研究和应用积分技术最重要且最常用的方法之一,它可以用来计算复杂曲线函数的定积分。
埃尔米特积分公式是一种有效的、快速的计算手段,在一定程度上可以减少函数积分计算的误差,帮助我们准确地计算函数的积分值。
埃尔米特积分公式在工程计算中也有重要应用,它可以用来计算各种复杂函数的积分,例如建筑工程中混凝土结构的受力计算、软件设计中的面向对象编程等。
求不定积分的分部积分法作者:杨付贵来源:《科学与财富》2019年第01期摘要:分部积分法是不定积分的一种重要方法之一,它对某一类积分有特效,其他方法不行。
分部积分法也是不定积分中的一个难点。
在教学中,如何采用简单可行的方法,使学生们正确的理解"反·对·幂·三·指"的含义,准确的确定出哪个函数作为u和哪个函数和dx凑成dv 是重中之重。
然后,通过代公式,再微出来,最后积出来求出不定积分。
关键词:分部积分;不定积分;微积分分部积分法是不定积分学中的一类重要的、基本的计算积分的方法。
也是不定积分中的一个难点。
学生们在学习(或复习)不定积分的分部积分法时,对其使用并不熟练,特别是对于文科的学生,不知什么时候用不定积分的直接方法,什么时候用不定积分的换元法,什么时候用分部积分法,用分部积分法解题的技巧表现得更生硬。
下面我结合自己三十多年讲授高等数学的体会,谈一下分部积分法的使用要点与技巧。
仅供大学生学习不定积分的分部积分法时参考。
一、分部积分法的方法与步骤由于积分与微分互为逆运算。
所以分部积分法是由微分的乘法法则和微积分基本定理推导而来的。
它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
即其中积分比易求。
由此不难得到分部积分的步骤:第一步:凑dv;第二步:代公式;第三步:微出来;第四步:积出来。
其中第一步凑dv是关键,如果凑的不合适,就有可能使得后面的积分比前面的积分更复杂,更难积分,那么究竟如何凑dv呢?对于这个问题,我们下面进行详细的讨论,而第三步也很重要,否则,作着作着又作回去了。
二、使用分部积分法的基本条件什么时候用分部积分法呢?一般地说,对于被积函数是幂函数、指数函数、对数函数、三角函数及反三角函数这几类初等函数中的某两类函数乘积形式时,应使用分部积分法,分部积分法对这一类积分有特效,其他方法不行。
当然,分部积分法对于其他的一些积分有时也会起到立竿见影的效果。