第五章流体动力学(连续性方程)-流体力学汇编
- 格式:ppt
- 大小:365.50 KB
- 文档页数:11
理解流体力学中的连续性方程流体力学是研究流体静力学和流体动力学的学科,涵盖了许多重要的基本方程。
其中,连续性方程是流体力学中的基础之一,用于描述流体在宏观尺度上的连续性。
理解连续性方程对于研究流体运动和分析流体现象具有重要意义。
本文将介绍连续性方程的定义、推导与应用,并探讨其中的物理意义。
一、连续性方程的定义与推导连续性方程描述了流体运动时,质量守恒的性质。
在宏观尺度上,流体的质量保持不变,由此可以得到连续性方程的数学表达式。
假设流体流动方向为坐标轴方向,流体通过某一截面的流量为Q,流动截面面积为A,则单位时间内通过截面的质量为Δm。
根据质量守恒原理,Δm应保持不变。
考虑时间间隔Δt内,流体运动导致流量Q发生变化。
根据定义,Δt时刻通过截面的质量为Δm1,Δt+Δt时刻通过截面的质量为Δm2。
根据质量守恒原理,Δm1+Δm2应等于Δm。
Δm1+Δm2 = ρ1QΔt + ρ2QΔt (1)其中,ρ1和ρ2分别为Δt时刻和Δt+Δt时刻的流体密度。
将流体密度表示为单位体积的质量,即ρ = m/V。
在Δt时间间隔内,流体的体积可以表示为:Δt时刻的体积为V1 = QΔt (2)Δt+Δt时刻的体积为V2 = QΔt + AΔx (3)其中,Δx为流体运动方向上的位移。
将公式(2)和(3)代入公式(1),得到:ρ1QΔt + ρ2QΔt = ρ1V1 + ρ2V2 (4)根据密度的定义,可以将公式(4)进一步推导为:ρ1Q + ρ2Q = ρ1Q + ρ2(Q + AΔx) (5)化简后可简化为:d(ρQ)/dt + A(ρv) = 0 (6)其中,v为流体的流速。
以上就是连续性方程的定义与推导过程。
连续性方程的表达形式可以用偏微分方程来表示,常被称为连续性方程的微分形式。
二、连续性方程的物理意义连续性方程描述了流体在运动过程中的连续性。
通过分析连续性方程,我们可以进一步理解其中的物理意义。
在连续性方程中,d(ρQ)/dt表示单位时间内流体质量的变化率,A(ρv)表示单位时间内流体通过截面边界的质量变化率。
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体的连续性方程和动量方程流体力学是研究流体运动和流体力学性质的学科。
在流体力学中,连续性方程和动量方程是两个重要的基本方程。
本文将详细介绍流体的连续性方程和动量方程的定义和应用。
一、流体的连续性方程连续性方程描述了流体的质量守恒原理,表达了流体在空间和时间上的连续性。
连续性方程的数学表达形式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·(ρv)表示速度矢量的散度。
该方程表示,流体的密度在一个闭合曲面上的变化率等于通过该曲面的质量流量。
连续性方程是基于质量守恒原理推导得出的。
它表明,在稳定流动条件下,流体在通道中的截面积变化时,速度会发生相应的变化,以保持质量的守恒。
根据连续性方程,我们可以推导出管道中的速度分布。
在管道的收缩段,速度增加,截面积减小,密度保持不变,从而保证质量守恒。
这也是为什么水管收缩后出水流速增加的原因。
二、流体的动量方程动量方程描述了流体运动的力学性质,表达了流体在空间和时间上的动量守恒。
动量方程的数学表达形式为:ρ(dv/dt) = -∇p + μ∇^2v + F其中,ρ是流体的密度,t是时间,v是流体的速度矢量,p是压强,μ是流体的粘度,∇p表示压强的梯度,∇^2v表示速度的拉普拉斯算子,F是外力的合力。
动量方程由牛顿第二定律推导而来。
它表示,在流体中,流体质点的动量变化等于合外力对质点的作用力。
动量方程用于描述流体在受力作用下的运动状态,通过求解动量方程,可以得到流体的速度分布。
根据动量方程,我们可以推导出流体中的压力分布。
在水管中,如果水流速度增大,则根据动量方程中的负梯度项,压力会降低。
这是因为速度增大会导致动能的增加,压力会减少以保持动量守恒。
综上所述,流体的连续性方程和动量方程是流体力学中的两个基本方程。
连续性方程描述了质量守恒原理,动量方程描述了动量守恒原理。
通过求解这两个方程,我们可以获得流体在空间和时间上的运动状态和力学性质。
流体力学中的流体动力学方程流体力学是研究流体运动规律和性质的学科,它在能源、环境、航空航天等领域有着广泛的应用。
流体动力学方程是流体力学的基础,它描述了流体在运动过程中的物理现象和力学特性。
本文将介绍流体动力学方程的基本原理和常见的流体动力学方程。
一、连续性方程连续性方程是描述流体质点质量守恒的基本方程。
它表明流体在运动过程中,质量的流入等于流出。
连续性方程可以用数学形式表示为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的速度矢量,∇·表示散度运算符。
二、动量守恒方程动量守恒方程描述了流体质点在运动过程中动量的变化。
根据牛顿第二定律,动量守恒方程可以表示为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·τ + ρg其中,p是流体的压力,τ是动态粘性应力张量,g是重力加速度。
三、能量守恒方程能量守恒方程是描述流体内能和外界能量转化的方程。
根据热力学第一定律,能量守恒方程可以表示为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(k∇T) + q其中,E是单位质量的总能量,v是流体的速度矢量,k是热传导率,T是温度,q是单位质量的内部热源。
四、状态方程流体力学中的状态方程描述了流体在热力学过程中的状态特性。
流体的状态方程通常表示为:p = ρRT其中,p是流体的压力,ρ是流体的密度,R是特定流体的气体常数,T是温度。
综上所述,流体动力学方程包括连续性方程、动量守恒方程、能量守恒方程和状态方程。
这些方程是建立在质点假设和牛顿力学基础上的,可以描述流体在运动过程中的物理现象和运动规律。
通过求解这些方程,可以得到流体的运动速度、压力分布等信息,为解决实际问题提供了重要的理论基础。
在实际应用中,为了解决流体动力学方程的复杂性,常常采用数值模拟等方法进行求解。
数值模拟可以通过离散化方程、引入数值格式和数值算法,得到流体在离散网格上的解。
流体力学——微分形式的基本方程内容主要内容微分形式的连续性方程和动量方程;作用在流体微元上的体积力和表面力;重力场、应力场、压强场;边界条件和初始条件等微分形式的流体力学基本方程描述空间点邻域内的物理量关系,求解这些方程可得到物理量在空间分布的细节,上一章讨论了运动参数的空间分布,这一章将把力的分布形式加入基本方程。
本章内容内容¾微分形式的连续性方程¾作用在流体元上的力¾微分形式的动量方程¾纳维-斯托克斯(N-S)方程¾边界条件与初始条件¾压强场流体运动的连续性17世纪初,英国年轻科学家哈维(W.Harvey)运用伽利略倡导的定量研究原则,测量出人的心脏每小时泵出约540磅(245Kg)的血,相当于人体重的两倍多,这么多血来自何方流向何方呢?哈维通过实验和逻辑思维否定了统治人类1400多年的陈旧观念,大胆提出从动脉到静脉的血液循环理论,虽然当时还不知道毛细血管的存在。
直至45年后从发明的显微镜里首次观察到毛细血管,证实了哈维的理论。
血液循环理论是流体连续性原理的胜利,在科学史上有里程碑的意义。
(图B3.1.1)微分形式的连续性方程如图B3.1.1所示,设流体流过以M(x,y,z)为基点,以dx,dy,dz为边长的控制体元。
在δt时间内沿x方向净流出控制体(流出质量减去流入质量)的质量为取极限后可得利用质点导数概念,可改写为方程适用于:任在直角坐标系中为可压缩流体定常运动因,由(B3.1.6在直角坐标系中为表面力表面力为流场中假想面一侧的流体(或固体)对另一侧流体的接触力,如压强、粘性切应力等作用在流体面积元上的表面力()除了与空间位置、时间有关外,还与面积元的方位有关。
作用在过M (x,y,z )点,外法线单位矢为n 的面积元上的单位面积表面力(图B3.2.2)为:A t z y x A δδδs n F p 0lim ),,,(→=(B3.2.5)称为表面应力,脚标n 代表面积元的方位sF δA δn p设简称为重力势,是单位质量流体元具有的重力势能向应力,静止流体中的表面应力始终与作用面垂直。
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。