高中数学--正弦定理和余弦定理
- 格式:doc
- 大小:95.00 KB
- 文档页数:2
高中数学必修五公式声明:本文非原创,由于界面阅读感不好而本人进行重新排版。
第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径) 变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n ∙-+=11或()d m n a a m n ∙-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+(2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-∙=或q a a mn m n -∙=3.求和公式: )(1q ,1==na S n )(1q 11)1(11≠--=--=qqa a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C 变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin Acos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A为钝角或直角时,a ≤b ,无解.2、三角形常用面积公式1.S =a •h a (h a 表示边a 上的高);2.S =ab sin C =ac sin B =bc sin A .3.S =r (a +b +c )(r 为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1C.2D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,若sin B =b sin A ,则a =()A.B .C .1D .三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R 是△ABC 外接圆半径)a 2=b 2+c 2﹣2bc cos A ,b 2=a 2+c 2﹣2ac cos B ,c 2=a 2+b 2﹣2ab cos C变形形式①a =2R sin A ,b =2R sin B ,c =2R sin C ;②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;④a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin A cos A =,cos B =,cos C =解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC 中,已知a ,b 和角A 时,解的情况A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <ba≥ba >b 解的个数一解两解一解一解由上表可知,当A 为锐角时,a <b sin A ,无解.当A 为钝角或直角时,a ≤b ,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,且(a +b )2=c 2+ab ,B =30°,a =4,则△ABC 的面积为()A .4B .3C .4D .6例2.设△ABC 的三个内角A ,B ,C 成等差数列,其外接圆半径为2,且有,则三角形的面积为()A .B .C .或D .或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;的最大值.(2)若D为AC的中点,且BD=1,求S△ABC'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。
第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。
数学解题技巧之余弦定理与正弦定理的应用在数学解题中,余弦定理与正弦定理是两个非常重要且经常被使用的定理。
它们能够帮助我们求解各种三角形相关的问题。
本文将探讨余弦定理与正弦定理的定义、应用以及解题技巧。
一、余弦定理余弦定理是描述三角形边与角之间关系的定理。
它可以用来解决一些已知三边或两边一角的三角形问题。
假设有一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
则余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC其中,^2表示乘方,cosC表示角C的余弦值。
余弦定理可以应用于以下几种情况:1. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用余弦定理计算角A、角B、角C的大小。
2. 已知两边一角求边长:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的长度。
3. 已知两边和夹角求第三边:如果已知三角形的两个边长a、b和它们夹角C,我们可以利用余弦定理计算第三个边c的可能范围。
二、正弦定理正弦定理也是解决三角形相关问题的重要工具。
它可以描述三角形的边和角之间的关系。
对于一个三角形ABC,边长分别为a、b、c,角A对应于边a,角B对应于边b,角C对应于边c。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC正弦定理的应用有以下几种情况:1. 已知两角一边求另外一边:如果已知三角形的两个角A、B和一边c的长度,我们可以利用正弦定理计算另外两个边a、b的长度。
2. 已知两边一角求角度:如果已知三角形的两个边长a、b和夹角C 的大小,我们可以利用正弦定理计算另外两个角A、B的大小。
3. 已知三边求角度:如果已知三角形的三个边长a、b、c,我们可以利用正弦定理计算三个角A、B、C的大小。
三、解题技巧1. 判断何时使用余弦定理或正弦定理:根据已知条件的不同,确定使用何种定理。
如果已知两边一角,则通常使用余弦定理;如果已知两角一边,则通常使用正弦定理。
高中数学学习中的正弦定理与余弦定理运用正弦定理与余弦定理是高中数学学习中重要的几何定理,它们在解决三角形相关问题时起到了关键作用。
正弦定理和余弦定理广泛运用于测量和计算角度、边长和面积等方面。
在高中数学学习中,学生们需要熟练掌握并灵活运用这两个定理,以解决各种数学问题。
首先,正弦定理是描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
正弦定理的表达式是:a/sinA = b/sinB = c/sinC。
该定理可以用于计算未知边长或角度的数值。
例如,当我们知道三角形的两个角和一个边长时,可以使用正弦定理来计算未知边长。
同样地,当我们知道三角形的两个边长和一个角度时,也可以使用正弦定理来计算未知角度。
正弦定理在解决不规则三角形的测量问题时非常有用。
与正弦定理相似,余弦定理也是用于描述三角形边与其对应的角之间的关系的定理。
对于任意三角形ABC,边a、b和c分别与角A、B和C对应。
余弦定理的表达式为:c² = a² + b² - 2abcosC。
该定理可以用于计算三角形任意边长的平方值,当我们知道边长和夹角时,可以使用余弦定理计算另一边的长度。
正弦定理和余弦定理的应用非常广泛。
在实际生活中,我们经常需要使用这两个定理来解决与三角形相关的问题。
例如,在测量高楼大厦的高度时,我们可以利用正弦定理计算出无法直接测量的高度。
同样地,在测量河流宽度时,我们可以利用余弦定理计算出河的宽度。
这些应用展示了这两个定理的实际价值。
在数学考试中,正弦定理与余弦定理也经常被考查。
题目通常要求学生根据已知条件,使用这两个定理计算未知量。
因此,学生们需要熟练掌握这两个定理的公式和用法。
为了更好地掌握,学生们可以多做相关的练习题,加深对这两个定理的理解和运用能力。
另外,正弦定理和余弦定理还有一些衍生应用。
比如,通过这两个定理,我们可以推导出海伦公式。
海伦公式用于计算任意三角形的面积,根据三边长a、b和c,海伦公式的表达式为:面积 = sqrt(s(s-a)(s-b)(s-c)),其中s是半周长(s=(a+b+c)/2)。
正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。
正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。
一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。
【注1】其中“R”为三角形△ABC外接圆半径。
下同。
【注2】正弦定理适用于所有三角形。
初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。
二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。
2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。
其中“R”为三角形△ABC的外接圆半径。
部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
正弦定理与余弦定理一、三角形中的各种关系设ABC ∆的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系:1、三内角关系三角形中三内角之和为π(三角形内角和定理),即A B C π++=,;2、边与边的关系三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<;3、边与角的关系(1)正弦定理三角形中任意一条边与它所对应的角的正弦之比都相等,即2sin sin sin a b c R A B C===(这里,R 为ABC ∆外接圆的半径). 注1:(I )正弦定理的证明:在ABC ∆中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c R A B C===(这里,R 为ABC ∆外接圆的半径)证:法一(平面几何法):在ABC ∆中 ,作CH AB ⊥,垂足为H则在Rt AHC ∆中,sin CH A AC =;在Rt BHC ∆中,sin CH B BC =sin ,sin CH b A CH a B ∴== sin sin b A a B ⇒= 即sin sin a b A B = 同理可证:sin sin b c B C= 于是有sin sin sin a b c A B C== 作ABC ∆的外接圆⊙O ,设其半径为R连接BO 并延长,则可得到⊙O 的直径BD ,连接DA因为在圆中,直径所对的圆周角是直角所以90o DAB ∠=于是在Rt DAB ∆中,sin 2AB c D BD R== 又因为在同一圆中,同弧所对的圆周角相等所以D C ∠=∠2sin sin 2c c c R c C DR∴=== 故2sin sin sin a b c R A B C ===(这里,R 为ABC ∆外接圆的半径) 法二(平面向量法)(Ⅱ)正弦定理的意义: 正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系.(Ⅲ)正弦定理适用的范围:(i )已知三角形的两角及一边,解三角形;(ii )已知三角形的两边及其中一边所对应的角,解三角形;(iii )运用::sin :sin :sin a b c A B C =解决角之间的转换关系. 注2:正弦定理的一些变式:(i )::sin :sin :sin a b c A B C =;(ii )sin ,sin ,sin 222a b c A B C R R R===; (iii )2sin ,2sin ,2sin a R A b R B c R C ===.注3:已知三角形是确定的,则在运用正弦定理解该三角形时,其解是唯一的;已知三角形的两条边和其中一条边的对角,由于该三角形具有不稳定性,所以其解是不确定的,此时可结合平面几何作图的方法、“大边对大角,大角对大边”定理及三角形内角和定理解决问题.例1. ABC ∆中,,a b 分别为角,A B 的对边,若60,75,8o o B C a ===,则b =_.例2. ABC ∆中,角,,A B C 的对边分别为,,a b c ,,13A a b π===,则c =_.例3.在ABC ∆中,60,1o b B c ===,求a 和,.A C例4. 在ABC ∆中,已知2,2,2B A BC AB ∠=∠==+则A ∠=_. 例5.已知ABC ∆中,角,A B 所对的边分别是,a b ,若cos cos a B b A =,则ABC ∆一定是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(2)余弦定理三角形中任意一条边的平方等于其他两条边平方的和减去这两条边与它们夹角的余弦的乘积的2倍,即2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-. 注1:(I )余弦定理的证明:法一(平面几何法)在ABC ∆中 ,作CH AB ⊥,垂足为H则在Rt AHC ∆中,sin CH CH A AC b ==;cos AH AH A AC b== sin ,cos CH b A AH b A ∴== cos BH AB AH c b A ⇒=-=- 在Rt CHB ∆中,由勾股定理有222BC CH BH =+于是有22222222222222(sin )(cos )sin 2cos cos (sin cos )2cos 2cos a b A c b A b A c bc A b Ab A Ac bc A b c bc A=+-=+-+=++-=+-同理可证:2222cos b c a ca B =+-,2222cos c a b ab C =+-.法二(平面向量法)(Ⅱ)余弦定理的意义: 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当结合其它知识,则使用起来更为方便、灵活。
正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。
正弦定理和余弦定理
(一)复习指导
1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
(二)基础知识
1. 三角形中的有关公式
(1)内角和定理:三角形三角和为π,这是三角形中三角函数问题的特殊性,解题可不能忘记!任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.
(2)正弦定理:
2sin sin sin a b c R A B C
===(R 为三角形外接圆的半径).注意:①正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R
== 2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;②已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理:222222
2cos ,cos 2b c a a b c bc A A bc +-=+-=等,常选用余弦定理鉴定三角形的形状. (4)面积公式:111sin ()222
a S ah a
b C r a b
c ===++(其中r 为三角形内切圆半径).如ABC ∆中,若C B A B A 22222sin sin cos cos sin =-,判断ABC ∆的形状(答:直角三角形)。
特别提醒:(1)求解三角形中的问题时,一定要注意A B C π++=这个特殊性:
,sin()sin ,sin cos 22A B C A B C A B C π++=-+==;(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化。
2、求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)。
(三)解题方法指导
例1.在△ABC 中,a ∶b ∶c =3∶5∶7,则其最大角为____.
例2.在△ABC 中,有a cos A =b cos B ,判断△ABC 的形状.
例3.在△ABC 中,∠A =60°,面积为310,周长为20,求三条边的长.
例4.在一条河的对岸有两个目标物A ,B ,但不能到达.在岸边选取相距32里的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,且A ,B ,C ,D 在同一个平面内,求A ,B 之间的距离.
例题解析
例1解:因为三条边中c 边最大,则角C 最大,根据余弦定理,21cos -=C ,所以⋅=3π2C 例2解:由正弦定理,a =2R sin A ,b =2R sin B ,代入有2R sin A cos A =2R sin B cos B ,即sin2A =sin2B ,所以2A =2B 或2A =π-2B .即A =B 或2
π=+B A ,所以△ABC 为等腰三角形或直角三角形. 例3解:因为310sin 2
1==∆A bc S ABC ,所以bc =40,又a +b +c =20,a 2=b 2+c 2-2bc cos A ,解得三条边为5,7,8.
例4分析:在很多实际测量问题中,都离不开解三角形,根据相关条件画一张比较清晰的直观图,可以帮我们找到解题的思路.
要求AB ,可以把AB 放到一个三角形中,看看这个三角形中还有哪些条件,然后可以根据正余弦定理求值. 解:中△ACD 中,∠ACD =120°,∠ADC =30°
所以∠DAC =30°,所以|AC |=|CD |=23,
在△BCD 中,∠BCD =45°,∠CDB =75°,
所以∠CBD =60°,由正弦定理,60
sin ||75sin ||,o o CD BC = 所以,2660
sin 75sin ||||o o
+==CD BC 在△ABC 中,∠BCA =75°,
根据余弦定理,|AB |2=|AC |2+|BC |2-2|AC |·|BC |·cos75°,求得
|AB |2=20,⋅=52||AB。