《兰花人工授粉与无菌播种》
- 格式:pdf
- 大小:465.58 KB
- 文档页数:8
兰花的繁殖方式兰花的繁殖方式引言:兰花是一种受人喜爱且常见的花卉品种,其美丽的花朵和独特的芳香使其成为许多人的心头好。
了解兰花的繁殖方式对于爱好兰花的人来说非常重要,因为通过适当的繁殖方法,可以增加兰花的数量,并且可以为兰花提供更好的生长环境。
本文将深入探讨兰花的繁殖方式,包括分株繁殖、种子繁殖以及离体培养等方法,并分享个人对这些方法的观点和理解。
一、分株繁殖1.1 简介:分株繁殖是一种常见且有效的兰花繁殖方法。
通过将兰花根系和茎部分开,可以获得与母株相似的新植株。
1.2 具体步骤:选择健康的母株,并将其取出。
轻轻地将根系和茎部分开,并确保每个分株都有足够的根和节位。
将分株置于适当的培养介质中,等待其重新生长。
1.3 优缺点:分株繁殖的优点是繁殖速度快,新植株与母株相似。
然而,由于分株时需要将母株拆分,这可能导致对母株的损害。
个人观点和理解:个人认为分株繁殖是一种相对简单且常用的兰花繁殖方法。
它适用于大多数兰花品种,且繁殖速度较快。
然而,在进行分株繁殖时需要小心操作,以避免对母株造成太大的损害。
二、种子繁殖2.1 简介:种子繁殖是另一种常见的兰花繁殖方式。
通过种植兰花种子,可以培养出新的兰花植株。
2.2 具体步骤:从成熟的兰花花荚中取出种子。
将种子嵌入适当的培养介质中,如腐殖质和珍珠岩混合物。
提供适宜的温度和湿度,等待种子发芽和生长。
2.3 优缺点:种子繁殖的优点是可以获得大量的新植株,并且可以培养具有不同特征的兰花。
然而,种子繁殖需要较长的时间来等待种子发芽和生长,且成功率较低。
个人观点和理解:个人认为种子繁殖是一种既有挑战性又有趣味性的兰花繁殖方法。
通过种子繁殖,可以培养出具有不同特征的兰花,并对兰花的遗传变异进行研究。
然而,种子繁殖需要耐心和耐心等待种子发芽和生长,同时对培养环境的控制也需要注意。
三、离体培养3.1 简介:离体培养是一种高级的兰花繁殖技术。
该方法通过将兰花的幼小组织或花荚培养在含有适当激素的培养基中,培育出新的兰花植株。
2007.4湖 北 林 业 科 技蝴蝶兰的杂交和无菌播种技术 蝴蝶兰Phal aenopsis am abilis Bl.是单茎性植物,不能像其它的兰花一样分株繁殖。
现在市场上很多兰花的种类都可以利用无性繁殖,但由于蝴蝶兰的无性繁殖方法很难确立,目前主要还是利用实生的方法进行繁殖。
白花品种实生繁殖遗传上的变异很少,繁殖比较容易,但有色品种的繁殖存在问题。
蝴蝶兰的种子杂交后到完全成熟,虽然品种不同有一定的差异,但都需要5~7个月。
完全成熟的种子其蒴果开裂,种子和空气接触,沾染杂菌,种子需要消毒后才能播种。
但蝴蝶兰的种子对杀菌剂非常敏感,杀菌后再播种,种子很容易丧失发芽能力,特别是对那些原种的杂交或者蒴果比较小(5cm以下)的种子,这种危险性更高。
所以,一般在杂交5个月前后播种未成熟的种子。
该方法由于从杂交到播种的时间比较短,可以减轻母株的消耗,并且在裂果前,内部的种子处于无菌的状态,播种比较容易。
1 杂交1.1 花的构造兰科植物的雄蕊和雌蕊在1个花柱上,花粉是块状,在柱头的先端被药帽盖住。
1.2 授粉方法人工授粉时,首先要选好亲本,由于母株需要消耗大量的养分,所以需要选择健康旺盛的母本。
一般情况下,开花第1天花粉发芽力最强,开花7d 后花粉生活力降低。
花粉处于柱头先端的药帽下,被药帽保护。
授粉时,用镊子先将母本的花粉块取出,药帽也被一起取下,去除药帽,再用镊子将父本的花粉块镊起,轻轻地放在母本的柱头上,因柱头和花粉块上都有粘液,花粉在柱头上粘得牢固,不必担心花粉脱落。
在杂交中,哪一个做母本(或父本),结果完全不一样,需要父、母本交换来进行杂交。
1.3 杂交后的管理杂交完成后,在标签上记录交配双亲、杂交日期等,然后挂在授粉母株上,1个星期后子房开始膨大,说明杂交成功。
对于多余的杂交而结的蒴果要尽早摘除,如果1株上留有4~5个蒴果,而且温度过低,蒴果外观上虽然变肥大,但几乎没有种子。
1株上留1~2个蒴果比较合适。
兰花培育技术方案兰花是一种美丽并且珍贵的植物,具有较强的药用价值和观赏价值。
因此,兰花的种植技术一直备受关注。
该文档将介绍一些兰花培育的技术方案,包括土壤种植、水培种植和组织培养等。
土壤种植技术选址和土壤要求在选址时,应选择向阳、透气、排水性良好的地方。
为了获得最佳的生长结果,必须注意选用肥沃、疏松、透水性良好的土壤。
通常情况下,以砂质壤土、灰壤土为主要种植土壤。
种植步骤1.容器准备:选用透气性好的花盆或容器,并在底部铺上一层透气性好的材料,如砾石或炭粒。
2.混合土壤:将肥料、泥炭土和黄沙混合,加水拌匀,成为均匀的土壤。
3.植株入土:将兰花植株放在容器中,并用混合土壤埋好。
4.浇水:适量浇水,注意不要过多。
水培种植技术材料准备1.兰花植株2.水培装置3.植物营养液种植步骤1.容器准备:选用透明的水培设备,并在其中加入营养液。
2.兰花植株准备:从泥土中取出兰花植株,将植株根部洗净,切掉植株的枯叶和枯根。
3.植株入水:将兰花植株放在水培设备中,确保植株稳定。
4.更换营养液:定期更换兰花植株的营养液,注意不要过多,及时更换。
组织培养技术材料准备1.组培材料(例如琼脂等)2.兰花组织样本3.植物生长素和植物生长调节剂培养步骤1.植物样本处理:从健康的植物中采集叶片、茎、花蕾等样本,并在无菌条件下去除杂质。
2.组织切割:将采集的兰花组织样本切成适当大小的小块,然后在无菌条件下接种到含有适当营养成分的琼脂平板上。
3.培养条件:采用温度适宜、光照合适的培养环境,促进兰花组织的生长和繁殖。
4.生长素或植物生长调节剂处理:加入适量的生长素或植物生长调节剂,促进兰花组织的快速繁殖和生长。
综上所述,兰花的培育技术包括土壤种植、水培种植和组织培养等。
选址和土壤要求、水培装置和营养液、组织培养材料和培养条件都是影响兰花生长的重要因素。
通过合理灌溉和肥料管理,可以使兰花快速生长并获得优质的产量。
兰花组培苗的培育与管理在养植兰花组培苗前,首先要了解什么是组培苗,组培苗是运用现代植物学的科学技术,采用植物的种子、芽或植物的其他组织,在特定的条件进行植物的复制,复制出的苗称为组织培育苗,一般称为组培苗、克隆苗,因组培苗通常在试管内繁殖所以又称试管苗。
组培苗在某个植物的大量繁殖、选种、脱毒等方面具有很大的优势,在农业、花卉等领域有着广泛的运用。
兰花的组培苗最早7 O 年月在日本得以应用,兰科中应用最为广泛的是洋兰和大花蕙兰,在春兰、寒兰、墨兰、建兰中也有较多的应用,以春兰占多,蕙兰虽也进行了组培的尝试,但由于技术问题未大量组培,我所见到的只几个试验品种,且移栽成活率很低;兰花的组培主要是通过二个途径:一是采用兰花的种子进行繁殖,即采用兰花成熟朔果内的种子繁殖;二是试验室切取兰花的芽点进行繁殖。
现今世界上进行兰花组培的主要是在韩国、中国的台湾及大陆的几个兰花组培单位,大家比较熟识的是四川的同心公司,各兰花组培单位组培兰花的品种都各有侧重。
一、为了消退部分兰友对组培苗的误会和与杂交苗的混淆,下面我先谈谈组培苗与其他种类苗的关系。
1、兰花组培苗与自然繁殖苗的关系。
从植物的特性上说应是同样性质的兰花,自然界的兰花繁殖既有种子在兰花生长地特定环境下发芽生长成龙根体,再在龙根体上长出实生苗,又有实生苗分孽出芽长成苗,这是兰花在自然界的二种繁殖方法-有性繁殖和无性繁殖;组培苗也是通过对兰花种子和芽点发芽,生成龙根体,让龙根长出实生苗的过程,只是通过试验室处理过的兰花种子发芽率远远高于自然界,然而,采纳种子亲本繁殖的苗其出芽后的苗品种特性稳定性低于切芽组培,在种子繁殖时生成的苗变化较大,这也是通过种子繁殖选种的一个方法,既会有优于原品种的兰花,也会有不及原品种的兰花,要经过品种的筛选,因此要有与原品种一样的组培苗时多数采纳芽点的组培,芽点组培原理与我们的分苗没什么区分,但相对芽点的组培难度特别高,组培出的实生苗既兰花的幼苗, 通过移栽成和自然繁殖的兰花苗一样特性的兰花,组培的幼苗较自然状态下繁殖的苗要难养些,缘由在下面会提及,但养成成苗后与自然养殖的苗并无区分2、兰花组培苗与返销苗的关系。
春兰授粉和种子无菌萌发研究作者:王晓英,张林,李承秀,张兴,王长宪,王峰,高红,边晓惠,孙健来源:《农学学报》 2017年第1期王晓英,张林,李承秀,张兴,王长宪,王峰,高红,边晓惠,孙健(泰安市泰山林业科学研究院,山东泰安271000)摘要:为提高春兰品种间授粉坐果率、缩短种子无菌萌发时间、提高萌发率,对春兰品种自交和杂交的适宜授粉时间、种子无菌萌发进行研究。
结果显示最佳授粉时间为花后2~5 天。
品种自交坐果率仅33.3%,品种杂交的坐果率达100%。
蒴果的纵横径生长呈单“S”形曲线。
成熟种子萌发时间为281~296天;授粉后130 天的未成熟种子萌发时间仅需96~99 天,萌发数量最多,为116~132 个/瓶。
本研究使春兰从授粉到种子萌发的时间缩短8个月,且萌发率增加,节约了成本,提高了效率。
关键词:春兰;种子;无菌萌发中图分类号:S682.31 文献标志码:A 论文编号:cjas160200020 引言兰花是中国十大名花之一,也位列十大年宵花之中。
中国兰花文化已有上千年历史,兰花爱好者众多,具有巨大的国内市场,为国内兰花产业发展提供了有利条件。
国兰是指兰科兰属部分地生种类,以其形态优美、花香幽长,被称为"花中君子"。
春兰(Cymbidiumgoeringii)是国兰主要种类,分布广,不同地区的春兰在耐寒性、瓣形、开花期等性状有较大的差异。
春兰在自然状态下繁殖因难,种子萌发率极低,且野生春兰被过度采挖,致使春兰种质资源受到了很大的威胁,被国家列为珍稀濒危植物。
目前,春兰的育种仍以常规育种为主,根据育种目标选择亲本进行杂交[1]。
蒴果成熟后自然状态下萌发率低,而种子无菌播种可大大提高其萌发率[2-4],从杂交后代中选择符合目标性状的植株进行组培扩繁[5-11]。
近年来春兰研究多集中在杂交后代的组培快繁方面[12-20],对种子无菌培养研究较少。
笔者进行春兰后代种子无菌萌发研究,旨在加快育种进程,保护野生兰花种质资源,为国内兰花产业良性发展提供基础条件。
沈渊如之《兰花》全本(四)沈渊如《兰花》之十三兰花的繁殖法(2)分株后,根部难免或多或少遭受伤害,必须把盆栽移放在通风荫凉处,减少叶面及体内水分蒸发。
在刚开始数天内,稍微喷些叶水,防止水分过度蒸发而引起叶丛萎焉,在这阶段内,土壤不能过湿,否则容易引起烂根,稍湿润即可。
约待半月左右,当翠云草叶梢吐新,可施稀释腐熟绿肥,促使根系更好生长。
其后仍按日常栽培管理法。
2.假球茎培养法分株后有些带根的假球茎,虽然已进入衰老期,大多不着生叶束,但只要精心培育,仍能发生子芽,长成新叶束。
栽种前,先把根系洗净、凉干,所用兰盆最好用泥质瓦盆,盆口径不宜过大,一般只要让根系勉强容纳即可,如假球茎根系短小而少,可集合几个放入一支大盆中混栽,但必须用标牌扜插在各个品种的所在处,以免日后搞错。
栽植时都用平盆面形式,假球茎不可埋得过深,仅用泥盖没即可,然后用喷水壶浇透,移放在通风荫凉处,约待十多天,再移放兰台养护。
如遇大雨或久雨,应移放避雨地方,日后如见有新芽破土生长,立即加盖些细泥,再露再加,直至芽长叶束微放开为止,此时,在盆面上铺设些稀疏带泥翠云草,以养护盆面。
盛夏时,用芦帘遮荫。
如在秋季分盆培养假球茎,就不必遮荫了,相反要给予充足日照。
在培养假球茎生发叶束过程中,对土壤干湿度要比一般情况下带干些。
3.芽变芽变是植物体在个别芽中发生的遗传变异。
芽变的范围很广,在许多观赏花卉中经常有出现花色、花形等方面的变异,人们利用这些变异,经过分离,定向培育,创造出许多新品种。
例如在菊花芽变中选育出400多个新品种,在月季芽变中选育出300多个新品种。
其他如大丽花、郁金香、风信子、百合、梅花杜鹃、山茶等都产生了许多芽变新品种,由此可见芽变对于选育新品种,确是起着一定作用的。
我国自古以来所栽培的兰花园艺品种,都是从野生兰花中选择而来的。
正因为这些品种源出自然有性杂交或受外界条件影响而逐步演变而成,所以在这些有机体及其组织中存在着一定的内在矛盾,在长期人工栽培过程中往往会发生异质性变异。
促进兰花变异的方法1.选择适应性强的品种:促进兰花变异的首要方法是选择适应性强的品种作为种质材料。
适应性强的品种多具有较强的生存能力和适应各种环境条件的能力,这样不仅能够提高兰花的生存率,还可以增加兰花变异的机会。
2.控制生长环境:为了促进兰花的变异,可以通过控制生长环境来刺激其变异。
例如,调节光照、温度、湿度等因素,可以影响兰花的生长发育和生物代谢,从而增加其变异的可能性。
3.人工授粉:人工授粉是促进兰花变异的重要手段之一、通过有选择地授粉,可以将来自不同花株的花粉进行交配,从而产生新的基因组合和形态特征,促进兰花的变异。
4.物理处理:物理处理是通过外力引起植物遗传物质的变异。
例如,可以使用辐射剂量适中的射线或化学物质处理兰花种子或幼苗,诱发其染色体的变异。
这种方法虽然具有一定的风险性,但可以促进兰花的变异并产生新的花型和色彩。
5.培养基调控:培养基调控是通过调节培养基成分和植物生长调节物质的添加量,对兰花进行培养和变异的方法。
合理调节培养基的pH值、激素含量等参数,可以促进兰花的生长和变异。
6.培育新种:通过交配育种的方法,可以培育出新的兰花品种。
可以选择有着不同花型、颜色等特征的亲本进行交配,通过遗传的方式传递新的基因组合,培育出具有新特征的兰花品种。
7.病毒诱变:病毒诱变是一种促使植物遗传物质变异的方法。
通过感染特定病毒,可以改变植物体内的基因组合和表达方式,从而促进兰花的变异。
不过,病毒诱变需要在实验室条件下进行,并需要严格的控制和监测。
总的来说,促进兰花变异的方法主要包括选择适应性强的品种、控制生长环境、人工授粉、物理处理、培养基调控、培育新种和病毒诱变等。
通过这些方法的综合应用,可以增加兰花变异的机会,培育出具有新特征的兰花品种。
兰花的养殖⽅法⼤全 兰花(学名:Orchidaceae),属兰科,是单⼦叶、多年⽣草本植物,亦叫胡姬花。
由于地⽣兰⼤部分品种原产中国,因此兰花⼜称中国兰。
今天,店铺为你带来了兰花的养殖⽅法⼤全。
兰花的养殖⽅法 我们中国⼈观赏与培植兰花,⽐之西⽅栽培的洋兰要早得多。
早在春秋时代⼆千四百年前,中国⽂化先师孔⼦曾说:“芷兰⽣幽⾕,不以⽆⼈⽽不芳,君⼦修道⽴德,不为穷困⽽改节”。
兰,⾹草也。
――《说⽂》 衡兰芷若。
――《汉书·司马相如传》 兰槐之根是为芷。
――《荀⼦·劝学》 中国兰的根是为⽩芷,⽩芷象征⼈民百姓。
蕙芷是⾃古以来仁义与民政的传统美德精华,唐代⼤诗⼈李⽩写有“幽兰⾹风远,蕙草流芳根”。
蕙兰根系⼈民。
栽培时,分开的兰丛,不要拆得太零星,每丛⾄少有3~5苗,最好是⼀年⽣植株、⼆年⽣植株和三年⽣植株保留在同⼀丛中。
垫盆 盆底⽤—块⽡⽚盖住排⽔孔,再⽤砖块,⽡⽚或贝壳逐步填充,其中⼤隙缝填充以泥粒或⾖⽯,⼀般约为盆内⾼度的1/2~1/3。
上余的净⾼约10~15cm,留作培养⼟层。
其具体⾼度应根据兰花的种类及兰根的长短和盆的⾼矮⽽定。
铺垫物不要填得太密实,应保留点孔隙。
实践证明,有的新根能在铺垫层孔隙中⽣长良好。
栽植 在铺垫层上,先填上2~3cm的培养⼟,⽤⼿稍压实,即可将兰花正⽴摆布其上,根据植株与花盆⼤⼩,可以⼏个单株、2丛、3丛或更多丛种在⼀个盆⾥。
3丛宜栽成⿍⾜之势。
4丛可栽成四⽅形,五丛宜列成梅花形。
兰根要⾃然舒展,叶⽚要四⽅披拂。
要缓缓地将兰根放⼊盆内,使兰根⾃然舒展,尽量不与盆内壁碰擦。
兰株⼊盆后,就逐步固定兰株姿势。
—盆栽⼀丛的,应使⽼假鳞茎偏居⼀侧,使新芽有发展的余地。
⼀盆栽数丛的,每丛⽼假鳞茎应相对地集于盆之中间,使新根新芽向外发展各有⾜够的空间。
填⼟ 栽植时,⼀⼿扶叶,⼀⼿添加营养⼟,执住兰株基部稍往上提,以舒展根系,同时摇动兰盆。
让培养⼟深⼊根际;继续添⼟,并摇动兰盆,调整兰株的位置和⾼度。
兰花人工授粉每年的夏季正是小桃红的花期,在赏花闻香之余可以试一试人工授粉。
6月18日,我买来不久的小桃红也开了,昨天中午试着人工授粉了下,希望有所结果。
把授粉的一些小窍门贴出来供有兴趣的花友参考:1、人工授粉的意义和目的兰花是典型的虫媒花,几乎各种花型都有相应种类和体型的昆虫为之传粉,达到如此完善和专一性,是兰花高度进化的结果。
在原产地大多有与其共生的昆虫为之传粉,但兰花离开原产地因无特定昆虫而无法完成传粉受精作用,所以不能结实,为获得更多种苗和优良奇特新品种,需要进行大量授粉工作。
2、兰花构造在网上很难搜到兰花的构造示意图,只好翻拍了下吴应祥先生编著的《中国兰花》(第2版)第22页上的图5 春兰的蕊柱。
请注意5.药帽和6.药腔的位置和形状。
药腔是凹陷进去的,从外面很难看到。
这是兰花蕊柱的典型,其他兰属植物与春兰大同小异。
3、人工授粉人工授粉时,首先要选好亲本,一般情况下,开花第1 天花粉发芽力最强,开花7 天后花粉仍可应用,雌花最好的授粉时间是开花后3~4天。
授粉时先将母本的花粉块(在药帽下面)除去,再将父本的花粉块用小镊子镊起(或其他合适工具,比如火柴棒、棉签等),轻轻地放进母本的药腔内。
晴天气温较高时,授粉后结实率比较高。
(见图二)4、等待结实授粉后1-2周,若柱头变粗大、花瓣下垂并内卷,则表明授粉成功。
之后半年左右甚至要一年之久,果实方能成熟。
5、结实之后有条件的可以配制培养基,进行播种繁殖。
或者直接将种子撒在兰盆里的兰株四周。
附:兰科植物最主要的特征在于花的特殊构造:一、花变为两侧对称,内轮花被片中央的1枚变为奇特的形状,称唇瓣(舌);二、花梗和子房扭曲,使花的唇瓣处于下方;三、雌雄性器官连成一体,称合蕊柱,蕊柱上只有1枚雄蕊,其余雄蕊退化或消失;四、柱头上方出现一个舌状的器官,称蕊喙;五、花粉粘合成团块,与蕊喙相连接。
上述的花的构造,在植物界中是独一无二的,也是兰花家族中所特有的。
兰花授粉的全过程(图片)
兰花授粉的意义:
给兰花授粉其实质就是兰花的人工杂交。
兰花的有性繁殖是获取新品种的重要途径,如果兰友有兴趣还可
取已经确定的优良品种做父、母本培育杂交新种,这样的兰荪出优良品种的概率要大大高于自然杂交;兰
花种子的萌发在自然环境非常困难,但在无菌培养基里是非常容易的事,容易获得原球茎;通过兰花种子
的萌发建立快繁系,进行组培苗的生产,在洋兰培育中已被广泛使用;最近,在国兰中也有出现,但有性
繁殖后代是有变异的,不能完全保留父、母本的性状,这种方法和取茎芽生产的组培苗是有区别的。
ORIGINAL PAPERA classroom exercise in hand pollination and in vitro asymbiotic orchid seed germinationPhilip J.Kauth ÆTimothy R.Johnson ÆScott L.Stewart ÆMichael E.KaneReceived:20December 2007/Accepted:7March 2008/Published online:26March 2008ÓSpringer Science+Business Media B.V.2008Abstract While many scientific reports on orchid seed germination provide germination protocols,few provide concise descriptions of plant selection,hand pollination,and asymbiotic seed culture for use in classroom exercises.Another major limitation for conducting orchid seed germination exercises is the availability of seeds or flowers to pollinate.In this paper,we outline an efficient and reliable classroom exercise using the orchid Spathoglottis to demon-strate hand pollination and subsequent asymbiotic seed germination.Flowers of S.parsonii are hand pollinated and subsequent seed capsule development is carefully monitored.Hand pollination of the orchid flower provides an opportunity to discuss floral morphology and associated reproductive biology.Capsules are harvested 30to 40days after pollina-tion,prior to capsule dehiscence.Spathoglottis kimballiana seed capsules are surface sterilized,seeds excised,and then sown on P723Orchid Seed Sowing Medium.Germination occurs quickly and large seedlings ready for greenhouse acclimatization develop within 4–6months.Keywords Classroom laboratory ÁTeaching exercise ÁOrchid pollination ÁOrchid seed cultureIntroductionThe rising popularity of orchids has created a demand for high quality plants as well as industry workers trained in orchid hybridization and in vitro asymbiotic seed germination techniques.Asymbiotic techniques involve germinating orchid seeds in vitro on a defined medium containing carbohydrates,vitamins,minerals,and a solidifying agent.Since orchid seed germination requires training and practice,high school and college instructors have expressed interest in learning these techniques to incorporate them into science class curricula.In addition,instructors and students can use these methods to study the unique biology of orchid flowers and seeds.Many publications on asymbiotic germination describe efficient methods;however,these methodol-ogies are limited as teaching tools because clear descriptions of hand pollination methods for generat-ing seed capsules are often absent.Lo et al.(2004)provided a protocol for pollinating orchid flowers and subsequent seed germination,but the pollination procedures are not descriptive enough for teaching methods.Mudge and Chu (1992)provided a class-room exercise for orchid seed germination,but hand pollination techniques are not provided.Hand polli-nation is critical to instructors since a reliable seedP.J.Kauth (&)ÁT.R.Johnson ÁM.E.KaneDepartment of Environmental Horticulture,University of Florida,P.O.Box 110675,Gainesville,FL 32611,USA e-mail:pkauth@ufl.eduS.L.StewartPhytoTechnology Laboratories,14335West 97th Terrace,Lenexa,KS 66215,USAPlant Cell Tiss Organ Cult (2008)93:223–230DOI 10.1007/s11240-008-9365-1source is required to incorporate orchid seed germi-nation into classroom exercises.This paper presents a complete methodology to incorporate asymbiotic seed germination in the classroom,from flower pollination through subse-quent seed germination and development.After completing this exercise students will be able to:(1)describe orchid flower morphology and associated reproductive biology (2)recognize seed capsule development and maturation (3)produce seedlings using asymbiotic seed culture procedures.Background instructional informationIn nature,orchid seeds utilize mycorrhizal fungi during germination as sources of carbohydrates,nutrients,and water (Stewart and Kane 2007).In vitro symbiotic germination,which has beenstudied since the late 1800s,is the co-culture of orchid seeds and their symbiotic fungi.Lewis Knud-son discovered asymbiotic germination in the 1920s (Arditti 1967),and this is the preferred method of producing orchids for commercial purposes.Orchid flowers are trimerous,possessing three petals and three sepals (Fig.1a).The third petal is modified into a labellum or lip typically found oriented toward the bottom of the flower.Potential pollinators use the labellum as a landing platform,directing them to the gynostemium.A distinguishing feature of the Orchidaceae is the gynostemium or column,which is the fusion of the style,stigma,and stamens (Dressler 1981).The anther cap and pollinia are located at the front of the gynostemium,while the stigma is located directly behind the anther on the underside of the gynostemium (Fig.1b,c).The pollen grains are joined together into masses called pollinia (Fig.1d).During a pollinationevent,Fig.1Flower morphology of Spathoglottis parsonii .(a )Components of a flower;scale bar =1cm.(b )Location of the anther cap;scale bar =1cm.(c )Gynostemium with pollinia and anther cap;scale bar =1mm.(d )Pollinia with individual pollinium;scale bar =1mm (e )Ventral view ofgynostemium with anther cap and pollinia removed;scale bar =1mm (f )Gynostemium with pollinia attached after hand pollination;scale bar =1mmpollinators deposit pollinia onto the stigmatic surface (Fig.1e,f).A successful pollination event depends on pollen andflower age.Spathoglottisflowers remain open for several weeks,while inflorescences continually flower for several months(pers.observation).Polli-nating young,fully openflowers is recommended since pollen is most receptive1–8days afterflowers are open(see Proctor1998;Shiau et al.2002;Lo et al.2004for data on other species).Likewise,using youngflowers less than one week from opening ensures that the stigmatic surface is receptive to pollen.After two weeks,flowers close and pollen becomes brown and unreceptive(pers.observation). ProceduresPlant materialSpathoglottis parsonii and S.kimballiana are used for this exercise,but these techniques can be used for any orchid.Spathoglottis orchids are easy-to-cultivate tropical terrestrial orchids,and are reliable sources of seed capsules for lab exercises.These orchids are available at local plant/orchid nurseries and garden centers.They grow well in a standard soilless potting mix such as Fafard No.2(Conrad Fafard,Inc., Agawam,MA)or a mix containing a4:1:1v/v/v ratio of organic compost(peat),sand,and perlite(Bel-trame2006).The orchids should be grown in30–70% shade under a natural photoperiod with a daytime temperature between20–26°C.Plants should be fertilized bi-weekly with either a balanced fertilizer at150ppm nitrogen or a slow release fertilizer. Spathoglottis grow rapidly,and single shoots can become large specimens within six months.Plants may need to be divided and repotted on a regular basis.Spathoglottis have several attributes that allow for efficient classroom demonstrations.First,plants flower year-round under a natural photoperiod since no specific cultural requirements are necessary to induceflowering.Second,the column,anther cap, and pollinia are noticeable without a microscope. Third,seed capsule formation is nearly100%after pollination.Fourth,Spathoglottis are receptive to both self-and cross-pollination.Finally,capsules mature in30–60days compared to75–120days for Phalaenopsis capsules and150–195days for Vanda capsules(Arditti et al.,1982).Hand pollination procedureIdentify the column and anther cap on a fully opened flower(Fig.2a).Gently remove the anther cap and pollinia with a tooth pick(Fig.2b).Dislodge the pollinia and anther cap from the gynostemium by applying slight upward pressure to the bottom of the anther cap(Fig.2c).The pollinia will adhere to the toothpick on contact.Carefully remove the anther cap from the pollinia(if still attached)without dislodging the pollinia(Fig.2d).After removal,transfer the pollinia to the sameflower or anotherflower by gently placing the pollinia onto the stigmatic surface(Fig.2e, f).Remove the pollinia from anotherflower before cross-pollinating with the pollinia from the donor flower.During this step,apply gentle upward pressure against the stigma while retracting the toothpick to maintain contact between the pollinia and stigma.Seed capsule development and maturation time is species,hybrid,and growing condition dependent.For first time hand pollination,closely monitorflower senescence,capsule development,and capsule dehis-cence.No physical signs are visible indicating Spathoglottis capsule maturity,but other species’capsules may turn light green,yellow,or brown.Once capsule development time is estimated by allowing capsules to dehisce,repeat the hand pollination proce-dures.Harvest the capsule one to two weeks before capsule maturity by cutting the capsule from the inflorescence(Fig.2g).Harvesting the capsule at this point will ensure that the capsule does not dehisce (Fig.2h).To limit surface contamination during harvest,handle capsules with forceps and use a clean razor blade to cut the pedicel.Place harvested capsules in a clean paper bag and store at4–10°C for a maximum two days,since capsules may dehisce soon after collecting.Do not store capsules in the freezer or in plastic bags.Freezing will cause permanent damage to the capsules,and plastic bags promote fungal and bacterial growth by limiting air exchange.Medium preparationOrchid seed germination media are available from companies such as Phyto Technology Laboratories, LLC(Shawnee Mission,KS,USA)and Sigma-Aldrich (St.Louis,MO,USA).Many commercially prepared media are complete,requiring only the addition of water before autoclaving and dispensing.Media such as P723Orchid Seed Sowing Medium,Knudson C,and Vacin and Went are suitable for Spathoglottis seeds.Media can also be prepared in the laboratory or classroom by mixing and storing concentrated stock solutions (see Arditti and Ernst 1993for methods on preparing various media from stock solutions).Prepare one liter of P723medium by adding 32.74g of powder to 1000ml of distilled water in a 2-liter Erlenmeyer flask.Adjust the medium pH to 5.7with 0.1N NaOH and 0.1N HCl.Autoclave one liter of medium for 40min at 117kPa and 121°C,and allow to cool for 30min after autoclaving.Dispense 25–30ml of medium into 9cm Petri dishes;one liter of medium makes 30–40Petri dishes.If an autoclave is not available,a pressure cooker is an excellent alternative to sterilize equipment and medium (see Bergman 2006).Alternatively,adding Plant Preservative Mix-ture (PPM)into germination media can suppress bacterial or fungal contaminants temporarily (Plant Cell Technology,Washington,DC;www.ppm4plant-Fig.2Spathoglottisparsonii flower morphology and hand pollination sequence.(a )Flowerprofile.(b )Location of the anther cap and pollinia.(c )Removal of the anther cap with the pollinia.(d )Removal of the anther cap from the pollinia.(e )Transfer of pollinia onto the stigmatic surface.(f )Gynostemium with attached pollinia.(g )Green capsule ready to harvest.(h )Dehisced capsule.Scale bars =1.5cm ).Microwaving germination media may be suitable as well (see Phyto Technology Laboratories Orchid Media Selection &Use Guide).However,using PPM or a microwave to sterilize media are question-able compared to an autoclave or a pressure cooker.Seed culture proceduresIn preparation for capsule surface disinfection,prepare graduated cylinders,wash bottles,and 500–1000ml distilled water per student.Sterilize the graduated cylinders and wash bottles for at least 10min and the water for 40min at 117kPa and 121°C.Remove any dried flower parts from the capsule prior to surface disinfection.Remove surface debris by placing the seed capsule in a container covered with cheesecloth secured with a rubber band.Rinse the capsule under cool tap water for 10–15min.While the capsule is rinsing,prepare the disinfection solution by mixing 50ml sterile water and 50ml of bleach (6%sodium hypochlorite)in a sterile gradu-ated cylinder.To facilitate surface disinfection,add one or two drops of Tween 20or another surfactant,such as liquid dish soap,to the disinfecting solution.After rinsing,place the seed capsule in a sterile wash bottle,add 70%ethanol,and agitate thecapsuleFig.3Seed germination procedure.(a )Addition of bleach to a wash bottle for capsule disinfection.(b )Shaker table for agitating wash bottles duringdisinfection.(c )Decanting of liquid from a wash bottle.(d )Removal of the pedicel from the capsule afterdisinfection.(e )Removal of remaining floral tissue from the sterilized capsule.(f )Bisection of the capsule.(g )Bisected capsule with immature seeds exposed and removed.(h )Inoculated Petri dishfor 30s.Decant the ethanol by slightly loosening the cover allowing the ethanol to slowly drain into a waste container.After the ethanol wash pour enough disinfecting solution into the wash bottle to cover the capsule (Fig.3a).Cover the wash bottle and agitate for 10min (Fig.3b).If using a shaker table,agitate the bottle at 100rpm (Fig.3b).After 10min,check the capsule.The capsule may have yellow or white bleach marks,but should still be firm.If the capsule is still dark green,agitate in the disinfection solution for five additional minutes.After the disinfecting pro-cess,decant the solution (Fig.3c).Add sterile water to the container,rinse the capsule for 2min,and repeat two more times.Once the capsule is rinsed,place it in a sterile Petri dish under a laminar flow hood.If a laminar flow hood is not available,a sterile transfer box can be con-structed by cutting an opening in one side of a largeclear plastic storage container.Disinfect the inside surface of the container with a 10%bleach solution and allow to dry.Hold the capsule with a sterile forceps and remove the pedicel and any remaining floral tissue with a sterile scalpel (Fig.3d,e).Cut the capsule longitu-dinally with a sterile scalpel blade (Fig.3f).Use a sterile spatula or inoculating loop to remove and dispense seeds from the capsule onto a Petri dish containing the germination medium (Fig.3g,h).Do not place too many seeds on the surface of the germination media,since high seed densities inhibit germination and development (Rasmussen 1989).Seal the culture vessels with one layer of sealing film such as Parafilm (Pechiney Plastic Packaging Inc,Chicago,IL,USA)or Nescofilm (Karlan Research Products,Santa Rosa,CA,USA).Place the seed cultures under cool-white fluores-cent lights in a 16-hour photoperiod atroomFig.4In vitro germination and development of Spathoglottis seeds.(a )Two week old cultures;scale bar =1mm.(b )Protocorms with leaves after four weeks in vitro culture;scale bar =1mm.(c )Seedlings transferred to larger culture vessels six months after initial seed inoculation;scale bar =1cm.(d )Acclimatized seedling six months after sowing;scale bar =1cm.(e )One year old plant;scale bar =10cmtemperature(23–25°C).Check cultures periodically and discard contaminated cultures.Germination should occur within two weeks of seed inoculation evident by green protocorms(Fig.4a).Leaves form on the protocorms after four weeks culture,and seedlings develop within four months of seed sowing (Fig.4b,c).At this time,aseptically transfer seed-lings to a larger culture vessel containing80–100ml P723such as a MagentaÒGA7culture box(Magenta Corp.,Chicago,IL,USA)or Phyto Tech Culture Box TM(Phyto Technology Laboratories,LLC).After two to four additional months,seedlings are ready for greenhouse acclimatization(Fig.4d). Remove seedlings from culture vessels and wash the culture medium from the roots.Place seedlings in a soilless potting mix.Place clear plastic humidity domes or plastic bags over the seedlings for two weeks,and gradually remove them over an additional two weeks.Water seedlings when the top portion of the potting mix becomes dry.Begin fertilizing seedlings after removing the humidity dome.Seed-lings grow quickly under greenhouse conditions,and develop into medium size plants within1year that mayflower(Fig.4e;for complete timeline see Fig.5)This exercise represents an excellent opportunity to incorporate both technical and horticultural aspects of orchid hybridization as well as in vitro seed germination into the classroom.In the6years of conducting this laboratory,students often remark that this is one of their favorite exercises.Since growing orchids from seeds to mature plant is lengthy, conducting this experiment early in the semester is recommended.Following through with this exercise until seedlings become mature plants may be difficult if the course is offered semesterly.Instructors can prepare seed cultures during the previous semester to provide students an opportunity to acclimatize seed-lings.However,the emphasis is seed germination and seedling development,not obtaining mature plants. Providing a complete protocol for instructors is necessary to determine the proper timeline for conducting this laboratory.This exercise teaches students diligence and patience,and rewards them with orchids raised from seed.This paper provides a detailed and easy to follow protocol for hand pollination of orchidflowers and asymbiotic seed germination.Acknowledgements Brand names are provided as references; the authors do not solely recommend or endorse these products. The authors thank Nancy Philman and Daniela Dutra (Environmental Horticulture Dept.,University of Florida)as well as an anonymous reviewer for excellent comments. ReferencesArditti J(1967)Factors affecting the germination of orchid seed.Bot Rev33:1–97Arditti J,Ernst R(1993)Micropropagation of orchids.John Wiley and Sons,New YorkArditti J,Clements MA,Fast G,Hadley G,Nishimura G,Ernst R(1982)Orchid seed germination and seedling culture.In:Arditti J(ed)Orchid biology:reviews and perspectives II.Cornell University Press,Ithaca,New York,p274 Beltrame E(2006)Spathoglottis-inside and out.Orchid Rev 114:68–71Bergman FJ(2006)Sowing orchid seed:an easy approach to new rewards.Orchids75:526–531Dressler RL(1981)The orchids:natural history and classifi-cation.Harvard University Press,Cambridge,MALo SF,Nalawade SM,Kuo CL,Chen CL,Tsay HS(2004) Asymbiotic germination of immature seeds,plantlet development and ex vitro establishment of plants of Dendrobium tosaense Makino—a medicinally important orchid.In vitro Cell Dev Biol-Plant40:528–535Fig.5Timeline of seed germination to adult plantMudge KW,Chu CC(1992)Novel laboratory exercises in plant tissue culture:in vitro asymbiotic germination of orchid seeds.HortTechnology4:315–317Proctor HC(1998)Effect of pollen age on fruit set,fruit weight,and seed set in three orchid species.Can J Bot76: 420–427Rasmussen H,Johansen B,Andersen TF(1989)Density dependent interactions between seedlings of Dactylorhiza majalis(Orchidaceae)in symbiotic in vitro culture.Physiol Plant77:473–478Shiau YJ,Sagare AP,Chen UC,Yang SR,Tsay HS(2002) Conservation of Anoectochilus formosanus Hayata by artificial cross-pollination and in vitro culture of seeds.Bot Bull Acad Sin43:123–130Stewart SL,Kane ME(2007)Symbiotic germination and evi-dence for in vitro mycobiont specificity in Spiranthes brevilabris(Orchidaceae),and its implications for spe-cies-level conservation.In vitro Cell Dev Biol Plant 43:178–186。