浮点数在内存中的存储方式
- 格式:docx
- 大小:16.25 KB
- 文档页数:3
[C/C++] float和double类型的内存分布和比较方法C/C++的浮点数据类型有float和double两种。
类型float大小为4字节,即32位,内存中的存储方式如下:指数和尾数均从浮点数的二进制科学计数形式中获取。
如,十进制浮点数2.5的二进制形式为10.1,转换为科学计数法形式为(1.01)*(10^1),由此可知指数为1,尾数(即科学计数法的小数部分)为01。
根据浮点数的存储标准(IEEE制定),float类型指数的起始数为127(二进制0111 1111),double类型指数的起始数为1023(二进制011 1111 1111),在此基础上加指数,得到的就是内存中指数的表示形式。
尾数则直接填入,如果空间多余则以0补齐,如果空间不够则0舍1浮点数2.5可以用二进制小数准确表示(2.5=1*(2^1)+0*(2^0)+1*(2^-1)),但很多小数不可以由于对无限循环尾数的截取遵循0舍1入,尾数的第21~24位为0011,第53~56位为0011,而float尾数容量为23位,double尾数容量为52位,所以,float形式的最后三位因进位而成010,double形式则没有进位发生。
类型float和double通过==,>,<等比较不会引起编译错误,但是非常可能得到错误的结果。
这是因为它们的内存分布不同,不可以直接比较。
正确的方法是转换为同一类型后比较两者差值,如果结果小于规定的小值,则视为相等。
如,一个比较double的实现:/index.php?title=How_to_compare_double_or_float_in_Cpp另外,本文参考了如下webs:/2008/01/memory-map-of-floatdouble.html/hzb1983/archive/2007/09/24/1798555.aspxP.S.1)IEEE浮点数标准:4字节浮点数:1位符号位,8位阶数(基数为127的移码),23位尾数;8字节浮点数:1位符号位,11位阶数(基数为1023的移码),52位尾数2 )在VC中:float数值范围约在-10e38~10e38,并提供7位有效数字位,绝对值小于10e38地数被处理成零值double数值范围约在-10e308~10e308,并提供15~16位有效数字,绝对值小于10e308地数被处理成零值。
c++语言中单精度浮点型和双精度浮点型
在C++语言中,单精度浮点型和双精度浮点型是用于表示实数的数据类型。
单精度浮点型,也称为float类型,在内存中占用4个字节(32位)。
它的取值范围约为-3.4E38到3.4E38,并且可以保留大约6到7位有
效数字。
浮点数在内存中以科学记数法的形式存储,即一个数的科学
记数法形式为m x 10^n,其中m称为尾数,n称为阶码。
单精度浮点
型能够表示小数点后多达6到7位的位置。
双精度浮点型,也称为double类型,在内存中占用8个字节(64位)。
它的取值范围约为-1.7E308到1.7E308,并且可以保留大约15到16
位有效数字。
双精度浮点型相比于单精度浮点型,能够表示更大范围
和更高精度的实数值。
双精度浮点型在内存中的存储方式与单精度浮
点型相似。
在C++中,可以使用float关键字定义单精度浮点型变量,如:float num = 3.14f;使用double关键字定义双精度浮点型变量,如:
double num = 3.14159;在进行浮点数运算时,C++会根据操作数的类
型自动选择合适的函数进行计算。
需要注意的是,由于浮点数的存储方式与实数的存储方式存在一定的
差别,因此在进行浮点数比较时应该注意精度误差的问题,可以使用
特定的比较方法来避免精度误差带来的问题。
浮点数在内存中的存储方式
浮点数是存储浮点计算结果的一种常见数据类型,可以用来表示介于有理数和无理数
之间的数值。
在内存中,浮点数通常以“浮点编码”形式进行存储,其表示方法有IEEE-754标准,按照该标准,浮点数可以用32位或64位表示。
IEEE-754标准,32位浮点编码的存储格式如下:首先用一位来表示有效数字的符号,即正数时为0,负数时为1,后面接8位无符号表示指数域,再接23位有符号表示尾数域。
一般来说,在当前系统中,IEEE-754标准可以分为单精度浮点数(32位)和双精度
浮点数(64位)。
单精度浮点数的存储格式如上所述:第一位为符号位,接下来的八位位指数域,然后是尾数域。
指数域是由八位“2的次幂”组合而成的,尾数域是有效数字的
连续序列。
而双精度格式(64位)的存储形式同样遵循IEEE754标准,区别在于:双精度格式符号位和指数域都是一位,而且指数域长度为11位;尾数域长度则增加到52位。
其存储格
式如下:第一位为符号位,接着是11位指数域,最后跟着52位尾数域。
指数域仍不变,根据尾数域存储了更多的有效数字,因此可以储存较大的数,这就是
双精度格式的优势。
另外,因为双精度格式能够存储更多的位数,可以更为精确地存储我
们的数据,因此,在数值计算中,双精度浮点数常常被使用。
浮点数在内存中的存储方式任何数据在内存中都是以二进制的形式存储的,例如一个short型数据1156,其二进制表示形式为00000100 10000100。
则在Intel CPU架构的系统中,存放方式为10000100(低地址单元) 00000100(高地址单元),因为Intel CPU的架构是小端模式。
但是对于浮点数在内存是如何存储的?目前所有的C/C++编译器都是采用IEEE所制定的标准浮点格式,即二进制科学表示法。
在二进制科学表示法中,S=M*2^N 主要由三部分构成:符号位+阶码(N)+尾数(M)。
对于float型数据,其二进制有32位,其中符号位1位,阶码8位,尾数23位;对于double型数据,其二进制为64位,符号位1位,阶码11位,尾数52位。
31 30-23 22-0float 符号位阶码尾数63 62-52 51-0double 符号位阶码尾数符号位:0表示正,1表示负阶码:这里阶码采用移码表示,对于float型数据其规定偏置量为127,阶码有正有负,对于8位二进制,则其表示范围为-128-127,double型规定为1023,其表示范围为-1024-1023。
比如对于float型数据,若阶码的真实值为2,则加上127后为129,其阶码表示形式为10000010尾数:有效数字位,即部分二进制位(小数点后面的二进制位),因为规定M的整数部分恒为1,所以这个1就不进行存储了。
下面举例说明:float型数据125.5转换为标准浮点格式125二进制表示形式为1111101,小数部分表示为二进制为1,则125.5二进制表示为1111101.1,由于规定尾数的整数部分恒为1,则表示为1.1111011*2^6,阶码为6,加上127为133,则表示为10000101,而对于尾数将整数部分1去掉,为1111011,在其后面补0使其位数达到23位,则为11110110000000000000000则其二进制表示形式为0 10000101 11110110000000000000000,则在内存中存放方式为:00000000 低地址000000001111101101000010 高地址而反过来若要根据二进制形式求算浮点数如0 10000101 11110110000000000000000由于符号为为0,则为正数。
浮点数在内存中的存储⽅式1、在使⽤switch(value)时,value的类型可以是浮点吗?2、判断浮点数是否相等时,可以⽤float f1,f2; if(fi==f2){do something;}吗?都不可以。
这涉及浮点数在内存中的存储⽅式。
⼀、float型在内存中占4字节,double占8字节。
单精度float在内存中的存储格式如下图(1位符号位S,8位指数位E,23位有效数字M):双精度double在内存中的存储格式如下图(1位符号位S,11位指数位E,52位有效数字M):本⽂主要说单精度浮点型float,double类似。
(-1)^S * M * 2^E(-1)^S表⽰正负,S=1时为负,S=0时为正;M表⽰有效数字,1<=M<2;2^(E-127)表⽰指数位。
如⼗进制8.125,将其转化成⼆进制形式:对于整数部分8:8/2 商:4 余:04/2 商:2 余:02/2 商:1 余:01/2 商:0 余:1余数逆序,所以8的⼆进制为:1000对于⼩数部分0.125,:0.125*2 整数:0 ⼩数:0.250.25*2 整数:0 ⼩数:0.50.5*2 整数:1 ⼩数:0整数部分正序,所以0.125的⼆进制为:001所以8.125的⼆进制形式为:1000.001,即1.000001 * 2^3。
因是正数,所以,S=0;因M表⽰有效数字,1<=M<2,所以M=1.xxxxxxx,其中⼩数点前的1是固定的,可省略,则M只需要表⽰⼩数点后的数即可,故可⽤23位有效数字表⽰M部分,则8.125的M部分为 000 0010 0000 0000 0000 0000;⽽E部分8位是unsigned char,范围为0~255,但科学计数法的指数部分有正有负,故整体偏移127,⽤0~255来表⽰-127~128,所以8.125的指数E部分,实际写的是E:3+127=130=1000 0010,综上:8.125在内存中的存放bit为 0 1000 0010 000 0010 0000 0000 0000 0000 0000 ,即0x41020000程序验证⼀下:float f=8.125f;unsigned char *p = (unsigned char *)&f;printf("%x %x %x %x\n",p[0], p[1], p[2], p[3]);结果:0 0 2 41⼩端存储模式,低字节在前,⾼字节在后。
计算机内浮点数的储存格式通常采用IEEE 754标准,这是一种广泛使用的浮点数表示方法。
在IEEE 754标准中,浮点数由三个部分组成:符号位、指数位和尾数位。
1. 符号位:符号位用于表示浮点数的正负。
对于每个浮点数,符号位为0表示正数,符号位为1表示负数。
2. 指数位:指数位用于表示浮点数的幂。
在IEEE 754标准中,指数位采用偏移二进制指数表示法,即先将指数值进行偏移,然后转换为二进制形式。
偏移量取决于浮点数的类型(单精度或双精度)。
3. 尾数位:尾数位用于表示浮点数的有效数字。
在IEEE 754标准中,尾数位采用二进制小数表示法,即先将浮点数乘以一个常数,然后舍入到最接近的二进制小数。
尾数的位数取决于浮点数的类型(单精度或双精度)。
在单精度浮点数中,符号位占1位,指数位占8位,尾数位占23位。
在双精度浮点数中,符号位占1位,指数位占11位,尾数位占52位。
除了IEEE 754标准之外,还有一些其他的浮点数表示方法,例如Microsoft的COM类型(使用二进制补码表示法)和Java的double 类型(使用二进制补码表示法)。
但是,IEEE 754标准是最广泛使用的浮点数表示方法之一。
Java浮点数存储格式JAVA中浮点数有两个基础类型:float和double。
float占据4个字节,double 占据8个字节。
下面将以float类型为例,介绍浮点数的存储方式。
double类型和float类型的存储方式雷同。
1.浮点数的存储方式浮点数的存储格式比较特殊,下图是4字节的float变量的存储示意图:根据IEEE754浮点数表示标准,一个float变量在存储中由三部分组成,分别是:符号位:1位(31),表示float的正负,0为正,1为负幂指数:8位(23-30),表示2进制权的幂次有效位:23位(0-22),表示有效数字2.浮点数的取值范围在float的存储中,有4个特殊的存储值,分别是:0x7f800000:正无穷大,Float.intBitsToFloat()打印显示为infinity0xff800000:负无穷大,打印显示为-infinity0x00000000:正零,打印显示为0.00x80000000:负零,打印显示为-0.0注意,在Java中,infinity!=-infinity,但是0.0==-0.0以上4个特殊存储值将float的存储分为4个段[0x00000001,0x7f7fffff]:正float数,共2^31-2^23-1个[0x7f800001,0x7fffffff]:非数字,打印显示NaN,共2^23-1[0x80000001,0xff7fffff]:负float数,共2^31-2^23-1个[0xff800001,0xffffffff]:非数字,打印显示NaN,共2^23-13.浮点数的格式转换令bits表示一个整数,其存储空间为4字节,下面我们求出这4个字节表示的float类型数字为多少。
int s = ((bits>>31) == 0)?1:-1; //取出1bit符号位int e = ((bits>>23) & 0xff); //取出8bit的幂指数//取出23位有效位int m = (e==0)?((bits & 0x7fffff) << 1):((bits & 0x7fffff) | 0x800000);则该存储空间表示的浮点数为 s*m*2^(e-150)分析:[0x00000001,0x007fffff]:相应实数范围为[(2^-149),(2^-126)-(2^-149)],即大约为[1.4E-45,1.2E-38],离散间隔固定为(2^-149)即约为1.4E-45,实数个数为2^23个。
C语⾔中float,double类型,在内存中的结构(存储⽅式).从存储结构和算法上来讲,double和float是⼀样的,不⼀样的地⽅仅仅是float是32位的,double是64位的,所以double能存储更⾼的精度。
任何数据在内存中都是以⼆进制(0或1)顺序存储的,每⼀个1或0被称为1位,⽽在x86CPU上⼀个字节是8位。
⽐如⼀个16位(2 字节)的short int型变量的值是1000,那么它的⼆进制表达就是:00000011 11101000。
由于Intel CPU的架构原因,它是按字节倒序存储的,那么就因该是这样:11101000 00000011,这就是定点数1000在内存中的结构。
⽬前C/C++编译器标准都遵照IEEE制定的浮点数表⽰法来进⾏float,double运算。
这种结构是⼀种科学计数法,⽤符号、指数和尾数来表⽰,底数定为2——即把⼀个浮点数表⽰为尾数乘以2的指数次⽅再添上符号。
下⾯是具体的规格:符号位阶码尾数长度float 1 8 23 32double 1 11 52 64临时数 1 15 64 80由于通常C编译器默认浮点数是double型的,下⾯以double为例:共计64位,折合8字节。
由最⾼到最低位分别是第63、62、61、……、0位:最⾼位63位是符号位,1表⽰该数为负,0正; 62-52位,⼀共11位是指数位; 51-0位,⼀共52位是尾数位。
按照IEEE浮点数表⽰法,下⾯将把double型浮点数38414.4转换为⼗六进制代码。
把整数部和⼩数部分开处理:整数部直接化⼗六进制:960E。
⼩数的处理: 0.4=0.5*0+0.25*1+0.125*1+0.0625*0+…… 实际上这永远算不完!这就是著名的浮点数精度问题。
所以直到加上前⾯的整数部分算够53位就⾏了(隐藏位技术:最⾼位的1 不写⼊内存)。
如果你够耐⼼,⼿⼯算到53位那么因该是:38414.4(10)=1001011000001110.0110101010101010101010101010101010101(2)科学记数法为:1.001……乘以2的15次⽅。
单精度浮点数存储格式单精度浮点数是一种在计算机中存储实数的格式。
它是一种32位的数据类型,可以用来表示范围更大,精度更高的浮点数。
单精度浮点数在内存中以8字节(64位)的形式存储,其中一部分用于表示符号(S),一部分用于表示指数(E),一部分用于表示尾数(M)。
具体来说,它的存储格式如下:1.符号位(S):这是最高位,用于表示这个数是正数还是负数。
如果这个位是0,那么这个数是正数;如果这个位是1,那么这个数是负数。
2.指数位(E):接下来的8位用于表示指数。
这个指数是以偏移量1023(即2的10次方减1)为基准的。
也就是说,实际的指数值等于存储的指数位减去1023。
指数决定了浮点数的规模,而尾数则决定了浮点数的精确部分。
3.尾数位(M):最后的24位用于表示尾数。
尾数是在二进制小数点右边的一系列位,它们决定了浮点数的精确部分。
由于这些位是在二进制小数点右边,所以它们是相对于1的二进制偏移量。
也就是说,尾数乘以2的负23次方(即1/8388608)可以得到这个数的精确部分。
这种格式允许我们存储从大约-3.4e38到3.4e38的实数,并且具有大约7位十进制精度的分辨率。
这是在许多应用中处理和存储实数的常见方式。
例如,在图形处理和科学计算中,这种格式可以非常有效地处理需要大量浮点运算的任务。
此外,单精度浮点数的存储方式对于程序员来说是完全透明的。
他们只需要使用编程语言提供的相应数据类型(例如,在C++中的float),就可以在内存中以这种格式存储和操作浮点数。
这些语言通常还提供了一组函数来执行与浮点数相关的常见操作,如加法、减法、乘法、除法等。
总的来说,单精度浮点数的存储格式是一种在内存中高效地表示实数的强大工具。
它的符号、指数和尾数的设计使得它可以用来表示广泛的数值范围,同时还能保持较高的精度。
这种格式被广泛应用于各种计算机系统和应用中,无论是桌面应用、服务器还是嵌入式系统。
c语言浮点数在内存中的存储形式C语言中的浮点数在内存中的存储形式是由IEEE 754标准所规定的。
IEEE 754是一种用于浮点数计算的二进制表示方法,它定义了浮点数的存储格式、运算规则和异常处理等。
浮点数在内存中的存储形式可以分为三个部分:符号位、指数位和尾数位。
其中,符号位用于表示浮点数的正负,指数位用于表示浮点数的大小,尾数位用于表示浮点数的精度。
让我们来看一下符号位的存储。
符号位只占用一个bit位,用于表示浮点数的正负。
当符号位为0时,表示浮点数为正;当符号位为1时,表示浮点数为负。
接下来是指数位的存储。
指数位通常占用8个bit位,用于表示浮点数的大小。
指数位使用移码表示法,即将真实的指数值加上一个偏移量,然后用二进制表示。
这个偏移量是一个固定的值,一般为127。
例如,如果浮点数的指数为3,则在指数位中存储的值为3+127=130。
这样,指数位可以表示的范围是从-127到128。
最后是尾数位的存储。
尾数位通常占用23个bit位,用于表示浮点数的精度。
尾数位使用二进制补码表示法,即将小数部分乘以2的23次方,然后用整数表示。
例如,如果浮点数的小数部分为0.75,则在尾数位中存储的值为0.75*2^23=1572864。
浮点数在内存中的存储形式可以表示为:符号位(1 bit) + 指数位(8 bits) + 尾数位(23 bits)。
这种存储形式可以有效地表示各种大小和精度的浮点数。
需要注意的是,由于浮点数的存储是有限的,所以在进行浮点数计算时可能会出现舍入误差。
这是由于浮点数的表示范围和精度有限所导致的。
因此,在进行浮点数计算时,需要注意避免累积误差和比较误差的问题。
浮点数的存储形式还可以表示特殊的值,如正无穷大、负无穷大和NaN(Not a Number)。
这些特殊的值在浮点数计算中有着特殊的处理规则。
总结一下,C语言中的浮点数采用IEEE 754标准定义的存储形式,包括符号位、指数位和尾数位。
浮点型数据在内存中的存储形式在计算机中,浮点型数据是一种用来表示实数的数据类型。
浮点型数据的存储形式是通过使用一定的位数来表示实数的整数部分和小数部分,以及表示实数的符号位。
浮点型数据的存储形式可以分为单精度浮点型和双精度浮点型两种。
1. 单精度浮点型单精度浮点型数据通常使用32位来进行存储。
在这32位中,首先使用1位来表示符号位,表示实数的正负。
接下来的8位用来表示指数部分,用来表示实数的数量级。
最后的23位用来表示尾数部分,用来表示实数的精度。
具体来说,单精度浮点型数据的存储形式如下:符号位(1位)指数部分(8位)尾数部分(23位)其中,符号位可以取0或1,分别表示正数和负数。
指数部分使用移码表示法,即通过偏移一个固定的值来表示实际的指数。
尾数部分使用尾数的二进制表示,用来表示实数的小数部分。
2. 双精度浮点型双精度浮点型数据通常使用64位来进行存储。
在这64位中,首先使用1位来表示符号位,表示实数的正负。
接下来的11位用来表示指数部分,用来表示实数的数量级。
最后的52位用来表示尾数部分,用来表示实数的精度。
具体来说,双精度浮点型数据的存储形式如下:符号位(1位)指数部分(11位)尾数部分(52位)其中,符号位可以取0或1,分别表示正数和负数。
指数部分使用移码表示法,即通过偏移一个固定的值来表示实际的指数。
尾数部分使用尾数的二进制表示,用来表示实数的小数部分。
浮点型数据在内存中的存储形式是通过将整数部分和小数部分分别存储在指定的位数中,以及使用符号位来表示实数的正负。
通过这种方式,计算机可以对实数进行精确的表示和计算。
需要注意的是,由于浮点数的存储形式中存在有限的位数,所以在进行浮点数的运算时,可能会出现精度损失的情况。
这是因为某些实数无法精确地用有限的位数来表示,从而导致计算结果的误差。
因此,在进行浮点数的计算时,需要注意处理精度损失的问题,以避免出现错误的结果。
总结起来,浮点型数据在内存中的存储形式是通过使用一定的位数来表示实数的整数部分和小数部分,以及表示实数的符号位。
c语言浮点数的存储方式在C语言中,浮点数是以二进制的形式存储的。
具体来说,浮点数在内存中由三部分组成:符号位、指数位和尾数位。
1.符号位:用于表示浮点数的正负。
在内存中,符号位使用一位(0或1)表示。
如果该位为0,则该数为正数;如果该位为1,则该数为负数。
2.指数位:用于表示浮点数的数值大小。
在内存中,指数位使用移码表示法来表示。
移码表示法是将真值数的二进制表示形式中的符号位(最高位)保持为0,其余部分原样保持不变,然后对整个数加一个偏移量(通常是最大负数的绝对值)。
3.尾数位:用于表示浮点数的有效数字。
在内存中,尾数位使用原码表示法来表示。
原码表示法是将真值数的二进制表示形式中的符号位保持不变,其余部分取反后加1得到。
例如,将浮点数8.5转换为二进制存储方式,可以按照以下步骤进行:1.符号位:由于8.5是正数,因此符号位为0。
2.指数位:首先将8.5转换为科学计数法8.5=2^3 × 0.11011,其中指数位为3。
由于使用的是移码表示法,因此需要将3转换为二进制数0011,然后将最高位(符号位)置为0,得到移码表示法的指数位0001 1000。
3.尾数位:将0.11011转换为二进制小数0.00001 1000 0000 0000 00000000,然后将符号位(最高位)置为负号,其余部分保持不变,得到尾数位的原码表示法1 1000 0000 0000 0000 000。
最后将这个原码表示法的尾数位取反后加1,得到尾数位的补码表示法1 1111 1111 1111 1111 111。
因此,8.5在内存中的存储方式为:•符号位:第32位为0(正数)•指数位:从第33到39位为移码表示法的指数位(其中第33位为符号位):0 001 1 0(其中空格用于分隔每一位)•尾数位:从第40到62位为尾数位的补码表示法:1 111 1 1(其中空格用于分隔每一位)注意,在不同的计算机系统中,浮点数的存储方式可能会有所不同。
文章标题:深度解析:C语言中浮点数转换为十六进制字符串的方法在C语言中,将浮点数转换为十六进制字符串是一个常见的操作。
这个过程涉及到数据类型的转换、内存中的存储和十六进制数的表示,需要仔细理解和掌握。
本文将从浮点数的存储形式、C语言中的数据类型转换、以及具体的转换方法等方面进行全面的解析,帮助您更深入地了解这一主题。
一、浮点数的存储形式浮点数在计算机中的存储是以二进制形式进行的。
根据IEEE 754标准,浮点数在内存中的存储分为符号位、指数位和尾数位三个部分。
这种存储形式对于计算机来说更为高效,但对于人类来说却不易理解。
需要借助特定的方法将其转换为我们能够理解和处理的形式。
C语言中的数据类型转换在C语言中,我们可以使用sprintf()函数将浮点数转换为十六进制字符串。
这个函数是C语言标准库中的一部分,能够按照指定的格式将浮点数格式化为字符串。
下面是一个简单的示例:```cfloat f = 3.14;char hex[30];sprintf(hex, "%a", f);```在这个示例中,我们将浮点数3.14转换为十六进制字符串,并存储在hex数组中。
需要注意的是,"%a"是sprintf()函数的格式控制符,表示以十六进制的形式输出浮点数。
具体的转换方法除了使用sprintf()函数,我们还可以通过手动计算的方式将浮点数转换为十六进制字符串。
这种方法需要我们对浮点数的存储形式有较深入的了解,并进行一系列的位运算。
这个过程可能较为复杂,但能够更深入地理解浮点数在内存中的表示形式。
总结与回顾在本文中,我们从浮点数的存储形式、C语言中的数据类型转换,以及具体的转换方法等方面对将浮点数转换为十六进制字符串进行了全面的探讨。
通过深入的分析和具体的示例,希望能够帮助您更好地理解这一主题。
个人观点与理解我个人认为,对于C语言中浮点数转换为十六进制字符串这一操作,需要深入理解浮点数在内存中的存储形式,以及C语言中相关的数据类型转换方法。
浮点数在计算机内存中的存储格式对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用 32bit,double数据占用 64bit,我们在声明一个变量float f = 2.25f的时候,是如何分配内存的呢?其实不论是float类型还是double类型,在计算机内存中的存储方式都是遵从IEEE的规范的,float 遵从的是IEEER32.24 ,而double 遵从的是R64.53。
无论是单精度还是双精度,在内存存储中都分为3个部分:1) 符号位(Sign):0代表正,1代表为负;2) 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储;3) 尾数部分(Mantissa):尾数部分;其中float的存储方式如下图所示:而双精度的存储方式为:R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*,而120.5可以表示为:1.205*。
而我们傻蛋计算机根本不认识十进制的数据,它只认识0和1,所以在计算机内存中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,120.5用二进制表示为:1110110.1。
用二进制的科学计数法表示1000.01可以表示为1.00001*,1110110.1可以表示为 1.1101101*,任何一个数的科学计数法表示都为 1.xxx*, 尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127。
c语言float 二进制摘要:1.C 语言中的float 类型2.float 类型的内存存储方式3.float 类型的二进制表示4.浮点数运算与精度问题正文:1.C 语言中的float 类型在C 语言中,float 是一种用于表示实数的数据类型。
它可以用来存储带有小数部分的数字,相比于整型数据类型,float 类型可以表示更大的数值范围。
float 类型的大小为4 字节(32 位),它的取值范围约为-3.4E38 到3.4E38,精度为6-7 位小数。
2.float 类型的内存存储方式float 类型的内存存储方式采用IEEE 754 标准,这种标准将实数表示为一个符号位、一个指数位和一个尾数位。
其中,符号位表示正负,指数位表示浮点数的阶码,尾数位表示浮点数的小数部分。
3.float 类型的二进制表示float 类型的二进制表示形式为:符号位(1 位)+ 指数位(11 位)+ 尾数位(23 位)。
- 符号位:用1 位二进制表示,0 表示正数,1 表示负数。
- 指数位:用11 位二进制表示,其中偏置量为127(即二进制的1111111111),因此,实际的指数值等于二进制表示减去偏置量。
- 尾数位:用23 位二进制表示,表示浮点数的小数部分。
4.浮点数运算与精度问题由于float 类型的存储方式和计算原理,浮点数运算可能会产生精度问题。
例如,当两个不同的float 数相加时,由于它们的表示形式可能不同,直接相加可能导致精度丢失。
为了解决这个问题,C 语言提供了一些特殊的函数,如round、ceil、floor 等,用于对浮点数进行四舍五入或向上取整等操作。
总之,C 语言中的float 类型是一种用于表示实数的数据类型,其内存存储方式采用IEEE 754 标准,二进制表示形式包括符号位、指数位和尾数位。
float字节序在计算机中,一个字节由8个位组成,可以表示256个不同的数字。
而在float类型中,用来表示浮点数的字节序是由四个字节组成的,总共包含32个位。
字节序主要涉及到字节在内存中的存储方式。
在计算机系统中,有两种常见的字节序,分别是大端序(Big-endian)和小端序(Little-endian)。
大端序是指在内存中高字节存储在低地址处,低字节存储在高地址处。
也就是说,一个多字节数据的最高有效字节存储在最低的地址,最低有效字节存储在最高的地址。
具体到float类型的字节序,大端序表示浮点数的符号位(1位)存储在最高的字节,接着是指数部分(8位),最后是尾数部分(23位)。
小端序是指在内存中高字节存储在高地址处,低字节存储在低地址处。
也就是说,一个多字节数据的最高有效字节存储在最高的地址,最低有效字节存储在最低的地址。
具体到float类型的字节序,小端序表示浮点数的符号位(1位)存储在最低的字节,接着是指数部分(8位),最后是尾数部分(23位)。
举个例子来说明大端序和小端序的区别。
假设我们有一个浮点数的字节序列为 0x00 0x00 0xC0 0x40。
在大端序中,这个字节序列表示的浮点数为正数,指数部分为-1,尾数部分为1(对应二进制形式为0.5)。
而在小端序中,这个字节序列表示的浮点数为负数,指数部分为-1,尾数部分为1。
可以看到,同样的字节序列在不同的字节序中所表示的浮点数是不同的。
在现代计算机系统中,大部分使用小端序。
这是因为小端序在内存中存储的方式与数字的自然书写顺序一致,更方便人们进行理解和处理。
而且,小端序和大端序之间的转换相对简单,只需要逐个字节交换位置即可。
总之,float类型的字节序是由四个字节组成的,大端序和小端序分别表示浮点数在内存中存储的方式。
具体的字节序取决于计算机系统的架构和设计。
float数据在内存中存储⽅式
float类型数字在计算机中⽤4个字节存储。
遵循IEEE-754格式标准:
⼀个浮点数有3部分组成:
符号部分,0 表⽰正,1表⽰负。
底数部分使⽤⼆进制数来表⽰此浮点数的实际值,底数部分实际是占⽤24bit的⼀个值,但是最⾼位始终为1,所以,最⾼位省去不存储,在存储中占23bit科学计数法。
指数部分占⽤8bit的⼆进制数,可表⽰数值范围为0-255。
但是指数可正可负,所以,IEEE规定,此处算出的次⽅必须减去127才是真正的指数。
所以,float类型的指数可从-126到128。
所以格式为:
SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
S表⽰浮点数正负
E指数加上127后的值得⼆进制数据
M底数
举例:
17.625在内存中的存储
⾸先要把17.625换算成⼆进制:10001.101。
整数部分,除以2,直到商为0,余数反转。
⼩数部分,乘以2,直到乘位0,进位顺序取。
将10001.101右移,直到⼩数点前只剩1位:1.0001101 * 2^4 因为右移动了四位。
底数:因为⼩数点前必为1,所以IEEE规定只记录⼩数点后的就好。
所以,此处的底数为:0001101。
指数:实际为4,必须加上127(转出的时候,减去127),所以为131。
也就是10000011。
符号部分是正数,所以是0。
综上所述,17.625在内存中的存储格式是:
01000001 10001101 00000000 00000000。
浮点数内存的存储格式浮点数是在计算机中表示实数的一种方式,它能够存储和处理包含小数的数值。
在计算机内部,浮点数以二进制形式存储,并采用一种特殊的存储格式,称为浮点数的IEEE 754标准。
IEEE 754标准定义了浮点数内存的存储格式,包括单精度浮点数(32位)和双精度浮点数(64位)。
这两种浮点数的存储格式都由三个部分组成:符号位、指数位和尾数位。
首先,让我们来看看单精度浮点数的存储格式。
单精度浮点数使用32位来表示一个数值。
其中,最高位是符号位,用于表示数值的正负。
0表示正数,1表示负数。
接下来的8位是指数位,用于表示数值的大小范围。
最后的23位是尾数位,用于表示数值的精度。
通过这种方式,单精度浮点数可以表示大约7位有效数字的数值。
而双精度浮点数则使用64位来表示一个数值,拥有更高的精度。
它的符号位、指数位和尾数位的长度分别是1位、11位和52位。
通过这种方式,双精度浮点数可以表示大约15位有效数字的数值。
浮点数的存储格式使得计算机可以进行浮点数的运算。
它能够处理像π这样的无限小数,将其近似为有限的二进制数。
同时,浮点数的表示范围也非常广泛,可以表示很小到很大的数值。
然而,浮点数的存储格式也带来了一些问题。
由于浮点数使用二进制进行表示,它无法精确地表示一些十进制数,例如0.1。
在浮点数计算中,可能会出现舍入误差,导致结果不够精确。
这是因为某些十进制数无法准确表示为有限的二进制数。
因此,在进行浮点数计算时,需要注意舍入误差可能导致的问题。
此外,浮点数的存储格式还包括特殊值,如正无穷大、负无穷大和NaN(不是一个数字)。
这些特殊值在浮点数计算中具有特殊的意义,用于表示计算中的错误或越界情况。
总的来说,浮点数的内存存储格式采用了IEEE 754标准,包括单精度浮点数和双精度浮点数。
这种存储格式能够在计算机中准确表示并处理包含小数的数值。
然而,由于浮点数的二进制表示方式,可能会出现舍入误差和精度限制。
float型数据在内存中的存储方式float类型是一种用于表示浮点数(即小数)的数据类型,它在内存中的存储方式有一定的特点。
在计算机内存中,float类型的数据是以二进制的形式进行存储的。
具体地说,一个float类型的数据占据4个字节(32位),按照特定的格式进行存储。
float类型的数据采用IEEE 754标准进行存储。
这个标准规定了浮点数的表示方法,包括了符号位、指数位和尾数位。
在32位的float类型中,其中1位用于表示符号位(0表示正数,1表示负数),8位用于表示指数位,剩下的23位用于表示尾数位。
具体来说,一个float类型的数据可以分为三个部分:符号位、指数位和尾数位。
符号位用于表示这个浮点数是正数还是负数,指数位用于表示浮点数的指数部分,尾数位用于表示浮点数的小数部分。
在存储过程中,首先将浮点数转换为二进制形式,然后按照上述规则将二进制数存储到内存中。
具体存储方式如下:1.符号位:浮点数的符号位占据1位,0表示正数,1表示负数。
2.指数位:根据IEEE 754标准,指数位需要加上一个偏移值,这个偏移值是2的指数位数减1的结果。
在32位的float类型中,指数位数为8位,因此偏移值为127。
3.尾数位:根据IEEE 754标准,尾数位需要进行规格化处理。
具体来说,尾数位的第一位默认为1,后面的23位用于表示小数部分。
通过以上的存储方式,我们可以将一个float类型的数据准确地表示在内存中。
需要注意的是,由于浮点数的精度问题,float类型的数据在进行运算时可能会存在一定的误差。
这是由于浮点数采用二进制进行存储时,有些十进制小数无法精确表示为有限的二进制小数。
因此,在进行浮点数的比较和运算时,需要注意这种误差可能会带来的问题。
总结一下,float类型的数据在内存中以二进制的形式进行存储,按照IEEE 754标准规定的格式进行存储。
具体存储方式包括符号位、指数位和尾数位。
通过这种存储方式,可以准确地表示浮点数,并进行相应的运算。
浮点数转化为幂指数
浮点数保存的字节格式如下:
地址+0 +1 +2 +3
内容SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
这里
S 代表符号位,1是负,0是正
E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。
M 24位的尾数保存在23位中,只存储23位,最高位固定为1。
此方法用最较少的位数实现了
较高的有效位数,提高了精度。
零是一个特定值,幂是0 尾数也是0。
浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下:
地址+0 +1 +2 +3
内容0xC1 0x48 0x00 0x00
浮点数和十六进制等效保存值之间的转换相当简单。
下面的例子说明上面的值-12.5如何转换。
浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表所列的那样分开,例如:
地址+0 +1 +2 +3
格式SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
二进制11000001 01001000 00000000 00000000
十六进制C1 48 00 00
从这个例子可以得到下面的信息:
符号位是1 表示一个负数
幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。
尾数是后面的二进制数10010000000000000000000
在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数
点到尾数的开头,得到尾数值如下:
1.10010000000000000000000
接着,根据指数调整尾数.一个负的指数向左移动小数点.一个正的指数向右移动小数点.因为指数是3,尾数调整如下:
1100.10000000000000000000
结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:1100表示
(1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12。
小数点的右边也代表所处位置的2的幂,只是幂是负的。
例如:.100...表示(1*2^(-1))+ (0*2^(-2))+(0*2^(-2))...=0.5。
这些值的和是12.5。
因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示-
12.5。
下面给个例子
#include <stdio.h>
union FloatData
{
float f;
unsigned char h[4];
};
void main(void)
{
FloatData t;
float temp = 0;
printf("请输入一个数,输入100表示结束:");
scanf("%f",&temp);
t.f = temp;
printf("%f在内存中的存放为:%2x %2x %2x %2x/n",t.f,t.h[0],t.h[1],t.h[2],t.h[3]);
}
关于多字节数据类型在内存中的存储问题
int ,short 分别是4、2字节。
他们在内存中的存储方式下面举个例子说明。
int data = 0xf4f3f2f1;
其中低位存放在编址小的内存单元,高位存放在编址高的内存单元
如下:
地址:0x8000 0x8001 0x8002 0x8003
数据: f1 f2 f3 f4
根据IEEE在1985年制定的标准来处理浮点数
单精度浮点数用4字节,包括1位符号位s(整数为0,负数为1),8位指数位e,23位有效位f
浮点型使用的是科学计数法,比如十进制的12345可以表示为1.2345 * 10^4(表示10的4次幂)
用二进制表示为 1.1000000111001 * 2^13
所以计算机中用浮点数表示12345这个十进制应该是这样的,s位为0,因为是正数,指数位为
13+127=140(127为单精度浮点数偏移值,为了表示只有小数部分的数),有效位为1000000111001
计算的时候用(-1)^s * 1.f * 2^(e-127) ,结果就是1* 1.1000000111001 * 2^(140-127=13) ,和我们刚才表示的一样
还比如,十进制小数0.125转换为二进制小数0.001可以表示为1* 1.0 * 2^(124-127=-3) double,双精度浮点数有1位符号位、11位指数位和52位有效数
谢谢,和我找的资料差不多:)
知道公式
n=(-1)^s*m*2^e
e=|E|-bias
bias = 2^(k-1)-1(k为E的位数)
m=|1.M|
知道12345在内存中的10进制表示以后
0x4640e400 = 0(100 0110 0)<100 0000 1110 0100 0000>
括号中的数字为|E| =140 所以e=140-127=13
尖括号中的数字为m=|1.M|=|1.100000011100100|=1.506958008
ok,
代入公式n = (-1)^0*1.506958008*2^13=12345
完工!!
非规范就看你自己了:。