常用运算放大器
- 格式:ppt
- 大小:3.31 MB
- 文档页数:57
LM358工作原理分析LM358是一种常用的双运算放大器,广泛应用于模拟电路设计中。
它具有低功耗、高增益、宽工作电压范围等特点,适用于各种电路应用。
LM358的工作原理主要包括输入级、差分放大级、输出级等几个部分。
下面将详细介绍每个部分的工作原理。
1. 输入级LM358的输入级由两个差分放大器组成。
每个差分放大器都由一个差分对和一个电流镜组成。
差分对由PNP晶体管和NPN晶体管组成,它们的基极相连,且与一个电流源相连。
通过调整电流源的电流,可以控制差分对的工作电流。
差分对的输出通过电流镜传递给差分放大器的差分放大级。
2. 差分放大级差分放大级由一个差分放大器组成,它由一个长尾对和一个负反馈电阻组成。
长尾对由两个NPN晶体管组成,它们的发射极相连,且与一个电流源相连。
通过调整电流源的电流,可以控制长尾对的工作电流。
差分放大器的输入信号分别加在长尾对的基极上,经过差分放大器的放大作用,输出信号通过负反馈电阻传递给输出级。
3. 输出级输出级由一个共射放大器组成,它由一个NPN晶体管组成。
输出级的输入信号通过差分放大级的负反馈电阻传递给共射放大器的基极。
共射放大器的输出信号通过一个负载电阻传递给输出端。
通过调整负载电阻的大小,可以控制输出电流和输出电压的幅值。
LM358的工作原理可以简单总结为:输入信号经过输入级的放大和差分放大级的放大,最终通过输出级输出。
整个过程中,通过调整电流源的电流和负载电阻的大小,可以控制LM358的放大倍数和输出电压的幅值。
除了以上的基本工作原理,LM358还具有一些特殊的电路设计。
例如,可以通过引入电容器实现高频滤波,通过引入电阻和电容器实现低频滤波,通过引入负反馈电阻实现放大倍数的调节等。
总结:LM358是一种常用的双运算放大器,具有低功耗、高增益、宽工作电压范围等特点。
它的工作原理主要包括输入级、差分放大级和输出级。
通过调整电流源的电流和负载电阻的大小,可以控制LM358的放大倍数和输出电压的幅值。
四种常用放大器及应用常用的四种放大器是:运算放大器、功率放大器、音频放大器和射频放大器。
首先,运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子放大器,它有很多应用。
它具有高增益、高输入阻抗和低输出阻抗的特点。
运算放大器最常见的应用是运算放大电路,用于实现各种算法和信号处理。
运算放大器还可用于比较器、振荡器、多谐波振荡器等电路。
此外,运算放大器还常用于仪器仪表、模拟计算机、数据采集系统和传感器等领域。
其次,功率放大器(Power Amplifier)是用来放大输入信号的功率的放大器,用于驱动负载。
功率放大器通常分为A类、B类、AB类、C类和D类等。
功率放大器广泛应用于音频系统、无线电通信系统、雷达系统和太阳能系统等领域。
其中,音频功率放大器用于扬声器系统,提供足够的功率以产生高音质音乐;无线电通信系统和雷达系统中的功率放大器通常需要驱动天线以产生更大的发射功率;太阳能系统中的功率放大器用于将太阳能电池板的输出电压提高到适合之后的电路或网络使用的电压。
第三种常用放大器是音频放大器,用于增强音频信号的幅度。
音频放大器一般分为低功率放大器和高功率放大器两类。
低功率放大器通常用于便携式音频设备,如手机、MP3播放器等。
高功率放大器则广泛应用于音响系统和放大器组件,以获得更高的音响质量和音响功率。
音频放大器还有各种不同类型,例如A类、B类、AB类和D类音频放大器,它们在功率效率、失真和音质上存在差异。
最后,射频放大器(Radio Frequency Amplifier)是用于放大射频信号的放大器。
射频放大器广泛应用于通信系统、雷达系统、遥控系统、卫星通信系统等领域。
射频放大器通常要求具有高增益、低噪声和高线性度。
根据应用需求,射频放大器也可分为小功率放大器和高功率放大器两类。
小功率射频放大器通常用于低功率无线电设备和无线电接收机,而高功率射频放大器则用于要求更大发射功率的无线电设备。
lm358温控电路原理标题:LM358温控电路原理一、引言温控电路是一种常见的电子控制系统,它可以通过对环境温度进行感知和调节,保持设定的温度范围内稳定的工作条件。
LM358是一种常用的运算放大器,广泛应用于温控电路中。
本文将详细介绍LM358温控电路的原理和工作方式。
二、LM358概述LM358是集成运算放大器(IC)中的一种,由两个独立的、高增益、内部频率补偿的运算放大器组成。
它具有低功耗、宽电源电压范围和高共模抑制比等特点,非常适合用于温控电路中。
三、温控电路设计原理1. 温度传感器温控电路中的关键部分是温度传感器,它能够将温度转化为电压信号。
常用的温度传感器有热敏电阻、热电偶和半导体温度传感器等。
在LM358温控电路中,通常使用半导体温度传感器,如LM35。
2. 运算放大器LM358中的两个运算放大器可以分别用于信号放大和比较。
其中一个运算放大器可以将温度传感器输出的微弱电压信号放大到适合后续电路处理的范围。
3. 比较器另一个运算放大器可以作为比较器使用。
通过将比较器的负输入端连接到设定的温度电压参考源,并将正输入端连接到温度传感器输出的电压信号,可以实现对温度的准确比较。
4. 控制电路比较器的输出信号可以通过控制电路进行处理,以达到温度控制的目的。
控制电路可以是一个电磁继电器、一个可控硅等,用于控制加热或制冷设备的开关。
四、LM358温控电路工作流程1. 温度传感器感知环境温度,并将其转化为相应的电压信号。
2. 一个运算放大器将温度传感器输出的电压信号放大到适合后续处理的范围。
3. 另一个运算放大器将设定的温度电压参考源与传感器输出的电压信号进行比较,得到一个比较结果。
4. 比较结果通过控制电路进行处理,控制加热或制冷设备的开关状态。
5. 加热或制冷设备根据控制电路的信号进行相应的操作,以调节环境温度。
6. 循环进行以上步骤,实现稳定的温度控制。
五、LM358温控电路的优点1. LM358具有低功耗和高共模抑制比等特点,适合用于温控电路,可以提供稳定而精确的温度控制。
常用运算放大器,参数和选型通用廉价运算放大器。
这些廉价的运放除OP07用于直流外,其它的一般不用于直流电路。
1.OP07,这是在各类文章中用得最多的运放,国产型号F07,低漂移,低噪声,增益带宽积不到1MHZ,其中以MAXIM的OP07AJ的品质最好。
特别适用于直流放大,对带宽要求不高的场合,价格便宜。
工业级的OP07性能超好,但是很贵(100块以上)。
2.LM324,廉价的四路运放,增益带宽积1MHZ,开环直流增益100DB,适合低电压场合,音频场合也用,最主要优势是便宜。
工业级的用LM124代替,LM124在广普屯的报价是14块一只,性能不错的,很难烧坏。
3.TL084,廉价4运放。
4.LM741,增益带宽积1MHZ,适合小信号交流放大,输出能力较小5.LM1458,廉价的双路运放,实际是两个LM741封装在一起,和LM741一样基本上要被淘汰了,双运放的场合用TL084代替就行了。
宽带运算放大器。
适合于交流放大,这类运放的直流漂移一般较大。
1.NE5532,增益带宽积10MHZ,输出电流50mA,输出阻抗低,适合于要求较高的交流放大场合,总线驱动,信号驱动等。
双运放。
2.NE5534,增益带宽积10MHZ,比NE5532摆率高,开环放大倍数大些。
单运放,带调整。
3.OP27,OP37,高速宽带运算放大器,增益带宽积40MHZ,摆率高,适合于10MHz以下的交流小信号放大。
常用廉价仪表放大器。
这两种都是很便宜的,性能也不错。
1.AD620,20多元一只2.INA128,稍贵,都是工业级。
极品运放1.OPA2227,双路运放,增益带宽积10MHZ,极低噪声和极低漂移,开环增益140DB以上,输出能力50mA,全部为工业级,具有极好的直流和交流特性,自带保护,基本上不会烧坏,为我至今见过的最好的运放,可以使用于1MHz以下的各种场合,广普屯没有卖的,建议订货,24块钱一只。
2.OPA4227,性能和OPA2227相同,四路运放。
常用替换运放型号对比CA3130 高输入阻抗运算放大器 Intersil[DATA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA]) 带宽四运算放大器 KA347 LF351 BI-FET单运算放大器 NS[DATA] LF353 BI-FET双运算放大器 NS[DATA] LF356 BI-FET单运算放大器 NS[DATA] LF357 BI-FET单运算放大器 NS[DATA] LF398 采样保持放大器 NS[DATA] LF411 BI-FET单运算放大器 NS[DATA] LF412 BI-FET双运放大器 NS[DATA] LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA] LM1458 双运算放大器 NS[DATA] LM148 四运算放大器 NS[DATA] LM224J 低功耗四运算放大器(工业档)NS[DATA]/TI[DATA] LM2902 四运算放大器 NS[DATA]/TI[DATA] LM2904 双运放大器 NS[DATA]/TI[DATA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H 运算放大器(金属封装) NS[DATA] LM318 高速运算放大器 NS[DATA] LM324(NS[DATA]) 四运算放大器 HA17324,/LM324N(TI) LM348 四运算放大器 NS[DATA] LM358 NS[DATA] 通用型双运算放大器 HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA] 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 NS[DATA] LM386-4 音频放大器 NS[DATA] LM3886 音频大功率放大器 NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA] 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 TI[DATA] NE5534 高速低噪声单运算放大器 TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器 TI[DATA] OP07-DP 精密运算放大器 TI[DATA] TBA820M 小功率音频放大器 ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器 TI[DATA] TL064 BI-FET 四运算放大器 TI[DATA] TL072 BI-FET双运算放大器 TI[DATA] TL074 BI-FET四运算放大器 TI[DATA] TL081 BI-FET单运算放大器 TI[DATA] TL082 BI-FET双运算放大器 TI[DATA] TL084 BI-FET四运算放大器 TI[DATA] AD824 JFET输入,单电源,低电压,低功耗,精密四运算放大器 MC33171 单电源,低电压,低功耗运算放大器 AD826 低功耗,宽带,高速双运算放大器 MC33172 单电源,低电压,低功耗双运算放大器AD827 低功耗,高速双运算放大器 MC33174 单电源,低电压,低功耗四运算放大器 AD828 低功耗,宽带,高速双运算放大器 MC33178 大电流,低功耗,低噪音双运算放大器 AD844 电流反馈型,宽带,高速运算放大器 MC33179 大电流,低功耗,低噪音四运算放大器 AD846 电流反馈型,高速,精密运算放大器 MC33181 JFET输入,低功耗运算放大器 AD847 低功耗,高速运算放大器 MC33182 JFET输入,低功耗双运算放大器AD8531 COMS单电源,低功耗,高速运算放大器 MC33184 JFET输入,低功耗四运算放大器 AD8532 COMS单电源,低功耗,高速双运算放大器 MC33201 单电源,大电流,低电压运算放大器 AD8534 COMS单电源,低功耗,高速四运算放大器 MC33202 单电源,大电流,低电压双运算放大器 AD9617 低失真,电流反馈型,宽带,高速,精密运算放大器 MC33204 单电源,大电流,低电压四运算放大器 AD9631 低失真,宽带,高速运算放大器 MC33272 单电源,低电压,高速双运算放大器 AD9632 低失真,宽带,高速运算放大器 MC33274 单电源,低电压,高速四运算放大器 AN6550 低电压双运算放大器 MC33282 JFET输入,宽带,高速双运算放大器AN6567 大电流,单电源双运算放大器 MC33284 JFET输入,宽带,高速四运算放大器 AN6568 大电流,单电源双运算放大器 MC33502 BIMOS,单电源,大电流,低电压,双运算放大器 BA718 单电源,低功耗双运算放大器MC34071A 单电源,高速运算放大器 BA728 单电源,低功耗双运算放大器 MC34072A 单电源,高速双运算放大器 CA5160 BIMOS,单电源,低功耗运算放大器 MC34074A 单电源,高速四运算放大器 CA5260 BIMOS,单电源双运算放大器 MC34081 JFET输入,宽带,高速运算放大器 CA5420 BIMOS,单电源,低电压,低功耗运算放大器 MC34082 JFET输入,宽带,高速双运算放大器 CA5470 BIMOS单电源四运算放大器 MC34084 JFET输入,宽带,高速四运算放大器 CLC400 电流反馈型,宽带,高速运算放大器 MC34181 JFET输入,低功耗运算放大器 CLC406 电流反馈型,低功耗,宽带,高速运算放大器 MC34182 JFET输入,低功耗双运算放大器 CLC410 电流反馈型,高速运算放大器 MC34184 JFET输入,低功耗四运算放大器 CLC415 电流反馈型,宽带,高速四运算放大器 MC35071A 单电源,高速运算放大器 CLC449 电流反馈型,宽带,高速运算放大器 MC35072A 单电源,高速双运算放大器 CLC450 电流反馈型,单电源,低功耗,宽带,高速运算放大器 MC35074A 单电源,高速四运算放大器 CLC452 单电源,电流反馈型,大电流,低功耗,宽带,高速运算放大器 MC35081 JFET输入,宽带,高速运算放大器 CLC505 电流反馈型,高速运算放大器 MC35082 JFET输入,宽带,高速双运算放大器 EL2030 电流反馈型,宽带,高速运算放大器 MC35084 JFET输入,宽带,高速四运算放大器 EL2030C 电流反馈型,宽带,高速运算放大器 MC35171 单电源,低电压,低功耗运算放大器 EL2044C 单电源,低功耗,高速运算放大器 MC35172 单电源,低电压,低功耗双运算放大器 EL2070 电流反馈型,宽带,高速运算放大器 MC35174 单电源,低电压,低功耗四运算放大器 EL2070C 电流反馈型,宽带,高速运算放大器 MC35181 JFET输入,低功耗运算放大器 EL2071C 电流反馈型,宽带,高速运算放大器 MC35182 JFET输入,低功耗双运算放大器 EL2073 宽带,高速运算放大器 MC35184 JFET输入,低功耗四运算放大器 EL2073C 宽带,高速运算放大器 MM6558 低电压,低失调电压,精密双运算放大器 EL2130C 电流反馈型,宽带,高速运算放大器MM6559 低电压,低失调电压,精密双运算放大器 EL2150C 单电源,宽带,高速运算放大器 MM6560 低电压,低失调电压,精密双运算放大器 EL2160C 电流反馈型,宽带,高速运算放大器 MM6561 低功耗,低电压,低失调电压,精密双运算放大器 EL2165C 电流反馈型,宽带,高速,精密运算放大器 MM6564 单电源,低电压,低功耗,低失调电压,精密双运算放大器 EL2170C 单电源,电流反馈型,低功耗,宽带,高速运算放大器MM6572 低噪音,低电压,低失调电压,精密双运算放大器 EL2175C 电流反馈型,宽带,高速,精密运算放大器 NE5230 单电源,低电压运算放大器 EL2180C 单电源,电流反馈型,低功耗,宽带,高速运算放大器NE5512 通用双运算放大器 EL2224 宽带,高速双运算放大器 NE5514 通用四运算放大器 EL2224C 宽带,高速双运算放大器 NE5532 低噪音,高速双运算放大器 EL2232 电流反馈型,宽带,高速双运算放大器NE5534 低噪音,高速运算放大器 EL2232C 电流反馈型,宽带,高速双运算放大器 NJM2059 通用四运算放大器 EL2250C 单电源,宽带,高速双运算放大器 NJM2082 JFET输入,高速双运算放大器 EL2260C 电流反馈型,宽带,高速双运算放大器 NJM2107 低电压,通用运算放大器 EL2270C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2112 低电压,通用四运算放大器 EL2280C 单电源,电流反馈型,低功耗,宽带,高速双运算放大器 NJM2114 低噪音双运算放大器 EL2424 宽带,高速四运算放大器 NJM2115 低电压,通用双运算放大器 EL2424C 宽带,高速四运算放大器 NJM2119 单电源,精密双运算放大器 EL2444C 单电源,低功耗,高速四运算放大器 NJM2122 低电压,低噪音双运算放大器 EL2450C 单电源,宽带,高速四运算放大器 NJM2130F 低功耗运算放大器 EL2460C 电流反馈型,宽带,高速四运算放大器 NJM2132 单电源,低电压,低功耗双运算放大器 EL2470C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器 NJM2136 低电压,低功耗,宽带,高速运算放大器 EL2480C 单电源,电流反馈型,低功耗,宽带,高速四运算放大器NJM2137 低电压,低功耗,宽带,高速双运算放大器 HA-2640 高耐压运算放大器 NJM2138 低电压,低功耗,宽带,高速四运算放大器 HA-2645 高耐压运算放大器 NJM2140 低电压双运算放大器 HA-2839 宽带,高速运算放大器 NJM2141 大电流,低电压双运算放大器 HA-2840 宽带,高速运算放大器 NJM2147 高耐压,低功耗双运算放大器 HA-2841 宽带,高速运算放大器 NJM2162 JFET输入,低功耗,高速双运算放大器HA-2842 宽带,高速运算放大器 NJM2164 JFET输入,低功耗,高速四运算放大器 HA-4741 通用四运算放大器 NJM3404A 单电源,通用双运算放大器 HA-5020 电流反馈型,宽带,高速运算放大器 NJM3414 单电源,大电流双运算放大器 HA-5127 低噪音,低失调电压,精密运算放大器 NJM3415 单电源,大电流双运算放大器 HA-5134 低失调电压,精密四运算放大器 NJM3416 单电源,大电流双运算放大器 HA-5137 低噪音,低失调电压,高速,精密运算放大器 NJM4556A 大电流双运算放大器 HA-5142 单电源,低功耗双运算放大器NJM4580 低噪音双运算放大器 HA-5144 单电源,低功耗四运算放大器 NJU7051 CMOS单电源,低功耗,低电压,低失调电压运算放大器 HA-5177 低失调电压,精密运算放大器 NJU7052 CMOS单电源,低功耗,低电压,低失调电压双运算放大器 HA-5221 低噪音,精密运算放大器 NJU7054 CMOS单电源,低功耗,低电压,低失调电压四运算放大器 HA-5222 低噪音,精密双运算放大器 NJU7061 CMOS单电源,低功耗,低电压,低失调电压运算放大器 HA-7712 BIMOS,单电源,低功耗,精密运算放大器 NJU7062 CMOS单电源,低功耗,低电压,低失调电压双运算放大器 HA-7713 BIMOS,单电源,低功耗,精密运算放大器 NJU7064 CMOS单电源,低功耗,低电压,低失调电压四运算放大器 HA16118 CMOS单电源,低电压,低功耗双运算放大器 NJU7071 CMOS单电源,低功耗,低电压,低失调电压运算放大器 AD704 低偏置电流,低功耗,低失调电压,精密四运算放大器 MAX430 CMOS单电源运算放大器 AD705 低偏置电流,低功耗,低失调电压,精密运算放大器 MAX432 CMOS 单电源运算放大器 AD706 低偏置电流,低功耗,低失调电压,精密双运算放大器 MAX4330 单电源,低电压,低功耗运算放大器 AD707 低失调电压,精密运算放大器 MAX4332 单电源,低电压,低功耗双运算放大器AD708 低失调电压,精密双运算放大器 MAX4334 单电源,低电压,低功耗四运算放大器 AD711 JFET输入,高速,精密运算放大器 MAX473 单电源,低电压,宽带,高速运算放大器 AD712 JFET输入,高速,精密双运算放大器 MAX474 单电源,低电压,宽带,高速双运算放大器 AD713 JFET输入,高速,精密四运算放大器MAX475 单电源,低电压,宽带,高速四运算放大器 AD744 JFET输入,高速,精密运算放大器 MAX477 宽带,高速运算放大器 AD745 JFET输入,低噪音,高速运算放大器 MAX478 单电源,低功耗,精密双运算放大器AD746 JFET输入,高速,精密双运算放大器 MAX478A 单电源,低功耗,精密双运算放大器 AD795 JFET输入,低噪音,低功耗,精密运算放大器 MAX479 单电源,低功耗,精密四运算放大器 AD797 低噪音运算放大器MAX479A 单电源,低功耗,精密四运算放大器 AD8002 电流反馈型,低功耗,宽带,高速双运算放大器MAX480 单电源,低功耗,低电压,低失调电压,精密运算放大器 AD8005 电流反馈型,低功耗,宽带,高速双运算放大器 MAX492C 单电源,低功耗,低电压,精密双运算放大器 AD8011 电流反馈型,低功耗,宽带,高速运算放大器 MAX492E 单电源,低功耗,低电压,精密双运算放大器 AD8031 单电源,低功耗,高速运算放大器 MAX492M 单电源,低功耗,低电压,精密双运算放大器 AD8032 单电源,低功耗,高速双运算放大器MAX494C 单电源,低功耗,低电压,精密四运算放大器 AD8041 单电源,宽带,高速运算放大器 MAX494E 单电源,低功耗,低电压,精密四运算放大器 AD8042 单电源,宽带,高速双运算放大器 MAX494M 单电源,低功耗,低电压,精密四运算放大器 AD8044 单电源,宽带,高速四运算放大器 MAX495C 单电源,低功耗,低电压,精密运算放大器 AD8047 宽带,高速运算放大器 MAX495E 单电源,低功耗,低电压,精密运算放大器AD8055 低功耗,宽带,高速运算放大器 MAX495M 单电源,低功耗,低电压,精密运算放大器 AD8056 低功耗,宽带,高速双运算放大器 MC1458 通用双运算放大器 AD8072 电流反馈型,宽带,高速双运算放大器MC1458C 通用双运算放大器 AD812 电流反馈型,低电压,低功耗,高速双运算放大器 MC33071A 单电源,高速运算放大器 AD817 低功耗,宽带,高速运算放大器 MC33072A 单电源,高速双运算放大器 AD818 低功耗,宽带,高速运算放大器 MC33074A 单电源,高速四运算放大器 AD820 JFET输入,单电源,低电压,低功耗,精密运算放大器 MC33078 低噪音双运算放大器 AD822 JFET输入,单电源,低电压,低功耗,精密双运算放大器MC33079 低噪音四运算放大器 AD823 JFET输入,单电源,低电压,低功耗,精密,高速双运算放大器 MC33102 低功耗双运算放大器 HA16119 CMOS单电源,低电压,低功耗双运算放大器 NJU7072 CMOS单电源,低功耗,低电压,低失调电压双运算放大器 HFA1100 电流反馈型,宽带,高速运算放大器 NJU7074 CMOS单电源,低功耗,低电压,低失调电压四运算放大器 HFA1120 电流反馈型,宽带,高速运算放大器 OP-07 低漂移,精密运算放大器 HFA1205 电流反馈型,低功耗,宽带,高速双运算放大器 OP-113 BICMOS单电源,低噪音,低失调电压,精密运算放大器 HFA1245 电流反馈型,低功耗,宽带,高速双运算放大器 OP-150 COMS,单电源,低电压,低功耗 ICL7611 CMOS低电压,低功耗运算放大器 OP-160 电流反馈型,高速运算放大器 ICL7612 CMOS低电压,低功耗运算放大器 OP-162 单电源,低电压,低功耗,高速,精密运算放大器 ICL7621 CMOS低电压,低功耗双运算放大器 OP-177 低失调电压,精密运算放大器 ICL7641 CMOS低电压四运算放大器OP-183 单电源,宽带运算放大器 ICL7642 CMOS低电压,低功耗四运算放大器 OP-184 单电源,低电压,高速,精密运算放大器 ICL7650S 稳压器 OP-191 单电源,低电压,低功耗运算放大器 LA6500 单电源,功率OP 放大器 OP-193 单电源,低电压,低功耗,精密运算放大器 LA6501 单电源,功率OP放大器 OP-196 单电源,低电压,低功耗运算放大器 LA6510 2回路单电源功率OP放大器 OP-200 低功耗,低失调电压,精密双运算放大器" LA6512 高压,功率OP放大器双运算放大器 OP-213 BICMOS单电源,低噪音,低失调电压,精密双运算放大器 LA6513 高压,功率OP放大器双运算放大器 OP-250 COMS,单电源,低电压,低功耗双运算放大器 LA6520 单电源,功率OP放大器三运算放大器 OP-260 电流反馈型,高速双运算放大器 LF356 JFET输入,高速运算放大器 OP-262 单电源,低电压,低功耗,高速,精密双运算放大器 LF356A JFET输入,高速运算放大器 OP-27 低噪音,低失调电压,精密运算放大器 LF411 JFET输入,高速运算放大器 OP-270 低噪声,低失调电压,精密双运算放大器 LF411A JFET输入,高速运算放大器 OP-271 精密双运算放大器 LF412 JFET输入,高速双运算放大器 OP-275 高速双运算放大器 LF412A JFET输入,高速双运算放大器 OP-279 单电源,大电流双运算放大器 LF441 低功耗,JFET输入运算放大器 OP-282 JFET输入,低功耗双运算放大器 LF441A 低功耗,JFET输入运算放大器 OP-283 单电源,宽带双运算放大器 LF442 低功耗,JFET输入双运算放大器 OP-284 单电源,低电压,高速,精密双运算放大器 LF442A 低功耗,JFET输入双运算放大器OP-290 单电源,低功耗,精密双运算放大器 LF444 低功耗,JFET输入四运算放大器 OP-291 单电源,低电压,低功耗双运算放大器 LF444A 低功耗,JFET输入四运算放大器 OP-292 BICMOS单电源,通用双运算放大器 LM2902 单电源四运算放大器 OP-293 单电源,低电压,低功耗,精密双运算放大器 LM2904 单电源双运算放大器 OP-295 BICMOS低功耗,精密双运算放大器 LM324 单电源四运算放大器 OP-296 单电源,低电压,低功耗双运算放大器 LM358 单电源双运算放大器 OP-297 低电压,低功耗,低漂移,精密双运算放大器LM4250 单程控、低功耗运算放大器 OP-37 低噪音,低失调电压,高速,精密运算放大器 LM607 低失调电压,精密运算放大器 OP-400 低功耗,低失调电压,精密四运算放大器 LM6118 宽带,高速双运算放大器OP-413 BICMOS单电源,低噪音,低失调电压,精密四运算放大器。
常用运算放大器电路(全集)下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. High-pass filter 高通滤波器电路:C1 = 2*C2 = 0.02 uF, C2 = 0.01 uFR1 = R2 = 110 K6 dB Low-cut Freq = 100 Hz10. Adj. Q-notch filter 频宽可调型滤波器电路:R1 = R2 = 2 * R3C1 = C2 = C3 / 2Freq = 1 /(2π* R1 * C1)VR1调整负回授量, 越大则Q值越低。
运算放大器分类运算放大器是一种基本的模拟电路元件,广泛应用于各种电子设备中。
根据其不同的性质和功能,可以将运算放大器分为几类。
1.差分放大器差分放大器是一种基本的运算放大器,主要用于实现信号放大和滤波。
它的输入端有两个,可以将两个输入信号进行差分运算,输出差分信号的放大结果。
差分放大器具有高增益、高输入阻抗和低输出阻抗等特点,适用于放大微弱信号和抑制噪声干扰。
2.反馈放大器反馈放大器是一种将一部分输出信号反馈到输入端的运算放大器。
反馈放大器可以实现信号放大、滤波、稳压等功能,还可以提高放大器的线性度和稳定性。
根据反馈方式的不同,反馈放大器可以分为正反馈和负反馈两种。
其中,负反馈放大器最为常见,可以减小放大器的失调、漂移和噪声,提高放大器的性能和可靠性。
3.比较器比较器是一种将两个输入信号进行比较,输出高低电平的运算放大器。
比较器可以用于电压比较、信号检测、门电路等方面。
根据比较器的输出类型,可以将其分为开关型比较器和线性比较器两种。
其中,开关型比较器输出只有两种状态,常用于数字电路中的逻辑运算;线性比较器输出具有连续的电平变化,常用于模拟电路中的信号处理。
4.积分放大器积分放大器是一种将输入信号进行积分运算后输出的运算放大器。
积分放大器可以用于实现信号积分、微分和低通滤波等功能,还可以提高放大器的稳定性和线性度。
与差分放大器相比,积分放大器的输入阻抗较低,输出阻抗较高,适用于高精度的信号处理和控制系统中。
5.微分放大器微分放大器是一种将输入信号进行微分运算后输出的运算放大器。
微分放大器可以用于实现信号微分、高通滤波和波形恢复等功能,还可以提高放大器的线性度和稳定性。
与积分放大器相比,微分放大器的输入阻抗较高,输出阻抗较低,适用于高速信号处理和控制系统中。
运算放大器是一种非常重要的电子元件,在各种电子设备中都有广泛的应用。
根据其不同的性质和功能,可以将运算放大器分为差分放大器、反馈放大器、比较器、积分放大器和微分放大器等几类。
放大电路中的放大器类型介绍在电子设备中,放大器是一种关键的电子元件,用于将信号的幅度增大,以便在不同的应用中实现放大功能。
放大器可以分为不同的类型,每个类型都有其特定的应用和特点。
本文将为您介绍一些常见的放大器类型。
一、低频放大器低频放大器是用于放大音频信号的一种类型。
它们通常工作在20Hz至20kHz的频率范围内,适用于音频放大器和音响系统。
低频放大器的特点是具有较高的增益和良好的线性性能,以确保音频信号的准确放大和高保真度。
二、高频放大器高频放大器是用于放大射频信号的一种类型。
它们主要用于无线通信设备、雷达系统和卫星通信系统等高频应用领域。
高频放大器需要具备较高的频率响应和较低的噪声系数,以确保对信号的准确放大和高质量的信号传输。
三、功率放大器功率放大器是一种特殊类型的放大器,用于将信号的功率增大。
它们通常用于驱动高功率负载,如扬声器、电机和发电机等。
功率放大器需要具备较大的功率输出能力、低失真和高效率,以确保稳定的功率放大和可靠的负载驱动。
四、差分放大器差分放大器是一种特殊构型的放大器,它们用于对差分信号进行放大和处理。
差分放大器的特点是具有较高的共模抑制比和良好的抗干扰能力,可以应对噪声和干扰信号的影响。
差分放大器常用于模拟信号处理、电压比较器和差分运算放大器等应用中。
五、运算放大器运算放大器是一种用于放大和处理模拟信号的集成电路。
它们通常用于模拟计算、滤波器设计和传感器接口等应用。
运算放大器具有高增益、高输入阻抗和低输出阻抗,可以实现准确的信号放大和精确的信号处理。
六、继电器放大器继电器放大器是一种特殊的放大器,它们通常用于控制电路中的电气开关。
继电器放大器通过放大控制信号,使继电器能够控制更大电流和更高电压的负载。
继电器放大器常用于工业自动化和电力控制系统中,以实现对各种设备和机械的精确控制。
以上是一些常见的放大器类型介绍,它们在不同的应用中扮演着重要的角色。
了解这些放大器类型的特点和应用可以帮助工程师和设计师选择合适的放大器来满足特定的需求。
集成运算放大器的分类和组成一、集成运算放大器的分类集成运算放大器可以按照人们的不同需求进行多种划分,具体有以下几种类别。
1.按照集成运算放大器的参数分类(1)通用型运算放大器通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大、面广,其性能指标适合一般性的使用。
如mA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356。
它们是目前应用最为广泛的集成运算放大器。
(2)高阻型运算放大器这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid(109~1012)W,IIB为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
(3)低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总希望运算放大器的失调电压较小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件*****等。
(4)高速型运算放大器在快速A/D和D/A转换器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不适合高速应用的场合的。
高速型运算放大器的主要特点是具有高转换速率和宽频率响应。
常见的运放有LM318、mA715等,其SR=50~70V/ms,*****z。
(5)低功耗型运算放大器由于电子电路集成化的最大优点是能使复杂电路小型轻便,因此随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
下面是[常用运算放大器电路(全集)]的电路图常用OP电路类型如下:1. Inverter Amp. 反相位放大电路:放大倍数为Av = R2 / R1但是需考虑规格之Gain-Bandwidth数值。
R3 = R4 提供1 / 2 电源偏压C3 为电源去耦合滤波C1, C2 输入及输出端隔直流此时输出端信号相位与输入端相反2. Non-inverter Amp. 同相位放大电路:放大倍数为Av=R2 / R1R3 = R4提供1 / 2电源偏压C1, C2, C3 为隔直流此时输出端信号相位与输入端相同3. Voltage follower 缓冲放大电路:O/P输出端电位与I/P输入端电位相同单双电源皆可工作4. Comparator比较器电路:I/P 电压高于Ref时O/P输出端为Logic低电位I/P 电压低于Ref时O/P输出端为Logic高电位R2 = 100 * R1 用以消除Hysteresis状态, 即为强化O/P输出端, Logic高低电位差距,以提高比较器的灵敏度. (R1=10 K, R2=1 M)单双电源皆可工作5. Square-wave oscillator 方块波震荡电路:R2 = R3 = R4 = 100 KR1 = 100 K, C1 = 0.01 uFFreq = 1 /(2π* R1 * C1)6. Pulse generator脉波产生器电路:R2 = R3 = R4 = 100 KR1 = 30 K, C1 = 0.01 uF, R5 = 150 KO/P输出端On Cycle = 1 /(2π* R5 * C1)O/P输出端Off Cycle =1 /(2π* R1 * C1)7. Active low-pass filter 主动低通滤波器电路:R1 = R2 = 16 KR3 = R4 = 100 KC1 = C2 = 0.01 uF放大倍数Av = R4 / (R3+R4)Freq = 1 KHz8. Active band-pass filter 主动带通滤波器电路:R7 = R8 = 100 K, C3 = 10 uFR1 = R2 = 390 K, C1 = C2 = 0.01 uFR3 = 620, R4 = 620KFreq = 1 KHz, Q=259. Window detector窗型检知器电路:当I/P电位高于OP1+端电位时, Led 1暗/Led 2亮当I/P电位高于OP2-端电位时, Led 1亮/Led 2暗只有当I/P电位高于OP2-端电位, 却又低于OP1+端电位时, Led 1与Led 2同时皆亮如果适当选择R1, R2,R3数值可用以检知I/P电位是否合乎规格。
运算放大器简介运算放大器是运用得非常广泛的一种线性集成电路。
而且种类繁多,在运用方面不但可对微弱信号进行放大,还可做为反相、电压跟随器,可对电信号做加减法运算,所以被称为运算放大器。
不但其他地方应用广泛,在音响方面也使用得最多。
例如前级放大、缓冲,耳机放大器除了有部分使用分立元件,电子管外,绝大部分使用的还是集成运算放大器。
而有时候还会用到稳压电路上,制作高精度的稳压滤波电路。
各种运放由于其内部结构的不同,产生的失真成分也不同,所以音色特点也有一定的区别。
本来我们追求的是高保真,运放应该是失真最低,能真实还原音乐,没有个性的最好。
但是由于要配合其他音响部件如数码音源、后级功放管等如果偏干、偏冷则可搭配音色细腻温暖型的运放,而太过阴柔、偏软的则可搭配音色较冷艳、亮丽的运放,做到与整机配合,取长补短的最佳效果。
所以说并不是选择越贵的运放得到的效果就一定越好,搭配很重要,达到听感上最好才算达到目的。
如果是应用在低电压的模拟滤波电路中,还要选择对低电压工作性能良好的运放种类。
市面上的运放种类不下五六百种,GBW带宽在5M以上的也有三百多种,最高的已达300MHZ,转换速率在5V/us以上的也不下几百种,最高达3000V/us。
以上介绍的几种被音响发烧友们炒得火热的,其实还有大量未被大家熟知的上乘佳品可供选择,大家不必局限于以上几种。
一种运放型号的封装也可分为金封、陶封和塑封,一般来说金封、陶封的质量较好,塑封的品质稍差。
利益的驱使,什么都有假货,运放也不例外,市面上的假货不少,如果想便宜捡好货,那就要慧眼识珠了,不太在行的在购买时就要注意,宁可多花一块几毛,也要到信誉较好的商家去买。
低档运放JRC4558。
这种运放是低档机器使用得最多的。
现在被认为超级烂,因为它的声音过于明亮,毛刺感强,所以比起其他的音响用运放来说是最差劲的一种。
不过它在我国暂时应用得还是比较多的,很多的四、五百元的功放还是选择使用它,因为考虑到成本问题和实际能出的效果,没必要选择质量超过5532以上的运放。
运算放大器应用案例分析运算放大器(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于电子电路中。
它具有高增益、高输入阻抗、低输出阻抗等特点,常用于电压放大、滤波、求和、差分放大等各种信号处理应用。
本文将通过几个典型的案例来分析运算放大器的应用。
案例一:电压放大器电压放大器是运算放大器最常见的应用之一。
以电压放大器作为反馈放大器,可以实现精确放大输入电压信号。
例如,在音频放大电路中,通过将音频信号输入到运算放大器的非反相输入端,将电阻分压后的直流电压信号输入到反馈电阻,通过调整反馈电阻和输入电阻的比值,可以实现不同增益的放大。
案例二:滤波器运算放大器也常被用于滤波器电路中。
例如,在低通滤波器中,将输入信号接至运算放大器的非反相输入端,通过合适的电容和电阻网络,将高频信号滤除,只保留低频信号。
这种滤波器常用于音频信号的处理,可以去除噪声和干扰。
案例三:反相比例放大器反相比例放大器是一种应用广泛的运算放大器电路。
通过连接反相输入端和输出端,加上适当的电阻,可以实现输入电压和输出电压之间的比例关系。
例如,用于电压检测的自动控制系统中,通过调整反馈电阻和输入电压,可以实现对输出电压的精确控制。
案例四:差分放大器差分放大器是一种应用于信号处理及差分模拟电路中的运算放大器电路。
通过将输入信号接至运算放大器的两个输入端,可以实现输入信号的差分放大,即输出信号是两个输入信号的差值。
这种电路常用于抑制共模干扰,提升信号的抗干扰能力。
案例五:积分器积分器是一种将输入信号进行积分运算的电路。
通过将输入信号接至运算放大器的反相输入端,连接一个电容至运算放大器的输出端和反相输入端。
这样可以将输入信号进行积分运算,并在输出端得到积分结果。
积分器在控制系统、通信系统等领域有广泛应用。
综上所述,运算放大器是一种功能全面、应用广泛的电子器件,它在各个领域中都有重要的应用。
通过电压放大器、滤波器、反相比例放大器、差分放大器以及积分器等多种应用案例的分析,我们可以更好地理解和掌握运算放大器的工作原理和电路设计方法。
运算放大器公式
在电路设计中,运算放大器是一种重要的基础电路元件。
它被广泛应用于信号放大、滤波、积分、微分、比较、反相器、非反相器等电路中。
下面是几个常用运算放大器公式:
1. 增益公式
运算放大器的增益可以用下面的公式计算:
A = -Rf/Rin
其中,A表示增益,Rf表示反馈电阻,Rin表示输入电阻。
2. 反相放大器公式
反相放大器是一种常用的基础电路,它的输入信号经过放大后会被反相输出。
反相放大器的放大倍数可以用下面的公式计算:
Vout = -Vin * Rf/Rin
其中,Vin表示输入电压,Vout表示输出电压,Rf表示反馈电阻,Rin表示输入电阻。
3. 非反相放大器公式
非反相放大器可以将输入信号放大后,保持输出信号与输入信号同相。
非反相放大器的放大倍数可以用下面的公式计算:
Vout = Vin * (1 + Rf/Rin)
其中,Vin表示输入电压,Vout表示输出电压,Rf表示反馈电阻,Rin表示输入电阻。
以上是几个常用运算放大器公式,它们在电路设计中都有重要的应用。
在实际设计中,我们可以根据具体情况选择合适的公式来计算
电路参数,以实现设计要求。
几种常用集成运算放大器的性能参数1.通用型运算放大器A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
μ通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例2.高阻型运算放大器,IIB为几皮安到几十皮安。
实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。
用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。
常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。
Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012)3.低温漂型运算放大器在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。
低温漂型运算放大器就是为此而设计的。
目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。
4.高速型运算放大器s,BWG>20MHz。
μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。
高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。
常见的运放有LM318、5.低功耗型运算放大器W,可采用单节电池供电。
μA。
目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。
运算放大器分类总结报告1、通用型运算放大器通用型运算放大器就是以通用为目的而设计的。
这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。
例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。
它们是目前应用最为广泛的集成运算放大器。
下面就实验室里也常用的LM358来做一下介绍:LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
:外观管脚图它的特点如下:·内部频率补偿·直流电压增益高(约100dB)·单位增益频带宽(约1MHz)·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V)·低功耗电流,适合于电池供电·低输入偏流·低输入失调电压和失调电流·共模输入电压范围宽,包括接地·差模输入电压范围宽,等于电源电压范围·输出电压摆幅大(0 至Vcc-1.5V)常用性能指标:性能图表:大信号频率响应 大信号电压开环增益电压跟随器对小信号脉冲的响应常用电路: (1)、正向放大器根据虚短路,虚开路,易知:1(1)2R Vo Vi R =+ (2)、高阻抗差分放大器电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C ,因此得到结果:0(21)(1)e C e e a b =-++(3)、迟滞比较器将输入电平与参考电平作比较,根据虚短路,虚开路有:121()()O REF IN R R V V V R +=- ,则: 112112()()inL OL REF REFinHOH REF REFR V V V V R R R V V V V R R =-++=-++2、高精度运算放大器所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。
科技名词定义中文名称:运算放大器英文名称:operational amplifier定义:可以对电信号进行运算,一般具有高增益、高输入阻抗和低输出阻抗的放大器。
应用学科:电力(一级学科);通论(二级学科)本内容由全国科学技术名词审定委员会审定公布求助编辑百科名片运算放大器运算放大器(简称“运放”)是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
随着半导体技术的发展,大部分的运放是以单芯片的形式存在。
运放的种类繁多,广泛应用于电子行业当中。
目录运算放大器的发展历史运算放大器的工作原理运算放大器的类型通用型运算放大器高阻型运算放大器低温漂型运算放大器高速型运算放大器低功耗型运算放大器高压大功率型运算放大器可编程控制运算放大器运算放大器的主要参数共模输入电阻(RINCM)直流共模抑制(CMRDC)交流共模抑制(CMRAC)增益带宽积(GBW)输入偏置电流(IB)输入偏置电流温漂(TCIB)输入失调电流(IOS)输入失调电流温漂(TCIOS)差模输入电阻(RIN)输出电压摆幅(VO)功耗(Pd)电源抑制比(PSRR)转换速率/压摆率(SR)电源电流(ICC、IDD)单位增益带宽(BW)输入失调电压(VOS)输入失调电压温漂(TCVOS) 输入电容(CIN)输入电压范围(VIN)输入电压噪声密度(eN)输入电流噪声密度(iN)运算放大器的应用运算放大器的简易测量运算放大器的发展历史运算放大器的工作原理运算放大器的类型通用型运算放大器高阻型运算放大器低温漂型运算放大器高速型运算放大器低功耗型运算放大器高压大功率型运算放大器可编程控制运算放大器运算放大器的主要参数共模输入电阻(RINCM)直流共模抑制(CMRDC)交流共模抑制(CMRAC)增益带宽积(GBW)输入偏置电流(IB)输入偏置电流温漂(TCIB) 输入失调电流(IOS)输入失调电流温漂(TCIOS) 差模输入电阻(RIN)输出阻抗(ZO)输出电压摆幅(VO)功耗(Pd)电源抑制比(PSRR)转换速率/压摆率(SR)电源电流(ICC、IDD)单位增益带宽(BW)输入失调电压(VOS)输入失调电压温漂(TCVOS)输入电容(CIN)输入电压范围(VIN)输入电压噪声密度(eN)输入电流噪声密度(iN)运算放大器的应用运算放大器的简易测量展开编辑本段运算放大器的发展历史第一个使用真空管设计的放大器大约在1930年前后完成,这个放大器可以执行加与减的工作。
常用运算放大器大全LFC2 高增益运算放大器LFC3 中增益运算放大器LFC4 低功耗运算放大器LFC54 低功耗运算放大器LFC75 低功耗运算放大器F003 通用Ⅱ型运算放大器F004(5G23) 中增益运算放大器F005 中增益运算放大器F006 通用Ⅱ型运算放大器F007(5G24) 通用Ⅲ型运算放大器F010 低功耗运算放大器F011 低功耗运算放大器F1550 射频放大器F1490 宽频带放大器F1590 宽频带放大器F157/A 通用型运算放大器F253 低功耗运算放大器F741(F007) 通用Ⅲ型运算放大器F741A 通用型运算放大器F747 双运算放大器OP-07 超低失调运算放大器OP111A 低噪声运算放大器F4741 通用型四运算放大器F101A/201A 通用型运算放大器F301A 通用型运算放大器F108 通用型运算放大器F308 通用型运算放大器F110/210 电压跟随器F310 电压跟随器F118/218 高速运算放大器F441 低功耗JEET输入运算放大器F318 高速运算放大器F124/224 四运算放大器F324 四运算放大器F148 通用型四运算放大器F248/348 通用型四运算放大器F158/258 单电源双运算放大器F358 单电源双运算放大器F1558 通用型双运算放大器F4558 双运算放大器LF791 单块集成功率运算放大器LF4136 高性能四运算放大器FD37/FD38 运算放大器FD46 高速运送放大器LF082 高输入阻抗运送放大器LFOP37 超低噪声精密放大器LF3140 高输入阻抗双运送放大器LF7650 斩波自稳零运送放大器LZ1606 积分放大器LZ19001 挠性石英表伺服电路变换放大器LBMZ1901 热电偶温度变换器LM741 运算放大器LM747 双运算放大器OP-07 超低失调运算放大器LM101/201 通用型运算放大器LM301 通用型运算放大器LM108/208 通用型运算放大器LM308 通用型运算放大器LM110 电压跟随器LM310 电压跟随器LM118/218 高速运算放大器LM318 高速运算放大器LM124/224 四运算放大器LM324 四运算放大器LM148 四741运算放大器LM248/348 四741运算放大器LM158/258 单电源双运算放大器LM358 单电源双运算放大器LM1558 双运算放大器OP-27CP 低噪声运算放大器TL062 低功耗JEET运算放大器TL072 低噪声JEET输入型运算放大器TL081 通用JEET输入型运算放大器TL082 四高阻运算放大器(JEET)TL084 四高阻运算放大器(JEET)MC1458 双运放(内补偿)LF147/347 JEET输入型运算放大器LF156/256/356 JEET输入型运算放大器LF107/307 运算放大器LF351 宽带运算放大器LF353 双高阻运算放大器LF155/355 JEET输入型运算放大器LF157/357 JEET输入型运算放大器LM359 双运放(GB=400MC)LM381 双前置放大器CA3080 跨导运算放大器CA3100 宽频带运算放大器CA3130 BiMOS运算放大器CA3140 BiMOS运算放大器CA3240 BiMOS双运算放大器CA3193 BiMOS精密运算放大器CA3401 单电源运算放大器MC3303 单电源四运算放大器MC3403 低功耗四运放LF411 低失调低漂移JEET输入运放LF444 四高阻抗运算放大器μpc4558低噪声宽频带运放MC4741 四通用运放LM709 通用运放LM725 低漂移高精度运放LM733 宽带放大器LM748 双运放ICL7650 斩波稳零运放ICL7660 CMOS电压放大(变换)器。