当前位置:文档之家› 直流变换器开题报告

直流变换器开题报告

直流变换器开题报告
直流变换器开题报告

开题报告

一背景

直流变换器是一种将模拟量转变为数字量的半导体元件。按功能可分为:升压变换器、降压变换器和升降压变换器。在燃料电池汽车中主要采用升压变换器。变换器首先通过电力电子器件将直流电源转变成交流电(AC),一般称作逆变,然后通过变压器(升压比为1∶n)升压,最后通过整流、滤波电路产生变压后的直流电,以供负载使用.

直流转换器与一般的变换器相比,具有抗干扰能力强、可靠性高、输出功率大、品种齐全等特点,用途广泛,输入输出完全隔离,输出多路不限,极性任选。宽范围输入变换器是专为满足输入电压变化范围较大场合需要而开发的一种直流稳压电源,其输入直流电压可以在DC100V-375V宽范围内变动而保证输出电压的稳定性.此外,这种电源体积小,重量轻、保护功能完善,具有良好的电磁兼容性。本身具有过流、过热、短路保护。多档输出的变换器,它不仅提供电源而且有振铃和报警功能。该变换器分为军用、工业及商业三个品级,在诸如通信机房、舰船等蓄电池供电的场合极为适用。直流—直流变换器(DC/DC Converter)早在10年前就做成了元器件式样,在系统中损坏时可以卸下更换。目前,它正从低技术、元器件型转向高技术、插件(Building black)型发展。系统设计师在开始方案设计阶段就要考虑系统究竟需要什么样的电源输入、输出?DC/DC变换器作为子系统的一个部件,应该更仔细地规定它的指标以及要付出多少费用。有趣的是,全球声称可供给军用DC/DC变换器的厂家超过300家,但却没有两

种产品是相同的,这给系统设计师选用该产品时造成困难。设计师们考虑的最重要的事是:对产品的性能价格比进行综合平衡,决定取舍。需求和市场决定制造厂的发展战略目前,对制造厂家而言,面临着要求降低噪声、减小尺寸以及提高功率和效率的挑战和市场竞争。现扼要介绍几家公司的做法。当今,在任何一个计算机系统中,各种电源都是以插件形式出现的。供应厂商均按用户的要求作相应改动以适应需求。DC/DC直流变换器的军品市场占很大比重,但增长缓慢。分析家们预测:到1996年,DC/DC变换器最大市场将是计算机和通信领域。

美国InterPoint公司的研究开发战略是:针对军用及宇航系统应用,提供一种更便宜、功率更大、性能更好的产品,它们比现有DC/DC 变换器有全面改进。预计今后几年的实际问题仍是产品价格。采用模块化方法可以降低成本,同时提高DC/DC变换器输出功率。一些应用系统要求功率高达2KW,如果采用200W的产品去构建系统,至少要10~12个产品,既麻烦也影响系统可靠性。该公司认为必须研制出功率比200W大2~3倍的大功率电源,而且单件成本控制在1.3~1.7倍才合适。

模块化方法,可以通过消除非重复工程成本(NRE)使系统成本降低。这种模块化的器件也是分布式供电系统的基本构件。鉴于分布式供电比集中供电系统有更多优点,而绝大多数应用系统要求在母线级上直流电压要分别供给不同逻辑电路各种电压,例如+5V、+12V、+3.3V 等等。一些厂家利用板级(on-Card)DC/DC变换器来实现,另一些供应商则把几种输出合在一起,把电源放在靠近需要供电的电路板上。

Arnold Magnetics公司供应多档输出的直流变换器,它不仅提供电源而且有振铃和报警功能。为了占领市场,产品随着性能提高,其价格也应最低。各家公司,在维持性能不变时,尽量设法降低生产、销售成本。由于经济原因,电力生产、输送和都采用三相系统。在三相系统允许更高的功率密度,使用更少的器件和更高的效率比等效单相系统好。此外,由于相位的差异,三相系统目前在时间常数平均功率。同样的优势鼓励使用的三相整流器和逆变器。许多工业应用程序需要大功率直流-直流转换。这些应用程序包括分布式发电、不间断电源、和运输。传统的孤立的直流-直流转换器使用单相变压器,它通常是大而重,单相整流器。针对受益于三相系统的优势,一些工作已经完成使用直流-直流转换器,使用三相高频变压器和三相整流器。这些变化可以减小体积、重量、和整个系统的成本。三相直流-直流转换器提出了良好的性能,当高频隔离是理想的。降低滤波器高的组件面临压力近年来,已经完成并应用三相直流-直流转换为燃料电池能源处理[7]-[10]和电池在汽车设备[11]应用。它体现了潜在的优势。

二研究现状

姚伟,郑步生,洪峰在《车载双管正激直流变换器的设计》研究了一种适用于电动汽车的高效率双管正激直流变换器,在提出一种设计方案的基础上,重点对其控制电路,反馈回路、启动电路和变压器的关键参数等进行了详细分析设计。其中控制电路使用SG3525芯片,采用二型补偿对控制电路进行补偿。实验测试结果表明该变换器输出稳定,有较高的转换效率。

丁小满,张从旺《电力机车直流变换器的设计》从直流变换器的热设计、工艺设计及安全性设计方面对直流变换器产品的设计进行阐述。目前,按照以上设计思路研制的变换器已经通过试验验证,技术参数完全满足要求。在电磁兼容试验,振动、冲击试验,高温、低温试验中,技术参数完全满足要求。项目成果在电力机车、8 轴车及国产化列车中得到成功运用。

李云,张小勇,刘福鑫,阮波《机车车辆充电机用移相全桥ZVS PWM 变换器的设计》。文章介绍了一种机车车辆充电机的核心部件——加箝位二极管的零电压开关PWM 倍流整流全桥变换器。该变换器的优点是可以利用输出滤波电感和谐振电感在宽负载范围内实现开关管的零电压开关,利用箝位二极管可以有效消除二次侧整流管上的电压尖峰和振荡,同时采用倍流整流技术可优化变压器和输出滤波电感的设计。

梁喆,欧阳名三在《基于SG3525矿用直流变换器控制电路的设计》对传统模式进行改进使直流变换器具有自启动功能,利用软启动引脚设计了欠电压和过电流保护。并对电压调节器进行了设计,减小了直流变换器输出电压纹波。

李艳、阮新波、杨东升、刘福鑫在《双输入直流变换器的建模与闭环系统设计》中因为采用两个甚至多个输入源的新能源联合供电系统中,用单个多输入直流变换器代替原有的多个单输入直流变换器,可以简化电路结构,降低系统成本。将以双输入Buck 变换器为例,进行系统建模以及闭环调节器的设计,使得该系统稳态和动态能

指标达到要求。

桂存兵,谢运祥,谢涛,陈江辉《推挽DC-DC 变换器平均电流控制研究》中提出怎样提高推挽变换器的电流稳定性和系统可靠性,通过分析了DC/DC 推挽变换器的工作原理,在此础上建立了小信号数学模型。并施以电流型双环控制策略,有效的提高系统的动态响应和保护能力。给出了推挽变换器的控制系统的设计过程,并进行了仿真和实验研究,结果表明针对推挽变换器,双环控制策略具有良好动态和静态控制性能。

胡晓清,尚修香在《一种适用于电动汽车的ZVS 全桥变换器研究》研究了一种适用于电动汽车的集成寄生元件的ZVS 变换器,利用变压器的寄生电感和晶体管的输出电容可实现变换器的ZVS 功能,使变换器具备经济、紧凑的特点。通过分析电路的工作原理、寄生量的计算和ZVS 参数的优化,对变换器的设计进行系统研究.

姚建红,张艳红,刘继承《一种新型全桥移相PWM 零电压零电流变换器》,为了实现全桥软开关变换器能在很宽的负载变化范围内实现零电压零电流变换,提出了一种改进的电路拓扑结构,设计了一种新型的全桥移相脉宽调制零电压零电流变换器,该电路中,超前桥臂前面增加了一个辅助电路,使其超前桥臂能在轻载的情况下很好地实现零电压变换;在高频变压器的副边采用无源钳位电路,使其滞后桥臂能在满载的情况下很容易地实现零电流变换;此外,在辅助电路中的电容与变换器的输出滤波电容之间用一个钳位二极管连接,限制了变压器的二次侧电压。

在一篇外文中《A Three-Phase Current-Fed Push–PullDC–DC Converter》提出了一种新的三相推挽直流-直流转换器是提议。这个转换器使用高频三相变压器提供电隔离在电源和负载。这三个活转换器件连接到相同的地方,从而简化了变换器的电路。通过一个电感和一个电容器减少输入电流纹波和输出电压波纹,其数量小于等效单相拓扑。三相直流-直流转换也有助于在能耗损失的减少,允许使用低成本开关。这些特点使这个转换器适合应用在低压电源的使用和相关的电流很高,比如在燃料电池、光伏阵列、蓄电池。理论分析,一个简化的设计实例,实验结果为1千瓦样机将提交了两个操作区域。原型是专为一个40 kHz开关频率,输入电压为120 V,输出电压400 V。指数达到了直流-直流功率转换、高频变压器、多相、波纹要求。

袁义生,伍群芳《ZVS 三管推挽直流变换器》中提出一种采用3 个开关管的推挽式(three-transistorsPush-Pull,TTPP)变换器,仅需要在传统推挽变换器的输入电源和变压器两个原边绕组中点间插入一个辅助开关管Q3。两个主管驱动信号u gs1 和u gs2 与传统推挽变换器中开关管的驱动信号相反;除去死区时间,辅管驱动信号u gs3 是两个主管驱动信号u gs1 和u gs2 的与非关系。用等效电路的方法结合解析方程,分析电路各个工作模态的工作原理和主要开关波形。指出主管可在宽负载范围下实现零电压开通(zerooltageswitchingZVS),且主管关断电流是传统推挽电路中的一半值。辅管在大负载或加大漏感情况下可以实现ZVS开通,辅管的额定电压是主管的一半,等于输入电压。讨论软开关的实现问题。提出控制芯片及其驱动电路的设方

法,完成一台800W、开关频率为83.3kHz 的原理样机,实验结果验证了该变换器工作原理的有效性。

袁义生,龚昌《一种高效逆变电源及绿色工作模式的研究》为针对车载逆变电源输入侧低压大电流的特点,提出一种前级为并联LC 谐振式推挽直流变换电路的高效率逆变电源结构,详细阐述了整个电源的工作原理。提出一种绿色工作模式,即通过在空载状态下前级推挽电路间歇式工作来控制中间直流母线电压在允许范围内波动,达到降低逆变器空载损耗的目的。最终设计制作了一台AC220 V 输出,额定功率1 kW 的逆变器,测试其额定效率大于90%,绿色模式下损耗仅为10.89 W。

吴红飞,夏炎冰,邢岩《适用于高压宽范围输入的交错串并联正激变换器》面向中高压-宽电压范围输入、高可靠性中大功率变换应用,提出一种交错串并联正激变换器。变换器由两个低压桥臂和一个高压桥臂构成,3 个桥臂形成两个正激单元。其中,低压桥臂开关器件电压应力为输入电压的一半,高压桥臂的电压应力等于输入电压。该变换器继承了双管正激变换器可靠性高、电压应力低、效率高的优点,同时开关管的最大占空比可以达到0.67,是传统双管正激变换器最大占空比的1.33 倍,因此可以适应高压、宽输入范围场合的应用;开关管占空比小于0.5 时,高压桥臂开关管可以实现软开关,面向中高压-宽电压范围输入、高可靠性中大功率变换应用,提出一种交错串并联正激变换器。变换器由两个低压桥臂和一个高压桥臂构成,3 个桥臂形成两个正激单元。其中,低压桥臂开关器件电压应力为输入

电压的一半,高压桥臂的电压应力等于输入电压。该变换器继承了双管正激变换器可靠性高、电压应力低、效率高的优点,同时开关管的最大占空比可以达到0.67,是传统双管正激变换器最大占空比的1.33 倍,因此可以适应高压、宽输入范围场合的应用;开关管占空比小于0.5 时,高压桥臂开关管可以实现软开关,

工作过程先做如下假设:

1)各功率MOSFET 和二极管为理想器件,导通压降为零;2)3 个电容C1、C2和C3 值都等于C;变压器漏感L leak-1 L leak-2 L leak;在死区时间内,滤波电感电流值i Lf 不变。电路的一个开关周期分为8 个阶段,主要波形如图2(b)所示。再结合图2(a)的开关驱动时序图和图 3 各阶段工作电路来解释

1)模态1[t1—t2]。在t1 时刻前,Q1 和Q3 导通,U in 能量经变压器传递到副边,经整流二极管D5 和D6 给滤波电感L f 充电,电感电流上升。在t1 时刻Q3 被关断,当C3 足够大时Q3 两端电压上升时间大于电流下降时间,Q3 能实现零电压关断。此时,滤波电感L f 续流并折射到原边,与电容C3 和C2 谐振,使C3 电压u ds3 从零开始上升,而C2 电压u ds2 从2U in

开始下降,带动变压器原边电压u P 下降。两个变压器绕组回路有:

与此同时,变压器绕组P1 的电流i1 迅速下降,绕组P2 的电流i2 迅速上升,以维持瞬间变压器总磁场能量不变,即副边电流值不变。假设初始t1 时刻

i1=i3=I p,根据节点电流定律有:

结合基本电容公式:

当滤波电感上的能量足够时,此阶段时间很短,变压器副边仍然是二极管D5 和D6 导通。由式(1)—(3)可解得各变量,但求得的结果太复杂,不便分析。为简化分析,当滤波电感上的能量足够且死区时间足够时,系统在t2 时刻进入稳态,有:

同样解得此阶段持续时间为

t12 =5CU in / I P (5)

此时二极管D2 导通,为实现Q3 的ZVS 开通创造了条件。

2)模态2[t2—t3]。在t2 时刻驱动Q2 导通,此时u ds2 已经下降到零,故Q2 实现零电压开通。

此阶段初始时刻副边等效电路如图4 所示,R on为原边各导通电阻折算到副边的值与副边绕组电阻值之和;L Leak 为副边漏感值加上原边漏感折算到副边值之和。则:

当符合式(6)时,D4 和D7 承受正压导通,才会出现4 个二极管共同导通的情况,否则仍然是D5和D6 续流。因本电路为实现软开关需要加大漏感L Leak,所以一般不会在此阶段出现4 个二极管共同导通的情况,而该情况具体公式分析复杂,不在本文赘述,可参考文献[21]。

下面讨论本阶段常见的D5 和D6 续流过程。此时原边D2 和Q1 形成环流,变压器电压近似为零,受副边电感电流下降影响,原边环流也随之下降,各变量可表示为

这个阶段是原边电流环流阶段,电流方向如图3 所示,变压器电压维持为零。3)模态3[t3—t4]。t3 时刻Q1 被关断,因C1 的存在,Q1 实现零电压关断。流经Q1 的电流i1 迅速减小,使得原边电流折射到副边值小于滤波电感电流,因此二极管D4 和D7 导通,从而出现副边4 个二极管共通现象。变压器被置于短路状态,在电路原边形成了漏感L leak-1、L leak-2 和电容C1,C3 共同谐振现象;变压器副边电流随原边谐振电流改变,而二极管共通电流之和维持着滤波电感电流续流。u ds1 上升,u ds3 随之下降。根据节点电流和环路电压定律,有

当漏感能量足够时,u ds1 从零上升到U in,u ds3从U in 下降到零,i1 下降到零,i2 下降到等于i3,D3导通,为Q3 零电压开通提供条件。用式(8)解u ds1和u ds3 是个四阶方程,求解复杂。如果漏感的能量足够,结合初始条件i1(t3)=i2(t3),可简化估计u ds3下降到零及u ds1 上升到U in 的时间为t34 =2CU in /[i1(t3 ) / 2] (9)如果漏感能量不足,在本阶段结束时刻,u ds3无法下降到零,u ds1 也无法上升到U in。如果1/4 谐振周期大于本区间时间,结束时刻u ds3 仍然在下降;反之结束时刻u ds3 再次谐振上升,这是需要避免的。

4)模态4[t4—t7]。当漏感能量足够时,在t4时刻u ds3 已下降到零,此时驱动

Q3、Q3 实现了零电压开通。如果漏感能量不足,Q3 为硬开通。分析此模态,又可以分为3 个小阶段。

①[t4—t5]阶段。U in 作用在漏感L leak-2 上。当Q3 实现ZVS,原边电流从初始负值迅速上升;当Q3 硬开通,原边电流从近似零初始电流迅速上升。变压器副边4 个二极管迅速换流,D4 和D7 的电流逐渐增加,D5 和D6 的电流逐渐减小。当原边电流

为负时,电流经过两个反并二极管D2 和D3 流过;当电流上升到正值,Q2 和Q3 开始流过正向电流并线性增加。图3(d)中标注的虚线框和实线框代表本

阶段电流从负方向到正方向的转换。此阶段变压器电压仍然为零,各电流有

i2 =i3 =i(t4 ) +U ind t / L Leak (10)

当折射到副边电流随之上升到等于电感L f 上的电流时,D5 和D6 关断为零,只剩下D4 和D7 导通。电路进入第2 个阶段。②[t5—t6]阶段。变压器副边绕组电压开始迅速反向,导致变压器原边绕组P1 的电压也随之反向。励磁电感和C1 谐振,u ds1 从U in 上升到2U in。u p2 从0 上升到U in。电路进入下一个阶段。

③[t6—t7]阶段。此时电路工作在正常导通状态,滤波电感Lf 的电流线性上升,有

i Lf =i Lf (t5 ) +(U s N s / N p -U o )d t / L f (11)

在t7 时刻Q3 被关断,变换器开始另一半周期的工作,工作情况类似于上半个周期。

工作过程

先做如下假设:

1)各功率MOSFET 和二极管为理想器件,导通压降为零;

2)3 个电容C1、C2和C3 值都等于C;

3)变压器漏感L leak-1 L leak-2 L leak;

4)在死区时间内,滤波电感电流值i Lf 不变。

5)电路的一个开关周期分为8 个阶段,主要波形如图2(b)所示。再结合图2(a)的开关驱动时序图和图 3 各阶段工作电路来解释

1)模态1[t1—t2]。在t1 时刻前,Q1 和Q3 导通,U in 能量经变压器传递到副边,经整流二极管D5 和D6 给滤波电感L f 充电,电感电流上升。在t1 时刻Q3 被关断,当C3 足够大时Q3 两端电压上升时间大于电流下降时间,Q3 能实现零电压关断。此时,滤波电感L f 续流并折射到原边,与电容C3 和C2 谐振,使C3 电压u ds3 从零开始上升,而C2 电压u ds2 从2U in

开始下降,带动变压器原边电压u P 下降。两个变压器绕组回路有:

与此同时,变压器绕组P1 的电流i1 迅速下降,绕组P2 的电流i2 迅速上升,以维持瞬间变压器总磁场能量不变,即副边电流值不变。假设初始t1 时刻

i1=i3=I p,根据节点电流定律有:

结合基本电容公式:

当滤波电感上的能量足够时,此阶段时间很短,变压器副边仍然是二极管D5 和D6 导通。由式(1)—(3)可解得各变量,但求得的结果太复杂,不便分析。为简化分析,当滤波电感上的能量足够且死区时间足够时,系统在t2 时刻进入稳态,有:

同样解得此阶段持续时间为

t12 =5CU in / I P (5)

此时二极管D2 导通,为实现Q3 的ZVS 开通创造了条件。

2)模态2[t2—t3]。在t2 时刻驱动Q2 导通,此时u ds2 已经下降到零,故Q2 实现零电压开通。

此阶段初始时刻副边等效电路如图4 所示,R on为原边各导通电阻折算到副边的值与副边绕组电阻值之和;L Leak 为副边漏感值加上原边漏感折算到副边值之和。则:

当符合式(6)时,D4 和D7 承受正压导通,才会出现4 个二极管共同导通的情况,否则仍然是D5和D6 续流。因本电路为实现软开关需要加大漏感L Leak,所以一般不会在此阶段出现4 个二极管共同导通的情况,而该情况具体公式分析复杂,不在本文赘述,可参考文献[21]。

下面讨论本阶段常见的D5 和D6 续流过程。此时原边D2 和Q1 形成环流,变压器电压近似为零,受副边电感电流下降影响,原边环流也随之下降,各变量可表示为

这个阶段是原边电流环流阶段,电流方向如图3 所示,变压器电压维持为零。3)模态3[t3—t4]。t3 时刻Q1 被关断,因C1 的存在,Q1 实现零电压关断。流经Q1 的电流i1 迅速减小,使得原边电流折射到副边值小于滤波电感电流,因此二极管D4 和D7 导通,从而出现副边4 个二极管共通现象。变压器被置于短路状态,在电路原边形成了漏感L leak-1、L leak-2 和电容C1,C3 共同谐振现象;变压器副边电流随原边谐振电流改变,而二极管共通电流之和维持着滤波电感电流续流。u ds1 上升,u ds3 随之下降。根据节点电流和环路电压定律,有

当漏感能量足够时,u ds1 从零上升到U in,u ds3从U in 下降到零,i1 下降到零,i2 下降到等于i3,D3导通,为Q3 零电压开通提供条件。用式(8)解u ds1和u ds3 是个四阶方程,求解复杂。如果漏感的能量足够,结合初始条件i1(t3)=i2(t3),可简化估计u ds3下降到零及u ds1 上升到U in 的时间为t34 =2CU in /[i1(t3 ) / 2] (9)如果漏感能量不足,在本阶段结束时刻,u ds3无法下降到零,u ds1 也无法上升到U in。如果1/4 谐振周期大于本区间时间,结束时刻u ds3 仍然在下降;反之结束时刻u ds3 再次谐振上升,这是需要避免的。

4)模态4[t4—t7]。当漏感能量足够时,在t4时刻u ds3 已下降到零,此时驱动

Q3、Q3 实现了零电压开通。如果漏感能量不足,Q3 为硬开通。分析此模态,又可以分为3 个小阶段。

①[t4—t5]阶段。U in 作用在漏感L leak-2 上。当Q3 实现ZVS,原边电流从初始负值迅速上升;当Q3 硬开通,原边电流从近似零初始电流迅速上升。变压器副边4 个二极管迅速换流,D4 和D7 的电流逐渐增加,D5 和D6 的电流逐渐减小。当原边电流

为负时,电流经过两个反并二极管D2 和D3 流过;当电流上升到正值,Q2 和Q3 开始流过正向电流并线性增加。图3(d)中标注的虚线框和实线框代表本

阶段电流从负方向到正方向的转换。此阶段变压器电压仍然为零,各电流有

i2 =i3 =i(t4 ) +U ind t / L Leak (10)

当折射到副边电流随之上升到等于电感L f 上的电流时,D5 和D6 关断为零,只剩下D4 和D7 导通。电路进入第2 个阶段。②[t5—t6]阶段。变压器副边绕组电压开始迅速反向,导致变压器原边绕组P1 的电压也随之反向。励磁电感和C1 谐振,u ds1 从U in 上升到2U in。u p2 从0 上升到U in。电路进入下一个阶段。

③[t6—t7]阶段。此时电路工作在正常导通状态,滤波电感Lf 的电流线性上升,有

i Lf =i Lf (t5 ) +(U s N s / N p -U o )d t / L f (11)

在t7 时刻Q3 被关断,变换器开始另一半周期的工作,工作情况类似于上半个周期。

直流电子负载设计报告

直流电子负载设计报告 (侯进高业林伍贯礼)指导老师周晓波王森 摘要:本文论述了直流电子负载的设计思路和过程。本电子负载采用AT89S51 单片机作为系统的控制芯片,可实现以下功能:电子负载有恒流和恒压两种模式,可手动切换。恒流方式时不论输入电压如何变化(在一定范围内),流过该电子负载的电流恒定,且电流值可设定。工作于恒压模式时,电子负载端电压保持恒定,且可设定,流入电子负载的电流随被测直流电源的电压变化而变化。AD模块接受电路电压和电流模拟信号,转化为数字信号,经液晶模块同步显示电压和电流。包括控制电路(MCU)、驱动隔离电路(PWM波)、主电路、采样电路、显示电路、基准电路等;能够检测被测电源的电流值、电压值;各个参数都能直观的在数码管上显示。 关键词:电子负载;单片机(MCU);模数(A/D).PWM. 一,引言 在电路中,负载是指用来吸收电源供应器输出的电能量的装置,它将电源供应器输出的电能量吸收并转化为其他形式的能量储存或消耗掉。如电炉子将电能转化为热能;电灯将电能转化为光能;蓄电池将电能转化为化学能;电机将电能转化为动能。这些都是负载的真实表现形式。负载的种类繁多,但根据其在电路中表现的特性可分为阻性负载、容性负载、感性负载和混合性负载。在实验室,我们通常采用电阻、电容、电感等或它们的串并联组合,作为负载模拟真实的负载情况。进行电源设备的性能实验。电子负载是利用电子元件吸收电能并将其消耗的一种负载。电子元件一般为功率场效应管(Power MOS)、绝缘栅双极型晶体管(IGBT)等功率半导体器件。由于采用了功率半导体器件替代电阻等作为电能消耗的载体,使得负载的调节和控制易于实现,能达到很高的调节精度和稳定性。同时通过灵活多样的调节和控制方法,不仅可以模拟实际的负载情况,还可以模拟一些特殊的负载波形曲线,测试电源设备的动态和瞬态特性。这是电阻等负载形式所无法实现的。二,总体方案论证与设计 电子负载用于测试直流稳压电源、蓄电池等电源的性能。设计和制作一台电子负载,有恒流和和恒压两种模式,可手动切换。恒流方式时不论输入电压如何变化(在一定范围内),流过该电子负载的电流恒定,且电流值可设定。工作于恒压模式时,电子负载端电压保持恒定,且可设定,流入电子负载的电流随被测直流电源的电压变化而变化。外接12V稳压电路。 要求: (1)负载工作模式:恒压(CV)、恒流(CC)两种模式可选择。 (2)电压设置及读出范围:1.00V~20.0V。 (3)电流设置及读出范围:100mA~3.00A。 (4)显示分辨能力及误差:至少具有3位数,相对误差小于5%。

双定子永磁无刷电机开题报告1

YANG Zhenyu, Engineering Department. The Technology Research of Double Closed-loop Control System for Permanent Magnet BLDCM[J]. Electronic Science & Technology, 2017. WANG Xiaojun, HU Changlun. Modeling and Simulation Analysis of Double-stator Permanent-magnet Motor Control System[J]. micromotors, 2016. Chai F, Chen R. Torque analysis for double-stator permanent-magnet motor[J]. 哈尔滨工业大学学报:英文版, 2002. Feng C , Shu-Kang C , Shu-Mei C . Torque analysis for double-stator permanent-magnet motor[J]. Journal of Harbin Institute of Technology, 2017, 9(4):p.411-414. 王玉彬, 程明, 花为,等. 双定子永磁无刷电机裂比的分析与优化[J]. 中国电机工程学报, 2018, 030(030):62-67. 王雅玲. 电动汽车用双定子永磁无刷电机研究[D]. 山东大学, 2014. 蒲海, 吴敏. 双定子永磁无刷电动机发电机状态有限元时步法的实现[J]. 煤矿机械, 2014, 35(8). 原腾飞. 双定子永磁无刷电机建模及其控制方法探析[J]. 科技创新导报, 2017(14):84-85. 王雅玲, 徐衍亮. 基于电动汽车驱动的双定子永磁无刷直流电机绕组换接运行分析[J]. 电工技术学报, 2014, 029(001):98-103.

电子信息工程专业开题报告范文

电子信息工程专业开题报告范文 开篇报告涉及研究对象的文字解释材料。这是一种新的应用写作风格。这种类型的出现需要有计划地加强现代科学研究活动和科学研究课题的计划管理。以下是编写的电子信息工程专业开放报告样本,希望对您有所帮助! 1.主题的来源 本课题来自实验室的建设,研究对象是信号调制和解调的matlab 仿真。 2.研究的目的和意义 2.1,目的 我选择《信号的调制与解调的MATLAB仿真》作为毕业设计。其主要目的是通过本课程设计进一步学习和巩固沟通原则和相关知识,学会运用可学习的知识,并将知识应用于设计过程。内容,进一步熟悉和掌握MATLAB的使用;深入了解信号调制和解调的原理及其实现;为即将到来的社会参与奠定坚实的基础;掌握收集数据,摘要数据和综合数据的能力等等。 2.2,意思

从事电子通信行业并不熟练使用MATLAB电子电路设计软件,将难以工作和学习;在数学,电子,金融和其他行业,使用MATLAB和其他计算机软件很久以前就设计和模拟产品已经成为一种趋势。这种软件的出现大大提高了通信,电子和其他行业设计人员的设计质量和效率。众所周知,在实际过程中,信号传输必须经过调制和解调。由于消息发送的原始信号,即调制信号具有较低频谱的频谱分量,因此这种信号不适合在许多信道中传输。因此,通信系统的发送端通常需要调制过程,而接收端需要解调过程。 3.国内外研究现状和发展趋势 3.1,研究现状 MATLAB是MATHWORKS于1984年推出的一种科学与工程计算软件。通过MATLAB及相关工具箱,工程师,研究人员,数学家和教育工作者可以在统一的平台上完成相应的科学计算工作。 MATLAB本身包含600多个用于数学计算,统计和工程的函数,因此您无需进行额外的开发即可快速完成科学计算任务。业界领先的工具箱算法极大地拓展了MATLAB的应用领域,因此MATLAB自推出以来受到了广泛的关注。信号处理工具箱就是其中之一。在信号处理工具箱中,MATLAB提供滤波器分析。滤波器实现的功能命令,FIR滤波器实现,IIR数字滤波器设计,IIR数字滤波器阶数估计等。 3.2,发展趋势

驱动轮直流电机选择计算

驱动轮直流电机选择计算 The final edition was revised on December 14th, 2020.

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; ——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为:

式中 F——车轮与轴承间阻力; fz F——车轮与道路的滚动摩擦阻力。 fg 其中,车轮轴承阻力 F为: fz 式中P——车轮与地面间的压力,AGV设计中,小车自重m为100kg,最大载重量 M为200kg,因此最大整车重量为300kg,一般情况下,AGV前行过程中,有三轮m ax 同时着地,满足三点决定一平面的规则,各轮的压力为P=1000N[30]; d——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm; D——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D=200mm; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为—,μ =。 F为: 车轮与道路的滚动摩擦阻力 fg 式中Q——车轮承受载荷,Q=1000N; f——路面摩擦阻力系数,f=。 则: F: (2)空气阻力 w 空气阻力是 AGV 行驶过程当中,车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关,但由于AGV工作于室内,基本工作环境中无风,且速度不快,同时 AGV 前后方的投影面积均不大,因此认为空气阻力F[31]。 ≈ w F: (3)坡度阻力 r AGV 所实际行驶的路面并非理想化绝对平整,而是存在一定的坡度[32],当 AGV行驶到该坡度处时,重力将产生一个沿着坡度方向的阻力,这个阻力就被称之为坡度阻F,表达式为: 力 r 式中G——AGV 满载总重量; α——最大坡度。 在 GB/T 20721-2006“自动导引小车国标”中表示:路面坡度(H/L)定义为在100mm 以上的长度范围内,路线水平高度差与长度的最大比值,路面坡度的最大比值需要小于(含),对于 AGV 精确定位的停车点,路面坡度需要小于(含)[33]。取坡度: 因此: F: (4)加速度阻力 j

无刷直流电动机毕业设计绪论

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

电子信息工程类毕业设计开题报告

电子信息工程类毕业设计开题报告 电子信息工程类毕业设计开题报告 电子信息工程类毕业设计开题报告 1、课题来源 本课题来源于试验室建设,研究对象为信的调制与解调的matlab仿真。 2、研究的目的和意义 2.1、目的 我选择了《信的调制与解调的matlab仿真》这个课题作为毕业设计其主要目的是通过此次课程设计进一步学习和巩固通信原 理及其相关知识,并学会利用所学的知识能,在设计过程中能综合 运用所学知识内容,进一步熟悉和掌握matlab的使用方法;对信的调制与解调原理及其实现有较深的了解;为即将进入社会参加工作打下坚实的基础;掌握收集资料、消化资料和综合资料的能力等等。 2.2、意义 从事电子通信业而不能熟练操作使用matlab电子线路设计软件,在工作和学习中将是寸步难行的。在数学、电子、金融等行业,使用matlab等计算机软件对产品进行设计、仿真在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在通信、电子等行业的产品设计质量与效率。众所周知,实际过程中信

传输都要经过调制与解调这一过程,由于消息传过来的原始信即调制信具有频谱较低的频谱分量,这种信在许多信道中不宜传输。因而,在通信系统的发送端通常需要有调制过程,反之在接收端则需要有解调过程。 3、国内外的研究现状和发展趋势 3.1、研究现状 matlab是由mathworks公司于1984年推出的一种面向科学与工程的计算软件,通过matlab和相关工具箱,工程师、科研人员、数学家和教育工作者可以在统一的平台下完成相应的科学计算工作。 matlab本身包含了600余个用于数学计算、统计和工程处理的函数,这样,就可以迅速完成科学计算任务而不必进行额外的开发。业内领先的工具箱算法极大的扩展了matlab的应用领域,所以matlab自推出以来就受到广泛的,信处理工具箱就是其中之一,在信处理工具箱中,matlab提供了滤波器分析、滤波器实现、fir 滤波器实现、iir数字滤波器设计、iir数字滤波器阶次估计等方面的函数命令。 3.2、发展趋势 由于我们所面对的工程问题越来越复杂,过去所依赖分析的技术已逐渐不敷使用。利用电脑来分析及解决工程问题已是当今工程师的必要工具。使用matlab软件进行科学计算,能够极大加快

机器人直流无刷电机参数

机器人直流无刷电机是一种应用在智能机器人驱动上的微型电机产品,具备驱动、减速、提升扭矩功能,主要由微型直流无刷电机、齿轮箱组装而成,也称为机器人电机;这种直流无刷电机属于非标电机齿轮箱,采用定制参数、性能特点、结构方式,定制参数范围,直径规格在3.4mm-38mm之间,额定电压在3V-24V,输出力矩范围:1gf.cm到50Kgf.cm之间,减速比范围:5-1500;输出转速范围:5-2000rpm; 机器人直流无刷电机产品参数: 产品名称:儿童智能陪护机器人电机齿轮箱 电压:3V-24V 空载转速:15000 空载电流:300MA 工作温度:-20 (85) 产品说明:儿童智能陪护机器人电机齿轮箱为特定客户开发设计,只作为儿童智能陪护机器人电机齿轮箱的方案展示。 标准直流无刷电机产品参数: 产品名称:5v直流减速电机 产品分类:直流减速电机 电压:5 VDC 材质:五金 旋转方向:cw&ccw 齿轮箱回程差:≤2°(可定制) 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承) 输出轴径向负载:≤20N(烧结轴承);≤30N(滚动轴承) 输入速度:≤15000rpm 工作温度:-30 (100)

产品名称:直流无刷减速电机(齿轮电机) 产品分类:无刷减速电机 产品规格:Φ20MM产品 电压:12V 空载电流:220 mA (可定制) 负载转速:2.4-1000 rpm(可定制) 减速比:5/25/125/625:1(可定制) 机器人直流无刷电机定制参数、规格范围: 尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm; 电压范围:3V-24V 功率范围:0.1W-40W 输出力矩范围:1gf.cm到50Kgf.cm 减速比范围:5-1500; 输出转速范围:5-2000rpm; 生产厂家

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

基于simulink直流电机调速系统开题报告剖析

Xxxx大学 本科毕业论文开题报告 基于Simulink的直流电机转速控制仿真研究 学号: xxx 姓名: 导师: 学院: 专业: 日期:

目录 一、选题依据、目的和意义 二、国内外研究现状及发展趋势 三、研究的主要内容及实验方法 四、目标,主要特色及工作进度 五、主要参考文献

一、选题依据、目的和意义 直流电机分为有刷和无刷两种,无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。 无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。 1.1选题依据 无刷直流电动机因卓越的性能和不可替代的技术优势倍受人们的关注,特别是自70年代后期以来伴随着永磁材料技术、计算机及控制技术等支撑技术的快速发展及微电机制造工艺水平的不断提高,无刷直流电动机在高性能中、小伺服驱动领域获得广泛应用并日趋占据主导地位。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理。建立无刷直流电机控制系统的仿真模型,可以有效的节省控制系统设计时间,及时验证系统的控制算法,同时可以充分利用计算机仿真的优越性,很方便的改变系统的结构,加入不同的扰动和参数变化,可以更好的考察系统在不同结构和不同工况下的静、动特性。因此如何建立无刷直流电机控制系统的仿真模型成为迫切需要解决的关键问题。 1.2目的和意义 无刷直流电动机具有体积小、重量轻、效率高、惯量小和控制精度高、无滑动接触和换相火花、可靠性高、使用寿命长及噪声低等优点,在航空航天、伺服控制、数控机床、机器人、电动汽车、计算机外围设备和家用电器等方面都获得了广泛应用。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。通过建立有效的无刷直流电动机系统仿真模型,可以

电子信息开题报告范文

电子信息开题报告范文 开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。以下是整理的电子信息开题报告范文,希望能够帮助到大家! 一、毕业论文(设计)的主要内容: 了解全球范围内3g,4g相关技术发展现状和发展趋势,重点认识具有我国自主知识产权的td—scdma的技术特点,研发进展,网络实际铺设,运营状况,相关已出台政策,以及它对对我国通信领域进一步发展的重要意义。 在熟悉影响室内无线移动网络覆盖的首要因素和现存2g网络建设的基础上,并针对td—scdma的特点,对其规划流程及注意事项做出完整介绍。 在完成上述任务的基础上,对多网合一室内分布系统设计就功率匹配,干扰分析等方面做初步探索。掌握使用一款实用移动无线网络规划仿真软件,并完成某写字大楼某一层的td—scdma覆盖系统设计。 二、毕业论文(设计)的基本要求及应完成的成果形式 要求毕业论文能够阐明全球范围内3g,4g相关技术发展现状和发展趋势;认识具有我国自主知识产权的td—scdma的技术特点,研发进展,网络实际铺设,运营状况,相关已出台政策,以及它对对我国通信领域进一步发展的重要意义;罗列影响室内无线移动网络覆盖

的首要因素和描述现存2g网络建设情况,完整介绍室内覆盖规划的流程及要注意的事项。扼要说明多网合一室内分布系统设计中功率匹配,干扰分析面临的问题。使用一款实用移动无线网络规划仿真软件,并完成某写字大楼其中一层的td—scdma覆盖系统设计。给出整套设计方案详细图形,及各通信器件的配置参数。 三、毕业论文(设计)的进度安排 201x年2。20~3。6查阅文献资料,了解3g,4g国内外研究现状,运营状况和发展趋势;认识到td—scdma的技术特点,研发进展,网络实际铺设,运营状况,相关已出台政策,以及它对对我国通信领域进一步发展的重要意义。撰写开题报告。 3。7~3。20掌握影响室内无线移动网络覆盖的首要因素和描述现存2g网络建设情况。完整介绍室内覆盖规划的流程及要注意的事项。 3。21~4。17说明多网合一室内分布系统设计中功率匹配,干扰分析面临的问题。 4。18~5。8使用一款实用移动无线网络规划仿真软件,并完成某写字大楼其中一层的td—scdma覆盖系统设计。给出整套设计方案详细图形,及各通信器件的配置参数。 5。9~5。29撰写毕业论文。 5。9~5。29毕业论文答辩前准备及答辩。 四、毕业论文(设计)应收集的资料及主要参考文献

无刷直流电机控制系统仿真-毕业设计

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

直流电子负载 .

Product Guide AC &DC Power System Power for the better life 上海汉升电源系统有限公司 地址:上海市闵行区召楼路号3286销售热线:(021)34902073 (021)34902079传真:(021)34902073-816 (021)34902079-816网址:..www handsunpower com S H A N G H A I H A N D S U N P O W E R S Y S T E M C o.,L T D 邮编:201112 公司总机:(021)55091913 24小时服务热线:400-688-0619

企业概况 Company p r o f i l e 3286号。

0102 D C E L 系列直流电子负载是专门为直流电源老化、测试及储能蓄电池性能测试开发的电子负载。电子负载能量逆变馈网, 实现能量回收, 节能环保! 广泛应用于直流电源、电池、电力电子设备检测等用途。 直流电子负载 电子负载吸收能量逆变馈网回收,节能环保,噪声低宽电压输入范围操作模式 恒定模式:恒流、恒阻、恒压、恒功率负载 瞬变模式:恒流、恒阻、恒压、恒功率瞬变负载,循环高精准度电流、电阻、功率、电压设定与测量快速电流切换仿真动态电流功能通道独立保护功能 放电绿色回馈能量,电流谐波<3%(额定),对电网基本无谐波污染 配备功能齐全的上位机软件,用户自定义测试流程报表数据分析功能 产品特点: 上位机软件功能列表 注:如有特殊要求或定制其他规格请致电咨询;如规格尺寸更改,恕不另行通知。 广泛应用于直流电源老化、测试、性能检测 电力电子设备测试 DC-DC 、AC-DC 电源转换器测试 电池模块组放电、检测等 科研机构、实验室、高校等机构 应用领域:

【VIP专享】无刷直流电机驱动电路开题报告

河南科技大学毕业设计(论文)开题报告 (学生填表) 院系:电子信息工程学院2013年03月31日 课题名称无刷直流电机驱动电路 学生姓名赵永亮专业班级自动化093课题类型硬件设计 指导教师丁喆职称副教授课题来源生产实际1. 设计(或研究)的依据与意义 电动机作为机电能量转换装置,一直在人类生产和生活中起着十分重要的作用,其应用范围遍及各个领域。电力拖动自动控制系统已经成为现代电器化及自动化的基础,而实现工业企业的电气化及自动化对于提高产品质量,改善工人的劳动条件,增加工作可靠性以及劳动生产率均有重大的意义。因多年来,人们对电动机的研究一直未停断。电动机主要分为同步电机、异步电机和直流电动机三种类型,其容量大到几万千瓦,小到几瓦。长期以来,直流电动机一直占据着速度控制和位置控制的统治地位。众所周知,直流电动机具有运行效率高、调速性能好等诸多优点,但传统的直流电动机均采用电刷换向,以机械接触方法进行换向,因而存在相应的机械摩擦,带来了火花、噪声、电磁干扰大以及寿命短等缺点,再加上制造成本高以及维修困难等缺点,大大限制了它的应用范围。因此无刷直流电动机应运而生。1955年美国的D.Harrison等人首次申请了用晶体管换向电路代替机械电刷的专利,标志着现代无刷电机的诞生,而电子换向的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出之后。 直流无刷电动机的主要特点:高效率:无刷直流电动机转子上既无铜耗也无铁耗,其效率比同容量异步电动机提高5%—12%。.启动转矩大,启动电流小:无刷直流电动机的机械特性和调节特性与他励直流电动机枢控时相应特性类似,所以它的启动转矩大,启动电流小,调节范围宽,且没有因电刷换向器引起的缺点,电子换向取代了机械换向。无刷直流电动机是一种自控式调速系统,它无需像普通同步电动机那样需要启动绕组;在负载突变时,不会产生振荡和失步。无刷直流电机具有直流电动机特性、永磁同步电动机类似的结构。适合长期低速运转、启动频繁的场合,这是变频调速器拖动Y系列电动机不太容易实现的。因此得到了广泛的应用,无论在数控机床,机器人等制造加工领域,还是家用电器如洗衣机,电脑硬盘等场合都日益受到重视。无刷直流电动机是集材料科学、电力电子技术、微电子技术和电机理论等多学科为一体的机电一体化产品,在诸多领域有着广阔的应用前景。因此,对无刷直流电机本体及其控制方法进行系统、深入的研究具有十分重要的现实意义。

电子信息工程毕业论文开题报告

电子信息工程毕业论文开题报告 电子信息工程毕业论文开题报告 一、论文(设计)研究背景与意义单片机技术已走过了近20年的发展路程,随着移动通讯、网络技术、多媒体技术等高科技产品进入家庭,单片机的应用更是得到了长足发展与普及。尤其在传统的机电设备控制领域,单片机有着高性能、低功耗与高可靠性等诸多优势。步进电机是一种将电脉冲转换成相应角位移的电磁机械装置,也是一种能把输出机械位移增量和输入数字脉冲对应的驱动器件。而且步进电机的步距角和转速只和输入的脉冲频率有关,不受外部条件及负载变化的影响,其每转一周都有固定的参数。步进精度和本设计就是步进误差不会长期积累。因此步进电机被广泛用于需要精确定位的场所。使用单片机对步进电机进行控制的系统,该系统可广泛适用于对电机有精确操作场合的需要,如摄像设备云台、遥控机器人等,因此该设计具有值得深入研究的价值。二、论文(设计)的主要内容课题研究的主要内容为:以AT89S52单片机作为主控芯片,通过键盘输入来控制42BYGH系列步进电机的正转、反转、速度调节等功能。在该项目中我负责硬件电路的.设计与调试,主要有步进电机驱动电路,单片机外围电路及信号传输电路的设计和调试。其中项目涉及到的软件部分由同组搭档负责编译。(流程图如下所示) 三、论文(设计)的工作方案及进度安排:工作方案:本设计为单片机控制步进电机。根据预先的设置和键盘输入信号给AT89S52单片机,进而由单片机控制电机驱动电路来实现对42BYGH系列步进电机的相应操作。20xx.12.24——20xx.3.12 查找资料文献,准备并完成开题答辩以及报告; 20xx.3.13――20xx.3.25 学习相应的电路原理及设计方法; 20xx.3.26――20xx.4.26 进行硬件电路设计,绘制PCB版图; 20xx.4.27――20xx.5.30 调试电路,撰写论文初稿; 20xx.5.31――20xx.6.06 整理论文,论文评阅,毕业设计答辩,根据答辩委员会意见修改论文。四、参考文献 [1] 张大明.单片机控制实训指导及综合应用实例[M].北京:机械工业出版社,2007.3:189-213. [2] 张毅刚,彭喜元,姜守达等.新编MCS-51单片机应用设计[M].哈尔滨:哈尔滨工业大学出版社,2004.11:3-7. [3] 李华嵩,王伟.Protel电路原理图与PCB设计108例[M].北京:中国青年出版

无刷直流减速电机参数

概述 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 参数 无刷直流减速电机参数分为标准参数和定制电机参数; 标准小型电机参数如下: 直径尺寸:4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、28mm、32mm、38mm; 齿轮箱材质分为:金属、塑胶材质结构; 输出转速:5-2000rpm; 减速比:5-1500; 功率:3V-24V; 输出扭矩:1gf-cm到50KGf-cm; 定制参数,即可按照项目设备需求定制无刷直流减速电机参数、规格和性能需求。

用途 小型无刷直流减速电机广泛应用在医疗器械,智能家居,机器人,汽车驱动,自动化设备,光学设备,精密仪器,工控设备等领域;按照应用方式分为:持续负载应用、可变负载应用、定位应用;在智能家居、智慧城市、机器人自动化领域均有广泛应用,通常是定制参数,规格模式。 品牌介绍 深圳市兆威机电股份有限公司成立于2001年,是一家研发、生产精密传动系统及汽车精密注塑零组件的制造型企业,为客户提供传动方案设计,零件的生产与组装的定制化服务。

永磁无刷直流电机矢量控制系统实现毕业设计(论文)

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

相关主题
文本预览
相关文档 最新文档