极限连续试题
- 格式:doc
- 大小:114.00 KB
- 文档页数:2
极限练习题专升本山东一、选择题1. 函数f(x) = x^2 - 3x + 2在x=1处的极限是:A. 0B. -1C. 1D. 22. 如果lim (x→2) [f(x) - g(x)] = 3,那么lim (x→2) f(x) - lim (x→2) g(x) =:A. 3B. 6C. 无法确定D. 0二、填空题3. 计算极限lim (x→∞) (1/x)^2 = _______。
4. 若lim (x→0) [sin(x)/x] = 1,则lim (x→0) cos(x) =_______。
三、解答题5. 求函数f(x) = (x^3 - 3x^2 + 2x) / (x - 1)在x=1处的左极限和右极限,并说明该点的极限是否存在。
6. 证明lim (x→0) [(x^2 + x) / (x - 1)] 不存在。
四、计算题7. 计算下列极限:(a) lim (x→1) (x^2 - 1) / (x - 1)(b) lim (x→∞) (3x^2 + 2x + 1) / (x^2 + 3)8. 利用夹逼定理证明lim (n→∞) (1 + 1/n)^n = e。
五、应用题9. 某工厂生产的产品数量随时间的变化而变化,设产品数量为f(t),时间t小时后,f(t) = 100t / (t^2 + 1)。
求当t趋于无穷大时,产品数量的变化趋势。
10. 某函数f(x)在x=0处可导,且f'(0)=2,求lim (x→0) [f(x) - f(0) - 2x] / x^2。
答案:1. C2. A3. 04. 15. 左极限为2,右极限也为2,所以极限存在且等于2。
6. 证明略。
7. (a) 2 (b) 38. 证明略。
9. 产品数量趋于100。
10. 0【注】本试题仅供参考,实际考试中请以官方发布的试题为准。
极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。
A.1;B.?;C.ln3;D.2ln3。
.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。
2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。
?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。
??1,x?0.?19无穷小量是。
20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
大学高数极限考试题及答案# 大学高数极限考试题及答案一、选择题1. 下列函数中,极限不存在的是()A. \( f(x) = \frac{x^2 - 1}{x - 1} \) 当 \( x \to 1 \)B. \( g(x) = \sin(x) \) 当 \( x \to \pi \)C. \( h(x) = x^2 \) 当 \( x \to 2 \)D. \( k(x) = \frac{\sin(x)}{x} \) 当 \( x \to 0 \)答案:A2. 计算极限 \( \lim_{x \to \infty} \frac{x^2}{x + 1} \) 的结果是()A. \( \infty \)B. \( 1 \)C. \( 0 \)D. \( \frac{1}{2} \)答案:A二、填空题1. \( \lim_{x \to 0} x \cdot \sin(\frac{1}{x}) = \) ______答案:02. \( \lim_{x \to 1} (x^2 - 1) = \) ______答案:0三、计算题1. 计算极限 \( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)。
解答:\( \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3}\frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6 \)2. 计算极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \)。
解答:使用洛必达法则(L'Hôpital's Rule):\( \lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0}\frac{\cos(x)}{1} = \cos(0) = 1 \)四、证明题1. 证明 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \)。
2015函数、极限与连续习题加答案制题人: 兰 星 第一章 函数、极限与连续2 第一章 函数、极限与连续第一讲:函数一、是非题1.2x y =与xy =相同;2.)1ln()22(2x x y x x +++=-是奇函数;( )3.凡是分段表示的函数都不是初等函数; ( )4. )0(2>=x x y 是偶函数;( )5.两个单调增函数之和仍为单调增函数; ( )6.实数域上的周期函数的周期有无穷多个;制题人: 兰 星 第一章 函数、极限与连续3 ( )7.复合函数)]([x g f 的定义域即)(x g 的定义域; ( )8.)(x f y =在),(b a 内处处有定义,则)(x f 在),(b a 内一定有界。
( ) 二、填空题1.函数)(x f y =与其反函数)(x y ϕ=的图形关于 对称;2.若)(x f 的定义域是]1,0[,则)1(2+x f 的定义域是 ; 3.122+=xxy 的反函数是 ;4.1)(+=x x f ,211)(x x +=ϕ,则]1)([+x f ϕ= , ]1)([+x f ϕ= ; 5.)2(sin log2+=x y 是由简单函数 和复合而成; 6.1)(2+=xx f ,x x 2sin )(=ϕ,则)0(f = ,___________)1(=af ,___________)]([=x f ϕ。
制题人: 兰 星 第一章 函数、极限与连续4 三、选择题1.下列函数中既是奇函数又是单调增加的函数是( )A 、x 3sin B 、13+x C 、xx +3D 、xx -32.设54)(2++=bx x x f ,若38)()1(+=-+x x f x f ,则b 应为( )A 、1B 、-1C 、2D 、-23.)sin()(2x xx f -=是( )A 、有界函数B 、周期函数C 、奇函数D 、偶函数 四、计算下列各题1.求定义域523arcsin3xx y -+-=2.求下列函数的定义域制题人: 兰 星 第一章 函数、极限与连续5 (1)342+-=x x y(2)1142++-=x x y(3)1)2lg(++=x y (4)x y sin lg =3.设2)(x x f =,xe x g =)(,求)]([)],([)],([)],([x g g xf f x fg x g f ;4.判断下列函数的奇偶性制题人: 兰 星 第一章 函数、极限与连续6 (1)3)(-=x x f (2)xx f )54()(=(3) xx x f -+=11lg)( (4)x x x f sin )(=5.写出下列函数的复合过程 (1))58(sin 3+=x y (2))5tan(32+=x y(3)212x y -= (4))3lg(x y -=制题人: 兰 星 第一章 函数、极限与连续76.设⎩⎨⎧≥<=.1,0,1,)(x x x x ϕ求)51(ϕ,)21(-ϕ,)2(-ϕ,并作出函数)(x y ϕ=的图形。
〔一〕函数、极限、连续一、选择题:1、 在区间(-1,0),由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -=(C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )〔A 〕无穷大量 〔B 〕无穷小量 〔C 〕无界函数〔D 〕有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,那么f (x )是)(x ϕ的( ) 〔A 〕高阶无穷小 〔B 〕低阶无穷小 〔C 〕同阶无穷小 〔D 〕等阶无穷小 4、 x =0是函数1()arctanf x x=的( ) 〔A 〕可去连续点〔B 〕跳跃连续点; 〔C 〕振荡连续点〔D 〕无穷连续点 5、 以下的正确结论是〔 〕〔A 〕)(lim x f xx →假设存在,那么f (x )有界;〔B 〕假设在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,那么),(lim 0x f x x →也存在;〔C 〕假设f(x)在闭区间[a ,b ]上连续,且f (a ),f (b )<0那么方程f (x )=0,在(a ,b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 假设),1(3-=x f y Z且x Zy ==1那么f (x )的表达式为 ;2、 数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 那么a =,b = ; 4、 设,)(ax ax x f --=那么x =a 是f (x )的第类连续点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,那么n = ; 三、 计算题:1、计算以下各式极限:〔1〕xx x x sin 2cos 1lim0-→; 〔2〕x xx x -+→11ln 1lim 0;〔3〕)11(lim 220--+→x x x 〔4〕xx x x cos 11sinlim30-→ 〔5〕x x x 2cos 3sin lim 0→ 〔6〕xx xx sin cos ln lim0→2、确定常数a ,b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a ,b ]上连续,且a <f (x )<b , 证明在(a ,b )内至少有一点ξ,使()f ξξ=.〔二〕导数与微分一、填空题:1、 设0()f x '存在,那么tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 那么(1)f '= ; 3、 设xey 2sin =, 那么dy = ;4、 设),0(sin >=x x x y x 那么=dxdy ; 5、 y =f (x )为方程x sin y +y e 0=x确定的隐函数, 那么(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 那么(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x ey -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A)2x -y -2=0 (B)2x +y +1=0 (C)2x +y -3=0 (D)2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax处处可导,那么( )(A)a =b =1 (B)a =-2,b =-1 (C)a =0,b =1 (D)a =2,b =14、 假设f (x )在点x 可微,那么xdyy x ∆-∆→∆0lim的值为( )(A)1 (B)0 (C)-1 (D) 不确定5、设y =f (sin x ),f (x )为可导函数,那么dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx '(C)(sin )cos f x x '(D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、假设g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、设()ln f x x x =, 求()()n fx . 7、计算.〔三〕中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 假设01lim sin 22ax x e b x →-=那么a = ,b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==那么)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f ’(x)=0在(a,b)〔 〕〔A 〕仅有一个根; 〔B 〕至少有一个根; 〔C 〕没有根; 〔D 〕以上结论都不对。
常州大学怀德学院大学数学A (上)试题库(一)函数、极限、连续1。
下列函数中偶函数有( )。
(A )2x xa -; (B )||sin x x ; (C ) x 2+cos x ; (D )21010xx --.2。
下列函数中奇函数有( ).(A )xxx +||; (B ) x 2sin )2(x -π; (C ) )]()([1x f x f --+; (D )11+-x x a a .3.设函数)(x f 是奇函数,且⎪⎭⎫⎝⎛-+=21121)()(xx f x F ,则函数)(x F 是( ) (A )偶函数; (B )奇函数; (C ) 非奇非偶函数 ; (D) 不能确定。
4.下列数列极限不存在的有( ).(A )10, 10, 10, ⋅ ⋅ ⋅ , 10, ⋅ ⋅ ⋅ ; (B)23, 32,45,54, ⋅⋅ ⋅ ; (C )⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n nn n nnn f 1 1)(;(D )⎪⎩⎪⎨⎧-+=为偶数为奇数n n n n f n )1( 11)(。
5。
数列{x n }与{y n }的极限分别为A 与B , 且A ≠B , 则数列x 1, y 1, x 2, y 2, x 3, y 3, ⋅ ⋅ ⋅ 的极限为( ).(A ) A ; (B ) B ; (C ) n 奇数时为A ,n 偶数时为B ; (D ) 不存在。
6。
下列数列收敛的是( ). (A )nn x nn 1)1(--=; (B )nx n n 1)1(-=; (C )2sinπn x n = ; (D ) n n x 2=。
7.下列极限存在的有( )。
(A )x x sin lim ∞→;(B )x xx sin 1lim ∞→; (C )121lim 0-→x x ; (D )xx e 10lim→。
8。
下列变量在给定变化过程中不是无穷大量的有( ). (A )132+x x (x →+∞); (B ) lg x (x →0+); (C ) lg x (x →+∞); (D )xe1(x →0)。
高数试题练习一、函数、极限连续1.函数)(x f y 的定义域是()A .变量x 的取值范围B .使函数)(x f y 的表达式有意义的变量x 的取值范围C .全体实数D .以上三种情况都不是2.以下说法不正确的是()A .两个奇函数之和为奇函数B .两个奇函数之积为偶函数C .奇函数与偶函数之积为偶函数D .两个偶函数之和为偶函数3.两函数相同则()A .两函数表达式相同B .两函数定义域相同C .两函数表达式相同且定义域相同D .两函数值域相同4.函数42y x x 的定义域为()A .(2,4)B .[2,4]C .(2,4]D .[2,4)5.函数3()23sin f x x x 的奇偶性为()A .奇函数B .偶函数C .非奇非偶D .无法判断6.设,121)1(x xx f 则)(x f 等于( )A .12x xB .xx212C .121x xD .xx2127.分段函数是()A .几个函数B .可导函数C .连续函数D .几个分析式和起来表示的一个函数8.下列函数中为偶函数的是()A .xey B .)ln(x yC .xx y cos 3D .xy ln 9.以下各对函数是相同函数的有()A .xx g x x f )()(与B .x x g x x f cos )(sin 1)(2与C .1)()(x g x x x f 与D .2222)(2)(xxx xx g xx f 与10.下列函数中为奇函数的是()A .)3cos(x y B .xx y sin C .2xxe eyD .23xxy 11.设函数)(x f y的定义域是[0,1],则)1(x f 的定义域是( )A .]1,2[B .]0,1[ C .[0,1]D .[1,2]12.函数20200022)(2xxx x xx f 的定义域是( )A .)2,2(B .]0,2(C .]2,2(D .(0,2]13.若)1(,23321)(f xxx xx f 则( )A .3B .3C .1D .114.若)(x f 在),(内是偶函数,则)(x f 在),(内是()A .奇函数B .偶函数C .非奇非偶函数D .0)(x f 15.设)(x f 为定义在),(内的任意不恒等于零的函数,则)()()(x f x f x F 必是()A .奇函数B .偶函数C .非奇非偶函数D .)(x F 16.设42,021,1211,1)(2xx x x x x f 则)2(f 等于( )A .12B .182C .D .无意义17.函数x x ysin 2的图形()A .关于ox 轴对称B .关于oy 轴对称C .关于原点对称D .关于直线x y 对称18.下列函数中,图形关于y 轴对称的有()A .xx ycos B .13xx y C .2xxe eyD .2xxe ey19.函数)(x f 与其反函数)(1x f的图形对称于直线( )A .y B .x C .xy D .xy 20. 曲线)1,0(log aax y a y a x与在同一直角坐标系中,它们的图形()A .关于x 轴对称B .关于y 轴对称C .关于直线x y 轴对称D .关于原点对称21.对于极限)(lim 0x f x ,下列说法正确的是()A .若极限)(lim 0x f x存在,则此极限是唯一的B .若极限)(lim 0x f x 存在,则此极限并不唯一C .极限)(lim 0x f x 一定存在D .以上三种情况都不正确22.若极限A )(lim 0x f x存在,下列说法正确的是()A .左极限)(lim 0x f x不存在B .右极限)(lim 0x f x不存在C .左极限)(lim 0x f x和右极限)(lim 0x f x存在,但不相等D .A)(lim )(lim )(lim 0x f x f x f x xx23.极限ln 1limxex xe的值是()A .1B .1eC .0D .e24.极限ln cot lim ln x x x+0的值是().A .0B . 1C .D .125.已知2sin lim2xx bax x,则()A .,2ba B .1,1ba C .1,2b a D .,2b a 26.设b a,则数列极限limn nnnab是A .aB .bC .1D .ba 27.极限x x1321lim的结果是A .0B .21C .51D .不存在28.xlim xx 21sin为()A .2B .21C .1 D .无穷大量29.nm nxmxx ,(sin sin lim 0为正整数)等于()A .n mB .m n C .nm nm )1(D .mn mn )1(30.已知1tan lim23xx bax x,则()A .0,2b a B .,1b aC .,6b a D .1,1b a 31.极限xxx x xcos cos lim()A .等于 1B .等于0C .为无穷大D .不存在32.设函数10001sin )(xexx x x f x则)(lim 0x f x( )A .1B .0C .1D .不存在33.下列计算结果正确的是()A .ex xx1)41(lim B .41)41(lim ex xxC .41)41(lim ex xxD .4110)41(lim e x x x34.极限xx xtan 0)1(lim 等于()A . 1B .C .0D .2135.极限xxxx xsin 11sinlim 0的结果是A .1B .1C .0D .不存在36.1sinlim k kxx x为()A .kB .k1C .1 D .无穷大量37.极限xxsin lim 2=()A .0B .1C .1D .238.当x 时,函数xx)11(的极限是( )A .eB .eC .1D .139.设函数1cos 0001sin )(xx x x x x f ,则)(lim 0x f xA .1B .0C .1D .不存在40.已知a xax xx 则,516lim 21的值是()A .7B .7C . 2D .341.设20tan )(xxx xaxx f ,且)(lim 0x f x 存在,则a 的值是( )A .1B .1C .2D .242.无穷小量就是()A .比任何数都小的数B .零C .以零为极限的函数D .以上三种情况都不是43.当0x 时,)2sin(3x x与x 比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小44.当0x时,与x 等价的无穷小是()A .xxsin B .)1ln(x C .)11(2x x D .)1(2x x45.当0x 时,)3tan(3x x 与x 比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小46.设,1)(,)1(21)(x x g x x x f 则当1x 时()A .)(x f 是比)(x g 高阶的无穷小B .)(x f 是比)(x g 低阶的无穷小C .)(x f 与)(x g 为同阶的无穷小D .)(x f 与)(x g 为等价无穷小47.当x时,11)(ax x f 是比x 高阶的无穷小,则( )A .1aB .aC .a 为任一实常数D .1a 48.当0x时,x 2tan 与2x比较是()A .高阶无穷小B .等价无穷小C .同阶无穷小,但不是等价无穷小D .低阶无穷小49.“当0x x,A x f )(为无穷小”是“A x f x x)(lim”的()A .必要条件,但非充分条件B .充分条件,但非必要条件C .充分且必要条件D .既不是充分也不是必要条件50.下列变量中是无穷小量的有()A .)1ln(1limx xB .)1)(2()1)(1(lim1x xx x xC .x x x1cos 1limD .xx x1sincos lim51.设时则当0,232)(x x f xx()A .)(x f 与x 是等价无穷小量B .)(x f 与x 是同阶但非等价无穷小量C .)(x f 是比x 较高阶的无穷小量D .)(x f 是比x 较低阶的无穷小量52.当0x时,下列函数为无穷小的是( )A .xx 1sinB .xe1C .xln D .xxsin 153.当0x时,与2sin x等价的无穷小量是( )A .)1ln(x B .xtan C .xcos 12D .1xe54.函数,1sin)(xx x f y当x时)(x f ( )A .有界变量B .无界变量C .无穷小量D .无穷大量55.当0x时,下列变量是无穷小量的有( )A .xx3B .xx cos C .x ln D .xe56.当0x 时,函数xx ysec 1sin 是( )A .不存在极限的B .存在极限的C .无穷小量D .无意义的量57.若0x x 时, )(x f 与)(x g 都趋于零,且为同阶无穷小,则()A .)()(limx g x f x xB .)()(limx g x f x xC .)1,0()()(limc c x g x f x xD .)()(limx g x f x x不存在58.当0x时,将下列函数与x 进行比较,与x 是等价无穷小的为( ) A .x 3tan B .112xC .xx cot csc D .xx x 1sin259.函数)(x f 在点0x 有定义是)(x f 在点0x 连续的()A .充分条件B .必要条件C .充要条件D .即非充分又非必要条件60.若点0x 为函数的间断点,则下列说法不正确的是()A .若极限A )(lim 0x f xx 存在,但)(x f 在0x 处无定义,或者虽然)(x f 在0x 处有定义,但)(A0x f ,则0x 称为)(x f 的可去间断点B .若极限)(lim 0x f x x与极限)(lim 0x f x x都存在但不相等,则0x 称为)(x f 的跳跃间断点C .跳跃间断点与可去间断点合称为第二类的间断点D .跳跃间断点与可去间断点合称为第一类的间断点61.下列函数中,在其定义域内连续的为()A .xx x f sin ln )(B .00sin )(x ex x x f xC .10101)(xx x x x x f D .01)(xx x x f 62.下列函数在其定义域内连续的有()A .x x f 1)(B .0cos 0sin )(x x x x x f C .10001)(xx x x xx f D .01)(xx x x f 63.设函数21ar c t an)(xx x x f 则)(x f 在点0x 处()A .连续B .左连续C .右连续D .既非左连续,也非右连续64.下列函数在0x处不连续的有( )A .0)(2xx e x f x B .1sin )(21xx x x x f C .0)(2x xx x x f D .0)1ln()(2xxx x x f 65.设函数12111)(2xx x xx f , 则在点)(1x f x 处函数()A .不连续B .连续但不可导C .可导,但导数不连续D .可导,且导数连续66.设分段函数101)(2xx x xx f ,则)(x f 在0x 点()A .不连续B .连续且可导C .不可导D .极限不存在67.设函数)(x f y,当自变量x 由0x 变到y x x 相应函数的改变量时,0=()A .)(0x x f B .xx f )('0C .)()(00x f x x f D .xx f )(068.已知函数12000)(xxxx ex f x,则函数)(x f ( )A .当0x 时,极限不存在B .当0x 时,极限存在C .在0x处连续D .在0x 处可导69.函数)1ln(1x y的连续区间是( )A .),2[]2,1[B .),2()2,1(C .),1(D .),1[70.设nxnx x f x13lim)(,则它的连续区间是()A .),(B .处为正整数)(1n nx C .)()0,(D .处及n xx1071.设函数31011)(xx xx x f ,则函数在0x 处()A .不连续B .连续不可导C .连续有一阶导数D .连续有二阶导数72.设函数0xx x xy,则)(x f 在点0x 处()A .连续B .极限存在C .左右极限存在但极限不存在D .左右极限不存在73.设11cot)(2x arc xx f ,则1x 是)(x f 的()A .可去间断点B .跳跃间断点C .无穷间断点D .振荡间断点74.函数2xy e x zy的间断点是( )A .)1,1(),1,1(),0,1(B .是曲线yey 上的任意点C .)1,1(),1,1(),0,0(D .曲线2xy上的任意点75.设2)1(42xx y,则曲线( )A .只有水平渐近线2y B .只有垂直渐近线x C .既有水平渐近线2y ,又有垂直渐近线0x D .无水平,垂直渐近线76.当0x 时, xx y1sin()A .有且仅有水平渐近线B .有且仅有铅直渐近线C .既有水平渐近线,也有铅直渐近线D .既无水平渐近线,也无铅直渐近线二、一元函数微分学77.设函数)(x f 在点0x 处可导,则下列选项中不正确的是()A .xy x f x 00lim )('B .xx f x x f x f x)()(lim)('000C .00)()(lim)('0x xx f x f x f x xD .hx f h x f x f h )()21(lim )('00078.若e cos xy x ,则'(0)y ( )A .0B .1C .1D .279.设x x g e x f xsin )(,)(,则)]('[x g f ()A .xesin B .xecos C .xecos D .xesin 80.设函数)(x f 在点0x 处可导,且2)('0x f ,则hx f h x f h)()21(lim00等于()A .1B .2C .1D .2181.设)(x f 在a x处可导,则xx af x a f x)()(lim=()A .)('a f B .)('2a f C .0D .)2('a f 82.设)(x f 在2x 处可导,且2)2('f ,则hh f h f h)2()2(lim()A .4B .0C .2D .383.设函数)3)(2)(1()(xx x x x f ,则)0('f 等于()A .0B .6C .1D .384.设)(x f 在0x 处可导,且1)0('f ,则hh f h f h )()(lim 0()A .1B .0C .2D .385.设函数)(x f 在0x 处可导,则0limhhx f f )()h - x (00( )A .与0x ,h 都有关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 都无关86.设)(x f 在1x处可导,且21)1()21(lim 0h f h f h ,则)1('f ()A .21B .21C .41D .4187.设)0('')(2f ex f x则( ) A .1B .1C .2D .288.导数)'(log x a 等于( )A .a x ln 1B .a x ln 1C .xxa log 1D .x189.若),1()2(249102x xx xy则)29(y=()A .30B .29!C .0D .30×20×1090.设',)(',)()(y x f ee f y x f x 则存在且=( )A .)()()()('x f xx f xee f e e f B .)(')(')(x f ee f x f xC .)(')()(')()(x f ee f ee f x f x x f x xD .)()('x f xee f 91.设)0('),100()2)(1()(f x xx x x f 则()A .100B .100!C .!100D .10092.若',y x yx则( )A .1x xx B .xx xln C .不可导D .)ln 1(x x x93.处的导数是在点22)(xx x f ( ) A .1 B .0C .1D .不存在94.设',)2(y x yx则()A .)1()2(x x x B .2ln )2(xx C .)2ln 21()2(x x xD .)2ln 1()2(x x x95.设函数)(x f 在区间],[b a 上连续,且,0)()(b f a f 则( )A .)(x f 在),(b a 内必有最大值或最小值B .)(x f 在),(b a 内存在唯一的0)(,f 使C .)(x f 在),(b a 内至少存在一个0)(,f 使D .)(x f 在),(b a 内存在唯一的)(',f 使96.设,)()(x g x f y则dx dy ( )A .])()(')()('[2x g x g x f x f y B .])(1)(1[2x g x f yC .)()('21x g x f yD .)()('2x g x f y 97.若函数)(x f 在区间)b a,(内可导,则下列选项中不正确的是()A .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调增加B .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调减少C .若在)b a,(内0)('x f ,则)(x f 在)b a,(内单调增加D .)(x f 在区间)b a,(内每一点处的导数都存在98.若)(yx f 在点0x 处导数存在,则函数曲线在点))(,(00x f x 处的切线的斜率为()A .)('0x f B .)(0x f C .0 D .199.设函数)(y x f 为可导函数,其曲线的切线方程的斜率为1k ,法线方程的斜率为2k ,则1k 与2k 的关系为()A .211k k B .121k k C .121k k D .21k k 100.设0x 为函数)(x f 在区间b a,上的一个极小值点,则对于区间ba,上的任何点x ,下列说法正确的是()A .)()(0x f x fB .)()(0x f x f C .)()(0x f x f D .)()(0x f x f 101.设函数)(x f 在点0x 的一个邻域内可导且0)('0x f (或)('0x f 不存在),下列说法不正确的是()A .若0x x 时, 0)('x f ;而0x x 时, 0)('x f ,那么函数)(x f 在0x 处取得极大值B .若0x x 时, 0)('x f ;而0x x 时, 0)('x f ,那么函数)(x f 在0x 处取得极小值C .若0x x时, 0)('x f ;而0x x时, 0)('x f ,那么函数)(x f 在0x 处取得极大值D .如果当x 在0x 左右两侧邻近取值时,)('x f 不改变符号,那么函数)(x f 在0x 处没有极值102.0)('0x f ,0)(''0x f ,若0)(''0x f ,则函数)(x f 在0x 处取得()A .极大值B .极小值C .极值点D .驻点103.b x a时,恒有0)(x f ,则曲线)(x f y在ba,内()A .单调增加B .单调减少C .上凹D .下凹104.数()exf x x 的单调区间是() .A .在),(上单增B .在),(上单减C .在(,0)上单增,在(0,)上单减D .在(,0)上单减,在(0,)上单增105.数43()2f x xx的极值为().A .有极小值为(3)f B .有极小值为(0)f C .有极大值为(1)f D .有极大值为(1)f 106.xey 在点(0,1)处的切线方程为()A .x y1B .xy 1C .xy 1D .xy 1107.函数x xxxx f 处的切线与的图形在点)1,0(162131)(23轴交点的坐标是()A .)0,61(B .)0,1(C .)0,61(D .)0,1(108.抛物线x y 在横坐标4x 的切线方程为()A .44yx B .44yxC .184y x D .184y x 109.线)0,1()1(2在x y 点处的切线方程是()A .1x yB .1x y C .1x y D .1x y 110.曲线)(x f y在点x 处的切线斜率为,21)('x x f 且过点(1,1),则该曲线的方程是( )A .12x xy B .12x x y C .12x xy D .12xxy111.线22)121(x ey x上的横坐标的点0x处的切线与法线方程()A .063023y x y x 与B .63023y x y x 与C .063023yxy x与D .063023yxy x与112.函数处在点则0)(,)(3xx f x x f ( )A .可微B .不连续C .有切线,但该切线的斜率为无穷D .无切线113.以下结论正确的是( )A .导数不存在的点一定不是极值点B .驻点肯定是极值点C .导数不存在的点处切线一定不存在D .0)('0x f 是可微函数)(x f 在0x 点处取得极值的必要条件114.若函数)(x f 在0x 处的导数,0)0('f 则0x称为)(x f 的()A .极大值点B .极小值点C .极值点D .驻点115.曲线)1ln()(2xx f 的拐点是()A .)1ln ,1(与)1ln ,1(B .)2ln,1(与)2ln ,1(C .)1,2(ln 与)1,2(ln D .)2ln ,1(与)2ln ,1(116.线弧向上凹与向下凹的分界点是曲线的()A .驻点B .极值点C .切线不存在的点D .拐点117.数)(x f y 在区间[a,b]上连续,则该函数在区间[a,b]上()A .一定有最大值无最小值B .一定有最小值无最大值C .没有最大值也无最小值D .既有最大值也有最小值118.下列结论正确的有()A .0x 是)(x f 的驻点,则一定是)(x f 的极值点B .0x 是)(x f 的极值点,则一定是)(x f 的驻点C .)(x f 在0x 处可导,则一定在0x 处连续D .)(x f 在0x 处连续,则一定在0x 处可导119.由方程yx exy确定的隐函数)(x y y dxdy ( )A .)1()1(x y y x B .)1()1(y x x y C .)1()1(y x x y D .)1()1(x y y x 120.xyy xe y',1则()A .yyxee 1B .1yyxee C .yy xee 11D .yex)1(121.设x x g e x f xsin )(,)(,则)]('[x g f ()A .xesin B .xecos C .xecos D .xesin 122.设x x g e x f xcos )(,)(,则)]('[x g f A .xesin B .xecos C .xecos D .xesin 123.设)(),(x t t f y 都可微,则dyA .dtt f )('B .)('x dxC .)('t f )('x dtD .)('t f dx124.设,2sin xey则dy()A .xd e x2sin B .xd ex2sinsin 2C .xxd exsin 2sin 2sin D .xd exsin 2sin 125.若函数)(x f y 有dy x xxx f 处的微分该函数在时则当00,0,21)('是()A .与x 等价的无穷小量B .与x 同阶的无穷小量C .比x 低阶的无穷小量D .比x 高阶的无穷小量126.给微分式21xxdx ,下面凑微分正确的是( )A .221)1(xx d B .221)1(xx d C .2212)1(xx d D .2212)1(xx d 127.下面等式正确的有( )A .)(sin sin xxxx e d e dxe e B .)(1x d dx xC .)(222x d e dx xex x D .)(cos sin cos cos x d exdx exx128.设)(sin x f y,则dy()A .dx x f )(sin 'B .xx f cos )(sin 'C .xdxx f cos )(sin 'D .xdxx f cos )(sin '129.设,2sin xey则dyA .xd e x2sinB .x d ex2sinsin2C .xxd exsin 2sin 2sin D .xd exsin 2sin 三、一元函数积分学130.可导函数)(F x 为连续函数)(x f 的原函数,则( )A .)('x f B .)()(F'x f x C .)(F'x D .)(x f 131.若函数)(F x 和函数)(x 都是函数)(x f 在区间I 上的原函数,则有()A .I x x x ),(F )('B .I x x x ),()(F C .Ix x x ),()(F'D .IxC x x ,)()(F 132.有理函数不定积分2d 1x x x等于().A .2ln 12xx x CB .2ln 12xx x CC .2ln 12xx x CD .2ln 122xx x C133.不定积分22d 1x x等于().A .2arcsin x CB .2arccosx C C .2arctan x CD .2cot arc x C134.不定积分2e e (1)d x xx x等于().A .1e xC xB .1e xC x C .1exC xD .1exCx135.函数xe xf 2)(的原函数是( )A .4212xeB .xe22C .3312xeD .xe231136.xdx 2sin 等于()A .cx2sin 21B .cx 2sin C .cx2cos 2D .cx 2cos 21137.若xdx x x dx x xf sin sin )(,则)(x f 等于()A .xsin B .xx sin C .xcos D .xx cos 138.设xe是)(x f 的一个原函数,则dxx xf )('()A .cx e x)1(B .cx e x)1(C .cx e x)1(D .cx e x)1(139.设,)(xe xf 则dxx x f )(ln '()A .cx1B .cx1C .cx ln D .cx ln 140.设)(x f 是可导函数,则')(dxx f 为()A .)(x f B .cx f )(C .)('x f D .cx f )('141.以下各题计算结果正确的是( )A .xxdx arctan 12B .cxdxx 21C .cx xdx cos sin D .cx xdx 2sec tan142.在积分曲线族dx x x 中,过点(0,1)的积分曲线方程为( )A .12x B .1)(525x C .x2D .1)(255x 143.dx x31=()A .cx 43B .cx221C .cx221D .cx221144.设)(x f 有原函数x xln ,则dx x xf )(=()A .cx x )ln 4121(2B .cx x )ln 2141(2C .cx x )ln 2141(2D .cx x )ln 4121(2145.xdxxcos sin ()A .c x 2cos 41B .cx 2cos 41C .cx2sin 21D .cx2cos 21146.积分dxx]'11[2()A .211xB .cx211C .xtan arg D .cx arctan 147.下列等式计算正确的是()A .cx xdx cos sin B .cx dx x 43)4(C .cxdxx 32D .cdxxx22148.极限xx xxdxtdt00sin lim的值为()A .1B .0C .2D .1149.极限xxxdxx tdt202sin lim的值为()A .1B .0C .2D .1150.极限403sin limxdtt xx=( )A .41B .31C .21D .1151.2ln 01x t dte dxd ()A .)1(2xe B .exC .ex2D .12xe152.若xtdt dx dx f 0sin )(,则()A .x x f sin )(B .x x f cos 1)(C .cx x f sin )(D .xx f sin 1)(153.函数xdt t t tx213在区间]10[,上的最小值为()A .21B .31C .41D .0154.若xtxc dt te xf e x xg 02122213)(,)(,且23)(')('lim x g x f x则必有()A .0cB .1cC .1cD .2c155.x dt t dxd 14)1(()A .21xB .41xC .2121xxD .xx121156.]sin [2dt t dxd x ( )A .2cos xB .2cos 2xx C .2sin xD .2cost157.设函数0sin )(2xa x x tdtx f x在0x 点处连续,则a 等于()A .2B .21C .1D .2158.设)(x f 在区间],[b a 连续, ),()()(b xadt t f x F x a则)(x F 是)(x f 的( )A .不定积分B .一个原函数C .全体原函数D .在],[b a 上的定积分159.设则为连续函数其中,)(,)()(2x f dt t f axx x F xa)(lim x F ax=()A .2a B .)(2a f a C .0 D .不存在160.函数x2sin 1的原函数是()A .cx tan B .cxcot C .cxcot D .xsin 1161.函数)(x f 在[a,b]上连续, x adt t f x )()(,则()A .)(x 是)(x f 在[a,b]上的一个原函数B .)(x f 是)(x 的一个原函数C .)(x 是)(x f 在[a,b]上唯一的原函数D .)(x f 是)(x 在[a,b]上唯一的原函数162.广义积分dxe x( ) A .0 B .2C .1D .发散163.dxx 02cos 1( )A .0B .2C .22D .2164.设)(x f 为偶函数且连续,又有等于则)(,)()(0x F dt t f x F x( )A .)(x F B .)(x F C .0D .2)(x F 165.下列广义积分收敛的是()A .1xdx B .1xx dx C .dxx 1D .132xdx166.下列广义积分收敛的是()A .13xdx B .1cosxdxC .dxx 1ln D .1dxe x167.apxp dx e)0(等于()A .paeB .paea1C .paep1D .)1(1paep168.ex x dx2)(ln ( )A .1B .e1C .eD .(发散)169.积分dx e kx收敛的条件为()A .kB .0k C .0k D .k 170.下列无穷限积分中,积分收敛的有()A .dxe xB .1x dxC .dxe xD .cos xdx171.广义积分edx xxln 为()A .1B .发散C .21D .2172.下列广义积分为收敛的是( )A .edxxxln B .exx dxlnC .edxx x 2)(ln 1D .edxx x 21)(ln 1173.下列积分中不是广义积分的是()A .0)1ln(dxx B .42211dxx C .11-21dxxD .3-11dxx174.函数()f x 在闭区间[a,b]上连续是定积分badx x f )(在区间[a,b]上可积的().A .必要条件B .充分条件C .充分必要条件D .既非充分又飞必要条件175.定积分121sin 1x dx x等于().A .0B .1C .2D .1176.定积分122d ||xx x 等于().A .0B . 1C .174D .174177.定积分x x xd e )15(45等于().A .0B .5eC .5-eD .52e178.设)(x f 连续函数,则22)(dxx xf ()A .4)(21dx x f B .20)(21dxx f C .40)(2dxx f D .4)(dxx f 179.积分11sin 2xdxx e exx()A .0B .1C .2D .3180.设)(x f 是以T 为周期的连续函数,则定积分Tl ldx x f I)(的值()A .与l有关B .与T 有关C .与l ,T 均有关D .与l ,T 均无关181.设)(x f 连续函数,则2)(dxxx f ()A .21)(21dxx f B .210)(2dxx f C .20)(dxx f D .2)(2dxx f 182.设)(x f 为连续函数,则1)2('dx x f 等于()A .)0()2(f f B .)0()1(21f f C .)0()2(21f f D .)0()1(f f 183.C 数)(x f 在区间[a,b]上连续,且没有零点,则定积分b adx x f )(的值必定()A .大于零B .大于等于零C .小于零D .不等于零184.下列定积分中,积分结果正确的有()A .cx f dx x f ba )()('B .)()()('a f b f dxx f baC .)]2()2([21)2('a f b f dxx f baD .)2()2()2('a f b f dx x f ba185.以下定积分结果正确的是()A .2111dx xB .21112dx xC .211dx D .211xdx 186.adxx 0)'(arccos ()A .211xB .cx211C .ca2arccos D .arccos arccosa 187.下列等式成立的有( )A .0sin 11xdx x B .11dxe xC .abxdx abtan tan ]'tan [D .xdxxdxdxsin sin 0188.比较两个定积分的大小()A .213212dx x dx x B .213212dx x dx x C .213212dxx dxx D .213212dxx dxx 189.定积分22221sin dx xx x 等于()A .1B .-1C .2D .0190.11-x dx( )A .2B .2C .1D .1191.下列定积分中,其值为零的是()A .22-sin xdx x B .20cos xdx x C .22-)(dx x e xD .22-)sin (dxx x192.积分21dxx ()A .0B .21C .23D .25193.下列积分中,值最大的是()A .12dx x B .13dxx C .14dxx D .15dxx 194.曲线x y42与y 轴所围部分的面积为()A .2224dyy B .224dyy C .44dxx D .444dxx 195.曲线xey 与该曲线过原点的切线及y 轴所围形的为面积()A .e xxdxxe e1B .10ln ln dyy y y C .1dxex exD .edyy y y 1ln ln 196.曲线2xyx y 与所围成平面图形的面积( )A .31B .31C .1 D .-1四、常微分方程197.函数y c x (其中c 为任意常数)是微分方程1x y y 的().A .通解B .特解C .是解,但不是通解,也不是特解D .不是解198.函数23xy e是微分方程40y y 的().A .通解B .特解C .是解,但不是通解,也不是特解D .不是解199.2()sin y y x y x 是().A .四阶非线性微分方程B .二阶非线性微分方程C .二阶线性微分方程D .四阶线性微分方程200.下列函数中是方程0y y 的通解的是().A .12sin cos y C x C xB .xy Ce C .yCD .12xyC eC 专升本高等数学综合练习题参考答案1.B2.C3.C4.B 在偶次根式中,被开方式必须大于等于零,所以有40x 且20x ,解得24x ,即定义域为[2,4].5.A 由奇偶性定义,因为33()2()3sin()23sin ()f x x x xx f x ,所以3()23sin f x xx 是奇函数.6.解:令t x 1,则tt tt t f 21212211)(,所以xx x f 212)(,故选 D 7.解:选D8.解:选D 9.解:选B 10.解:选C11.解:110x ,所以01x ,故选 B 12.解:选C13.解:选 B14.解:选 B15.解:选 B16.解:)(x f 的定义域为)4,1[,选D17.解:根据奇函数的定义知选 C18.解:选 C19. 解:选 C20.解:因为函数)1,0(log a ax ya ya x与互为反函数,故它们的图形关于直线x y 轴对称,选 C 21.A 22.D23.解:这是00型未定式ln 1l 1limlimx exex x exe,故选B .24.解:这是型未定式。
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]6、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]7、设,则().A、B、2C、D、0【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由于, 所以的间断点是x=0,x=6,x=-1.[单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]13、计算().A、B、C、D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个. [单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctan x【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】为有界函数,故原式=.[单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,,不存在,[单选题]24、极限=()A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是()A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】 x=1时,分母为0,无意义。
第一章极限与连续 测试题一一、填空题(每小题5分,共25分)1.设)(x f 的定义域是]1,0[,则)1(2+x f 的定义域是____________.2.=+--+→232lim 231x x x x x ____________. 3.设⎪⎩⎪⎨⎧≥+<-+=1,ln 31,1cos )1(2)(2x x x x xx x f ,则1=x 是)(x f 的____________间断点. 4.22)1(arcsin x y -=,则它的连续区间为____________.5.=∞→nn n x2sin2lim ____________.二、选择题(每小题5分,共25分)1.xxx y +-+=11ln 2是( )(A )偶函数 (B )奇函数(C )在01<<-x 是奇函数,10<<x 为偶函数(D )非奇非偶函数2.若函数)(x f 在某点0x 极限存在,则( ) (A ))(x f 在0x 的函数值必存在且等于极限值 (B ))(x f 在0x 的函数值必存在,但不一定等于极限值 (C ))(x f 在0x 的函数值可以不存在 (D )如果)(0x f 存在的话必等于极限值3.指出下列函数中当0+→x 时为无穷小的是( )(A )x x 1sin (B )x e 1(C )x ln (D )x x sin 14.=-→)sin 11sin(lim 0x xx x x ( )(A )-1 (B ) 1 (C ) 0 (D ) 不存在 5.一元函数在某点具有极限是函数连续的( )(A )必要条件(B )充分条件(C )充要条件(D )既非必要又非充分 三、计算(每小题10分,共30分)1、求极限xxx 2sin ln lim 0→.2、求极限1223lim +∞→⎪⎭⎫⎝⎛++x x x x .3、求nnn x x x f +=∞→1lim )(的表达式.四、(10分)试证三次代数方程01423=+-x x 至少有一个小于1的正实根.五、(10分)设函数,0,sin 0,2)(11⎪⎩⎪⎨⎧≥<=+x x x x f x 求)(x f 的间断点,并说明间断点的类型.测试题一参考答案一、填空题(每小题5分,共25分)1. }0{=x x2. 422lim )2)(1()2)(1(lim 2121-=-++=--++-→→x x x x x x x x x x3. 跳跃间断点4. ]1,1[-5.x二、选择题(每小题5分,共25分)D C A A A三、1、分析:函数x x y 2sin ln =可看作由u y ln =与xxu 2sin =复合而成,虽然x x y 2sin ln =在0=x 处不连续,但212sin lim 0=→x x x ,而函数u y ln =在21=u 连续,所以有如下求解过程.解:原式2ln 2sin lim ln 0-=⎪⎭⎫ ⎝⎛=→x x x . 2、解:原式23223)2(22111211lim 211lim e x x x x x x x =⎪⎭⎫ ⎝⎛++⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=+∞→-+∞→. 3、解:当1<x 时,0lim =∞→nn x ,01lim)(=+=∞→nnn x x x f , 当1>x 时,01lim =∞→n n x ,1111lim 1lim)(=+=+=∞→∞→nn n nn xx x x f ,当1=x 时,21)1(=f ,因此⎪⎪⎩⎪⎪⎨⎧>=<=1,11,211,0)(x x x x f 当当当.四、证:设14)(23+-=x x x f 在[0,1]上连续,01)0(>=f 02)1(<-=f , 由零点定理,至少存在一点)1,0(∈ξ使0)(=ξf ,即方程01423=+-x x 在区间)1,0(内至少有一实根.五、解:函数)(x f 在1-=x 处无定义,又+∞==-+-→++1112lim )1(x x f ,02lim )1(111==-+-→--x x f ,故1-=x 是函数的间断点,且为第二类间断点 ;由于)0(0sin lim )0(,22lim )0(0110-→++→-≠====+-f x f f x x x , 故0=x 是函数的第一类(跳跃)间断点;又由于函数)(x f 在区间),0[)0,1(,)1,(∞+---∞及上显然是连续的, 故函数仅有间断点1-=x 和0=x .测试题二一、填空题(每小题5分,共25分)1.函数211)(x x x f --=的定义域是____________.2.xx x x sin 1sinlim20→的值为____________. 3.当0x x →时,)(x f 是比)(x g 高阶的无穷小,则当0x x →时,无穷小)()(x g x f +与无穷小)(x g 的关系是____________.4.若0x 为)(x f 的间断点,在_____________条件下,0x 为第一类间断点.5.设⎩⎨⎧≥+<=0,0,)(x x a x e x f x ,要使)(x f 在0=x 处连续,则=a ____________.二、选择题(每小题5分,共25分)1.设函数2)(x x f =,x x 2)(=ϕ,则=)]([x f ϕ( ) (A )22x (B )xx 2 (C )x x 2 (D )x 22 2.数列有界是数列具有极限的( )(A )必要条件 (B )充分条件(C )充分必要条件 (D )既非充分也非必要条件 3.当0→t 时,t t sin 2是比t t 2sin 2( )(A )同阶无穷小量但不是等价无穷小量 (B )等阶无穷小量 (C )不同阶的无穷小量,且t t sin 2是比t t 2sin 2高阶的无穷小量 (D )不同阶的无穷小量,且t t 2sin 2是比t t sin 2高阶的无穷小量4.点1=x 是函数⎪⎩⎪⎨⎧>-=<-=1,31,11,13)(x x x x x x f 的( )(A )连续点(B )第一类非可去间断点(C )可去间断点(D )第二类间断点 5.设)(x f 在],[b a 上连续,则⋅)(a f 0)(<b f 是方程0)(=x f 在),(b a 内至少有一个根的( )(A )充分条件(B )必要条件(C )充分必要条件(D )既非充分又非必要条件 三、计算(每小题10分,共30分)1、求极限)331tan (lim 22xx x x x x x -+-+∞→. 2、求极限11sin 61lim--+→x x e x .3、若b ax x x x f --+=1)(2,当∞→x 时为无穷小,求常数a 与b 的值. 四、(10分)证明数列 ,222,22,2+++极限存在,并求极限值.五、(10分)讨论 x x x x f nnn 2211lim)(+-=∞→ 的连续性,若有间断点,判断其类型.测试题二参考答案一、填空题(每小题5分,共25分)1. ]1,0()0,1[ -2. 03. 等价无穷小4. )(0-x f 与)(0+x f 都存在 5.1二、选择题(每小题5分,共25分) D A D C A三、1.解:因为1tan 1lim 1tan lim 0==→∞→t tx x t x ,又311313lim 33lim 222=-+-=-+-∞→∞→x x x xx x x x x ,所以4)331tan (lim 22=-+-+∞→x x x x x x x . 2.解:3sin 621lim 11sin 61lim 00=⋅=--+→→x xe x x x x . 3.解:由题意知0]1[lim 2=--+∞→b ax x x x 即b x axx a ax x x x x =+--=-+∞→∞→1)1(lim ]1[lim 22 故11-=-==a b a四、证明:n n x x +=+21,),3,2,1( =n ,21=x ,(1)数列}{n x 有界,当1=n 时,221<=x ,假设2<n x ,则221<+=+n n x x , 所以2<n x ,),3,2,1( =n . (2)数列}{n x 单调递增,因为02)1)(2(22221>+++--=++-+=-+=-+nn n n nn nn n n n n x x x x x x x x x x x x .由(1)(2)知,a x n n =∞→lim .由于n n x x +=+21,n n x x +=+221,)2(lim lim 21n n n n x x +=∞→+∞→,从而,a a +=22,解得1,221-==a a (舍去),故2lim ==∞→a x n n .五、解:x x x x f nnn 2211lim)(+-=∞→⎪⎩⎪⎨⎧>-=<=1 ,1 ,01 ,x x x x x ,当1=x 时,1)(lim )(lim 11-=-=++→→x x f x x ,1lim )(lim 11==--→→x x f x x , 所以1=x 是)(x f 的跳跃间断点;当1-=x 时,1lim )(lim 11-==++-→-→x x f x x ,1)(lim )(lim 11=-=---→-→x x f x x ,所以1-=x 是)(x f 的跳跃间断点.测试题三一、填空题(每小题5分,共25分)1.如果k k y x ,均是来自数列n a 中的子列,且子列k k y x ,的极限存在而且相等,则数列n a 的极限____________存在. 2.xxx x sin lim+∞→的极限值为____________. 3.函数⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠>-=2,11,02,1,)1ln(1x x x x x y 的连续区间是____________.4.点1=x 是函数⎪⎩⎪⎨⎧>-=<-=1,31,11,13)(x x x x x x f 的____________间断点.5.若22lim 222=--+-→x x bax x x ,则_________=a ,_________=b .二、选择题(每小题5分,共25分)1.设函数)(x f 的定义域为]5,1[,则函数)1(2x f +的定义域为( ) (A )]5,1[ (B )]2,0[ (C )]2,2[- (D )]0,2[- 2.如果)(lim 0x f x x +→与)(lim 0x f x x -→存在,则( )(A ))(lim 0x f x x →存在且)()(lim 00x f x f x x =→(B ))(lim 0x f x x →存在但不一定有)(lim 00x f x x =→(C ))(lim 0x f x x →不一定存在(D ))(lim 0x f x x →一定不存在3.无穷多个无穷小量之和( )(A )必是无穷小量 (B )必是无穷大量(C )必是有界量 (D )是无穷小,或是无穷大,或是有界量,都有可能4.设⎪⎩⎪⎨⎧=≠=0,00,)(x x x xx f ,则( )(A ))(x f 在0=x 极限存在且连续 (B ))(x f 在0=x 极限存在但不连续 (C ))(x f 在0=x 的左、右极限存在但不相等 (D ))(x f 在0=x 的左、右极限不存在5.当0→x 时,与2sin x 等价的无穷小是( )(A ))1ln(x + (B )tgx (C ))cos 1(2x - (D )1-x e 三、计算题(每小题10分,共30分) 1、求极限)12111(lim 222nn n n n ++++++∞→ .2、求⎪⎪⎩⎪⎪⎨⎧>=<+=01sin 000sin )(x x x x x x x x x f 的间断点,并判断间断点的类型.3、求极限xxx x 30sin sin tan lim -→. 四、(10分)证明方程475=-x x 在区间()2,1内至少有一个实根.五.(10分)讨论函数 ⎪⎩⎪⎨⎧≤->=0,1,0,1sin )(2x e x xx x f x在0=x 处的连续性.测试题三参考答案一、填空题(每小题5分,共25分)1. 不一定2. 13. ),2()2,1[+∞⋃4. 可去间断点5.8,2-==b a 二、选择题(每小题5分,共25分)C CD C C 三、1.因为11211122222+≤++++++≤+n n nn n n nn n又1111limlim2=+=+∞→∞→nnn n n n ,1111lim1lim22=+=+∞→∞→n n nn n ;由夹逼准则知1)12111(lim 222=++++++∞→nn n n n .2、解:)(x f 的间断点为0=x ,由于1)(lim 0=-→x f x ,而0)(lim 0=+→x f x ,故0=x 是)(x f 的跳跃间断点.3、解:原式=2121lim sin )cos 1(tan lim 32030=⋅=-→→x x x x x x x x . 四、证明:令47)(5--=x x x f , 则)(x f 在[]2,1上连续, 又0)2(,0)1(><f f ,由零点存在定理知,存在一点)2,1(0∈x , 使0)(0=x f , 即0x 是方程475=-x x 的根.五.解:)0(0)1sin(lim )(lim 200f xx x f x x ===++>->-,),0(0)1(lim )(lim 0f e x f x x x ==-=+->->- 所以)(x f 在0=x 处连续.测试题四一、填空题(每小题5分,共25分)1..设)0(1)1(2>++=x x x x f ,则=)(x f ____________.2.()=-++∞→x x x 1lim____________.3.若b x x ax x x =++--→14lim 231,则_________=a ,_________=b .4.设⎪⎩⎪⎨⎧=≠=0,0,3sin 1)(x a x x x x f ,若)(x f 在),(+∞-∞上是连续函数,则=a ________. 5.已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则=a __________. 二、选择题(每小题5分,共25分)1.指出下列哪一个是初等函数( )(A ))sgn(x y =(符号函数) (B )x x y =(C )][x y =(取整) (D )⎩⎨⎧<-≥+=0,10,1x x x x y2.已知⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<-=<<-≤<=x x x x x x x x f 25,6225,3251,2410,2)(,则)(x f 在25=x 处( ) (A )左右极限都不存在 (B )左右极限有一个存在,一个不存在 (C )左右极限都存在但不相等 (D )极限存在3.若)()(x x f ϕ>,且A x f ax =→)(lim ,B x ax =→)(lim ϕ,则必有( )(A )B A > (B )B A ≥ (C )B A > (D )B A ≥4.=++--∞→xxxx x e e e e 234lim ( ) (A )31(B )2 (C ) 1 (D )不存在5.指出下列函数中当0+→x 时为负无穷大量的是( ) (A )x x 1sin (B )x e 1(C )x ln (D )x xsin 1三、计算题(每小题10分,共30分)1、设极限82lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,求常数a 的值.2、当0→x 时,求无穷小量x x sin 22sin -是关于x 的几阶无穷小.3、求极限n n n n n 32)2(3lim 11+-+++∞→. 四、(10分)证明:设)(x f 在],0[a 上连续)0(>a ,且)()0(a f f =,则方程)2()(a x f x f +=在区间]2,0[a内至少有一个实根.五、(10分)⎪⎩⎪⎨⎧≤<-+>=-01)1ln(0)(11x x x e x f x , 求)(x f 的间断点,并说明间断点所属类型.测试题四参考答案一、填空题(每小题5分,共25分) 1.2111)(xx x f ++=2. 03. 10,4==b a4. 315.23-二、选择题(每小题5分,共25分)B D B D C三、1、解:8]31[lim 2lim 333==⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--∞→∞→a ax ax aax x xx e a x a a x a x , 所以2=a .2、解:k x k x k x k x x x xx x x x x x x x 302000lim )21(2lim )1(cos sin 2lim sin 22sin lim →→→→-=-=-=- 当3=k 时,1sin 22sin lim0-=-→kx x xx , 所以无穷小量x x sin 22sin -是关于x 的三阶无穷小.3、解:31)32()32)(2(3lim 32)2(3lim 11=+--+=+-+∞→++∞→n n n n n n n n . 四、证明:令)2()()(a x f x f x F +-=, 则)(x F 在]2,0[a上连续,又)2()0()0(a f f F -=, )0()2()()2()2(f af a f a f a F -=-= ,所以0)2()0(≤⋅a F F ,当0)2()0(=⋅a F F 时,0=x 或2ax =即为所求;当0)2()0(<⋅a F F 时,由零点存在定理知,存在一点)2,0(0ax ∈,使0)(0=x F ,即)2()(00ax f x f +=.五、解:当0=x 时,111lim )(lim --→→==++e e x f x x x ,0)1ln(lim )(lim 00=+=+-→→x x f x x ,所以0=x 是)(x f 的跳跃间断点; 当1=x 时,+∞==-→→++1111lim )(lim x x x e x f ,所以1=x 是)(x f 的无穷间断点.。
第一章 函数、极限与连续一、 判断题:1.极限)(lim 0x f x x →存在的充要条件是)0(0-x f 与)0(0+x f 都存在。
( )2.如果)0(0-x f 与)0(0+x f 都存在且相等,则)(lim 0x f x x →存在。
( )3.如果函数)(x f 在0x 处既左连续且右连续,则)(x f 在0x 连续。
( ) 4.如果)(lim 0x f x x →存在,则)(x f 在0x 连续。
( )5.如果函数)(x f 在0x 连续,则)(lim 0x f x x →存在。
( )6.极限 2200limy x xyy x +→→存在 。
( )7.如果)(x f 在()b a ,内连续,则)(x f 在()b a ,内必有最大值和最小值。
( ) 8.如果)(x f 在[]b a ,内连续,则)(x f 在[]b a ,内必有最大值和最小值。
( ) 9.极限 ()e x xx -=-→1lim 0。
( )10.极限21946853lim 2323=-++-∞→x x x x x 。
( ) 二、 填空题:1.函数1)3ln(2222-++--=y x y x y 的定义域是 。
2. 函数4192222-++--=y x y x y 的定义域是 。
3.若⎪⎩⎪⎨⎧<=>+=0,00,,1)(x x x x x f π,则=-)]}1([{f f f 。
4. 函数 x y 2sin ln =的复合过程是 。
5. 一切初等函数在其 内都是连续的。
6. 设arctgx x y 2-=,则)(lim x y x --∞→= 。
7. 如果322sin 3lim0=→x mx x ,则m = 。
8. 设⎪⎩⎪⎨⎧≥-<<≤-+=2,2221,1,32)(2x x x x x x x x f ,则)(lim 1x f x →= 。
9. 函数11)(2+-=x x x f 的间断点是 。
数学竞赛极限试题及答案试题一:求极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
解答:根据洛必达法则,我们首先将分子和分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1\]试题二:计算极限 \(\lim_{n \to \infty} \left(1 +\frac{1}{n}\right)^n\)。
解答:这个极限是欧拉数 \(e\) 的定义,所以:\[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e\]试题三:求极限 \(\lim_{x \to \infty} \frac{\sin x}{x}\)。
解答:由于 \(\sin x\) 的值域是 \([-1, 1]\),当 \(x\) 趋向于无穷大时,\(\frac{\sin x}{x}\) 将趋向于 0:\[\lim_{x \to \infty} \frac{\sin x}{x} = 0\]试题四:计算极限 \(\lim_{x \to 0} x \sin \frac{1}{x}\)。
解答:利用泰勒展开,我们知道 \(\sin \frac{1}{x} \approx\frac{1}{x}\) 当 \(x\) 接近 0 时。
因此:\[\lim_{x \to 0} x \sin \frac{1}{x} = \lim_{x \to 0} x \cdot \frac{1}{x} = 1\]试题五:求极限 \(\lim_{n \to \infty} \frac{n^2}{e^n}\)。
解答:这是一个 0/0 的不定式,我们可以对分子和分母同时求导:\[\lim_{n \to \infty} \frac{2n}{e^n} = 0\]因为 \(e^n\) 的增长速度远远超过 \(n^2\),所以极限为 0。
数学中的极限与连续性概念测试题在数学的广袤领域中,极限与连续性概念是极其重要的基石,它们不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
为了帮助大家更好地理解和掌握这两个概念,下面我们将通过一系列测试题来进行探讨。
一、选择题1、当 x 趋近于 2 时,函数 f(x) =(x 2)/(x² 4)的极限为()A 1/4B 1/2C 不存在D 02、函数 f(x) =|x| 在 x = 0 处()A 连续且可导B 连续但不可导C 不连续D 可导但不连续3、下列函数中,在 x = 0 处极限存在但不连续的是()A f(x) = 1/xB f(x) = sin(1/x)C f(x) ={ 1, x > 0; 0, x = 0; -1, x < 0 }D f(x) = x sin(1/x)4、若lim(x→1) f(x) = 3,lim(x→1) g(x) = 5,则lim(x→1) f(x) +g(x) =()A 8B 2C -2D 155、函数 f(x) ={ x + 1, x < 1; 2x 1, x ≥ 1 }在 x = 1 处()A 连续且可导B 连续但不可导C 不连续D 可导且连续二、填空题1、极限lim(x→∞)(1 + 1/x)^x 的值为_____。
2、若函数 f(x) 在 x = a 处连续,则lim(x→a) f(x) =______。
3、函数 f(x) =(x² 1)/(x 1)在 x = 1 处的极限为_____。
4、极限lim(x→0) (sin x)/x 的值为_____。
5、若函数 f(x) = x² 4,g(x) = x + 2,则lim(x→2) f(x)/g(x) =______。
三、解答题1、求极限lim(x→3) (x² 9)/(x 3)。
2、讨论函数 f(x) ={ x + 2, x < 0; 0, x = 0; x², x > 0 }在 x =0 处的连续性。
极限练习题及答案一. 选择题1.设F是连续函数f的一个原函数,”M?N”表示“M 的充分必要条件是N”,则必有.F是偶函数?f)是奇函数.F是奇函数?f是偶函数. F是周期函数?f是周期函数. F是单调函数?f是单调函数.设函数f?1x,则ex?1?1x?0,x x?0,x?1都是f?1都是f的第一类间断点. 的第二类间断点x?0是f的第一类间断点,x?1是f的第二类间断点. x?0是f的第二类间断点,x3.设f?x??x?1x?1是f的第一类间断点.1,则f[,x?0、,1f]?1A) 1?xB) 1?x4.下列各式正确的是 C)XD) x1+ )?exx11lim??elimC) D)?exxA) limx?0?1x?1B)limx?01x?x?xx??x??5.已知lim?9,则a?。
A.1;B.?;C.ln3;D.2ln3。
.极限:lim x??2A.1;B.?;C.e7.极限:lim; D.e。
2x??x3?2= x3A.1;B.?;C.0;D.2.8.极限:limx?0x?1?1x=A.0;B.?;C 1; D.2.29. 极限:lim=x???A.0;B.?;C.2;D. 1.2sinx10.极限: limtanx?=x?0sin2xA.0;B.?;C.二. 填空题 11.极限limxsinx??116; D.16.2xx?12= ; 12. limarctanx= ;x?0x13. 若y?f在点x0连续,则lim[f?f]= ; x?x?14. limsin5xxx?0?;15. limn?;16. 若函数y?x?1x?3x?222,则它的间断点是17. 绝对值函数?x,x?0;?f?x??0,x?0;??x,x?0.?其定义域是,值域是。
?1,x?0;?18.符号函数 f?sgnx??0,x?0;其定义域是,值域是三个点的集合。
??1,x?0.?19无穷小量是。
20. 函数y?f在点x0连续,要求函数y?f满足的三个条件是。