分数乘法知识点和题型(全面)复习课程
- 格式:doc
- 大小:314.50 KB
- 文档页数:6
分数乘法专题复习
介绍
本文档将为大家简要复分数乘法的相关知识点和技巧。
分数乘
法是数学中的重要概念之一,掌握好这个内容对于解决各种数学问
题非常有帮助。
在复过程中,请确保您已经熟悉了分数的基本概念。
内容
分数乘法的定义
分数乘法是指两个或多个分数相乘的操作。
在分数乘法中,我
们需要将分子与分子相乘,分母与分母相乘。
例如,对于分数a/b和c/d的乘法,结果可以表示为(a * c) / (b
* d)。
分数乘法的规则
1. 分数与整数相乘:将整数转化为分数,然后按照分数乘法的规则进行计算。
2. 分数与分数相乘:将两个分数的分子相乘,分母相乘,然后化简到最简形式。
分数乘法的技巧
1. 化简分数:在进行分数乘法时,可以先将分数化简到最简形式,这样有助于减少计算错误的概率。
2. 转化为小数:为了更好地理解分数乘法,有时可以将分数转化为小数进行计算,然后再转回分数形式。
3. 独立计算:将分数乘法问题分解成独立的计算步骤,分别计算分子和分母的乘积,最后将结果合并。
总结
分数乘法是数学中的重要概念。
通过掌握分数乘法的定义、规则和技巧,我们能够更加熟练地进行分数乘法计算,进而提高解决数学问题的能力。
在实践中,我们还应该不断练分数乘法,以加强对该内容的掌握和运用能力。
祝大家学习进步!。
2020年~2021年最新《分数的乘法》一、分数乘法 (一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1.98×5表示( )。
2.83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( ) 3.24个32是多少? 145吨的7倍是多少吨?2.分数乘分数是求一个数的几分之几是多少。
例如: 1.98×43表示的意义是( )。
2.125吨的32是多少吨?3.一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1.72×3 53×6 214×9 103×5 1611×12 2.52米=( )厘米 32时=( )分 107千克=( )克 算式: 2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×281565×25122110×533.为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
分数乘法知识点归类与题型
知识点1 分数乘整数的意义和计算方法(重点)
分数乘整数的意义:求几个相同分数的和的简便运算。
(提示:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算,只是这里的相同加数变成了分数。
)
分数乘整数的计算方法:分数与整数相乘,用分数的分子和整数相乘的积做分子,分母不变。
例1:3169
67⨯ 点拨:在计算分数乘整数时或整数乘分数时,先约分化简,然后利用法则相乘,计算结果要化为最简分数。
练习1:48
9623⨯
知识点2:一个数乘分数的意义和计算方法(重点、难点)
一个数乘分数的意义:一个数与分数相乘,可以看做是求这个数的几分之几是多少? 分数乘分数的计算方法:分数乘分数,用分子相乘的积做分子,分母相乘的积做分母。
知识点3:分数混合运算及运算定律(重点、难点)
分数混合运算的顺序:与整数的运算顺序相同,先算乘除,再算加减,有括号时要先算括号里的。
运算定律:交换律、结合律和分配律。
小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0). 一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a .注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
分数的乘除知识点总结一、分数的乘法基本概念1. 分数的乘法是指两个分数相乘的运算。
如:(1/2) × (2/3)2. 分数的乘法还可以与整数相乘。
如:(3/5) × 23. 分数的乘法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。
如:a/b × c/d = (a×c)/(b×d)二、分数的乘法运算规则1. 分数的乘法满足交换律和结合律。
即,对于任意的分数a/b和c/d,有:a/b × c/d = c/d × a/b(a/b × c/d) × e/f = a/b × (c/d × e/f)2. 分数的乘法可以转化为通分的分数相乘。
当两个分数的分母不相同时,可以通过通分的方法将分母转化为相同的数,再进行乘法运算。
3. 分数的乘法还可以化简。
在运算过程中,我们可以化简分数,使分子和分母互质。
三、分数的乘法常见错误分析1. 错误:未进行通分运算就进行分数相乘。
如:(1/3) × (2/5) = 2/15正确的做法是先通分,然后再进行相乘:(1/3) × (2/5) = (1×2)/(3×5) = 2/152. 错误:运算过程中忽略了化简。
如:(5/10) × (3/5) = (5×3)/(10×5) = 15/50正确的做法是先化简,然后再进行相乘:(5/10) × (3/5) = (1/2) × (3/5) = (1×3)/(2×5) = 3/10四、分数的除法基本概念1. 分数的除法是指两个分数相除的运算。
如:(1/2) ÷ (2/3)2. 分数的除法还可以与整数相除。
如:(3/5) ÷ 23. 分数的除法可以看作是分子相乘得到新的分子,分母相乘得到新的分母。
分数乘法(思维导图+知识梳理+典例分析+高频真题+答案解析)【分数乘法-知识点归纳】1、分数乘法的意义:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算.2、乘积是1的两个数叫做互为倒数.3、分数乘法法则:(1)带分数乘法:先把带分数化成假分数,然后再乘.结果是假分数时,要把假分数化成带分数或整数.(2)(2)分数乘以分数:用分子相乘的积作为分子,用分母相乘的积作为分母.为了使计算简便,在计算的过程中,能够约分的,要约分.(3)分数乘以整数或整数乘以分数:由于任何整数(0除外)都可以化成分母是1的假分数,分数乘以整数或整数乘以分数,都可以转化成分数乘以分数的形式.因此,在计算中,是用分数的分子和整数相乘的积作为分子,分母不变.在乘的过程中,如果有可以约分的数,可以先约分,这样,可以使计算的数字缩小,从而使计算变得简便.【分数乘整数-知识点归纳】1、分子乘整数,可以求出一共有多少个这样的分数单位,而分数单位的个数其实就是分子乘整数的积,因此整数乘分子作分子。
求几个分数单位的和,分数单位不变,也就是分母不变。
2、分数乘整数的意义:分数乘整数,也是表示几个相同加数相加,与整数乘法的意义相同。
3、分数乘整数的计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。
其实就是计算分数单位的个数。
【整数乘分数-知识点归纳】1、一个数乘分数的意义就是求一个数的几分之几是多少。
2、“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)3、方法总结;(1)、整数与分数相乘,用分数的分子与整数相乘,分母不变;(2)、计算时能约分的可以先约分再计算出结果。
【分数乘分数-知识点归纳】分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
【典例1】在“世界无烟日”健康知识竞赛中,小星答对了50道题,小铭答对的题数比小星少15。
《分数乘法》分数乘法(一)知识点:1、理解分数乘整数的意义:数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。
能约分的要约成最简分数。
如:a ×=m n mn a 3、计算时,应该先约分再计算。
要简便一些补充知识点1、两个数相乘,其中一个乘数不变,另一个剩数扩大到原来的几倍(或缩小到原来的几分之几),积也相应地扩大到原来的几倍(或缩小到原来的几分之几)。
分数乘法(二)知识点 : 1、分数乘整数的意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:×5表示求5个的和是多1212少,或者表示的5倍是多少。
122、一个数乘分数的意义:就是求这个数的几分之几是多少。
如:4×表示求4的是多少。
3×表示3的是多少。
13131313 3、理解打折的含义。
例如:九折,是指现价是原价的十分之九。
现价=原价×109补充知识点1、在解决实际问题时,要找准把谁看作一个整体。
找准单位“1”并弄清所求问题与单位“1”的关系是解决问题的关键。
2、打折问题的公式:现价=原价×折扣原价=现价÷折扣折扣=现价÷原价2、打几折就是指现价是原价的百分之几,例如八五折,是指现85价是原价的百分之八十五。
现价=原价×1003、买一赠一打几折:出一份的钱拿两个货品,即1除以2等于零点五五折买三赠一打几折:出三份的钱拿四个货品,即3除以4等于零点七五七五折分数乘法(三)知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分,再计算。
(计算结果要求是最简分数。
)如:mb na m nb a ⨯⨯=⨯2、分数乘分数的意义:求一个分数的几分之几是多少。
3、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
《分数的乘法》一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 1、 98×5表示( )。
2、83+83+83=( )×( )=( ) 83+83+83+83=( )×( )=( )=( ) 3、24个32是多少? 145吨的7倍是多少吨? 2、分数乘分数是求一个数的几分之几是多少。
例如: 1、98×43表示的意义是( )。
2、125吨的32是多少吨? 3、一根绳子长109米,3根这样的绳子共长( )米;这根绳子的31长( )米。
(二)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)例如:1、72×3 53×6 214×9 103×5 1611×12 2、52米=( )厘米 32时=( )分 107千克=( )克 算式:2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
例如:152×85 3914×2813 4532×2815 65×2512 2110×533、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
例如:32×143 83×154 2625×1513 6313×3914 85×52(三)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
例如:65×2 ○65 8×117○8 54×1 ○54 43×53 ○53 87×56 ○87×65 (五)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c例如:1、53×61×5 32×41×3 94×5×18 54×97×85 75×16×5212、(924 + 83 )× 124 ( 56 - 59 )×18 47 ×613 +37 ×613 56 ×59 + 59 × 163、10063×101 677 × 78 12×613 + 613 14×137-137二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。
2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、先用直线划出单位“1”的量,再把数量关系式补充完整。
例如:(1)皮球的个数比足球多52。
(2)实际用水量比原计划节约91。
( )的个数×52=( )的个数 ( )用水量×91=( )用水量 (3)一桶油用去53,正好用去12千克。
这桶油重多少千克?( )的千克数×53=( )的千克数(4)学校饲养组养黑兔12只,是白兔只数的32。
饲养组养白兔多少只?( )的只数×32=( )的只数 3、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ ÷ ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量例如:1、育才小学有男生120人。
(1)男生是女生的35 ,女生有多少人? (2)女生是男生的35,女生有多少人?(3)女生比男生多35 ,女生有多少人?(4)男生比女生少35,女生有多少人?(5)男生占全校的35 ,女生有多少人?(6)女生占总数的35,全校有多少人?2、要一条路长100米,已经修了5037米,还有多少米没修? 3、要一条路长100米,已经修了5037,修了多少米?4、一段长3米的布,第一次剪去它的31,第二次又剪去31米,两次一共剪去多少米?还剩多少米?5、周大婶收了532吨南瓜,收的冬瓜比南瓜多815。
收的冬瓜比南瓜多多少吨?6、一本书450页,第一天看了全书的15,第二天看了65页,第三天应该从第几页看起?7、一根铁丝长12米,第一次用去了全长的14,第二次用去了全长的13,两次一共用去了多少米?8、学校一月份用电800度,二月份比一月份节约了15,二月少用电多少度?三、倒数(一)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。
例如:a ×b=1则a 、b 互为倒数。
(二)求倒数的方法:1、求分数的倒数:交换分子、分母的位置。
2、求整数的倒数:整数分之1。
3、求带分数的倒数:先化成假分数,再求倒数。
4、求小数的倒数:先化成分数再求倒数。
5、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
6、任意数a(a ≠0),它的倒数为 ;非零整数a 的倒数为 ;分数 的倒数是 。
7、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。
带分数的倒数小于1。
例如:1、( )的两个数叫做互为倒数。
2、35 的倒数是( )94的倒数是( ) 3、23 的倒数是( ),7的倒数是( ),434 的倒数是( ),756的倒数是( ) 4、( )没有倒数,1的倒数是( )。
5、 89 的倒数与56 的积是多少?6、 100的倒数的19倍 是多少?7、1.4加上它的倒数,再减去57 ,结果是多少?8、有两个不同的质数,它们积的倒数是110,求这两个质数是多少?9、 45 与它的倒数的和是多少? 10、 一个数的倒数是35 ,这个数的45是多少?分数乘法综合练习题一、 填空题:1、15个53是多少?列式是 ;32的53是多少,列式是 ; 2、25的54是( );53的43是( );12个94相加的和是( );3、53千米=( )米;65时=( )分;4、10×( )=53×( )=173×( )=0.25×( )=1 5、2米的31和1米的( ) 相等,就是( )米。
6、5的倒数与10的倒数比较,( )的倒数>( )的倒数。
7、 当a=( )时,a 的倒数与a 的值相等。
二、判断1、分数乘整数的意义与整数乘法的意义相同。
( )2、2千克的31和1千克的32同样重。
( ) 3、36×94和94×36结果相等。
( ) 4、一个数乘假分数,积一定大于这个数。
( ) 5、一根长12米的钢管,截去了31,就是短了31米。
( ) 6、 任意一个数都有倒数。
( ) 7、 假分数的倒数是真分数。
( ) 8、 a 是个自然数,它的倒数是。
( )9、 因为13 +23 =1所以13 和23 互为倒数。
( ) 10、 0.3的倒数是3( )三、列式计算:(1)120千米的457是多少千米? (2)457的120倍是多少?(3)25是125的几分之几? (4)125是25的几倍?四、计算:2518×95 275×120 3916×3213 3415×3017514 × 2125 ×75 (124 + 83 )×24 710 ×101- 710 34×3435五、应用题。
1、一台碾米机每小时可以碾稻谷207吨,5小时可以碾谷多少吨?54小时呢?2、某工厂有男职180人,女职工是男职工的95。
女职工有多少人? 求女职工有多少人就是求( )的( )是多少?所以用( )方法计算。
(按要求填空,并列式解答)3、一辆汽车每小时行驶45千米,从甲地到乙地行驶了158小时,正好到达了两地的中点。
甲乙两地全程多少千米?4、(1)一杯水重83千克,32杯重多少千克?(2)一杯水重83千克,又加了32千克,此时杯中水多少千克?5、一块长方形地的面积是15公顷,用这块地的51种小麦,31种棉花,种小麦和棉花各多少公顷?6、有四个不同的的偶数,它们的倒数的和是1,已知其中的两个数是2和4,求其余的两个数。
7、把5分别与它的倒数相加、相减、相乘、相除,再把所得的和、差、积、商相加,结果是多少?8、 110的倒数除以10,商是多少?。