当前位置:文档之家› 介观物理与纳米电子学导论 第五章 量子输运的DFT模拟

介观物理与纳米电子学导论 第五章 量子输运的DFT模拟

大学物理学下册第15章

第15章 量子物理 一 选择题 15-1 下列物体中属于绝对黑体的是[ ] (A) 不辐射可见光的物体 (B) 不辐射任何光线的物体 (C) 不能反射可见光的物体 (D) 不能反射任何光线的物体 解:选(D)。绝对黑体能够100%吸收任何入射光线,因而不能反射任何光线。 15-2 用频率为υ的单色光照射某种金属时,逸出光电子的最大动能为k E ;若改用频率为2υ的单色光照射此金属,则逸出光电子的最大初动能为[ ] (A) k 2E (B) k 2h E υ- (C) k h E υ- (D) k h E υ+ 解:选(D)。由k E h W υ=-,'2k E h W υ=-,得逸出光电子的最大初动能 'k ()k E hv hv W hv E =+-=+。 15-3 某金属产生光电效应的红限波长为0λ,今以波长为λ(0λλ<)的单色光照射该金属,金属释放出的电子(质量为e m )的动量大小为[ ] (A) /h λ (B) 0/h λ (C) (D) 解:选(C)。由2e m 012 hv m v hv =+,2e m 012hc hc m v λλ= +,得m v = , 因此e m p m v == 。 15-4 根据玻尔氢原子理论,氢原子中的电子在第一和第三轨道上运动速率之比13/v v 是[ ] (A) 1/3 (B) 1/9 (C) 3 (D) 9

解:选(C)。由213.6n E n =-,n 分别代入1和3,得22 1122331329112mv E E mv ===,因 此 1 3 3v v =。 15-5 将处于第一激发态的氢原子电离,需要的最小能量为[ ] (A) 13.6eV (B) 3.4eV (C) 1.5eV (D) 0eV 解:选(B)。由2 13.6 n E n =- ,第一激发态2n =,得2 3.4eV E =-,设氢原子电离需要的能量为2'E ,当2'20E E +>时,氢原子发生电离,得2' 3.4eV E >,因此最小能量为3.4eV 。 15-6 关于不确定关系x x p h ??≥有以下几种理解,其中正确的是[ ] (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的动量和坐标不可能同时确定 (4) 不确定关系不仅适用于电子和光子,也适用于其他粒子 (A) (1), (2) (B) (2), (4) (C) (3), (4) (D) (4), (1) 解:选(C)。根据h p x x ≥???可知,(1)、(2)错误,(3)正确;不确定关系适用于微观粒子,包括电子、光子和其他粒子,(4)正确。 二 填空题 15-7 已知某金属的逸出功为W ,用频率为1υ的光照射该金属能产生光电效应,则该金属的红限频率0υ=________,截止电势差c U =________。 解:由0W hv =,得h W v = 0;由21e m 12hv m v W =+,而2 e m c 12m v eU =,所以 1c hv eU W =+,得1c h W U e υ-= 。

量子信息论简介

量子信息论简介 一、什么是量子信息论? 近20年来,量子力学除了更深入地应用于物理学本身许多分支学科之外,还迅速广泛地应用到了化学、生物学、材料科学、信息科学等领域。量子理论这种广泛,深入应用的结果、极大地促进了这些学科的发展,从根本上改变了它们的面貌,形成了众多科学技术研究热点,产生了许多崭新的学科;与此同时,量子力学本身也得到了很大的丰富和发展。 热点之一就是已经诞生、正在形成和发展中的量子信息科学———量子通信和量子计算机,简称为量子信息论。它是将量子力学应用于现有电子信息科学技术而形成的交叉学科。量子信息论不但将以住的经典信息扩充为量子信息,而且直接利用微观体系的量子状态来表达量子信息。从而进入人为操控、存储和传输量子状态的崭阶段。 近10多年来,量子信息论从诞生到迅猛发展,显示出十分广阔的科学和技术应用前景。这种崭新的交叉结合已经并正在继续大量生長出许多科学技术研究热点,并逐渐形成一片新兴广阔的研究领域,不断取得引人瞩目的輝煌成就。 量子信息论的诞生和发展,在科学方面有着深远的意义。因为它反过来极大地丰富了量子理论本身的内容,并且有助于加深对量子理论的理解,突出暴露并可能加速解决量子理论本身存在的基础性问题。借助这一新兴交叉学科的实验技术,改造量子力学基础,加速变革现有时空观念,加深对定域因果律的认识也许是可能的。 量子信息论在技术方面也有着重大影响。因为它的发展前景是量子信息技朮(QIT)产业,它是更新换代目前庞大IT产业的婴儿,是推动IT产业更新换代的动力,指引IT技朮彻底变革的方向。在这方面大量、迅猛、有效的探索性研究正在逐步导致以下各色各样的新兴分支学科的诞生:量子比特和量子存储器的构造,人造可控量子微尺度结构,量子态的各类超空间传送,量子态的制备、存诸、调控与传送,量子编码及压缩、纠错与容错,量子中继站技朮,量子网络理论,量子计算机,量子算法等等。它们必将对国际民生和金融安全技朮以及国防技朮产生深刻的影响。 目前,一方面是寻求各色各样存取量子信息的载体———量子比特和量子信息处理器。相关的实验和理论研究正在蓬勃开展。实验中的量子信息载体,不仅包括自然的微观系统,更着重于形形色色的人造可控微尺度结构———也就是人造可控量子系统。在研制可控量子比特和量子存储器件时,必须考虑它们和传送环节的光场之间的可控耦合,以保证量子信息的有效写入和取出。这里最重要的是研究光场和人造原子系综的相互作用。 第二方面是关于量子信息的传送。量子通信是量子信息论领域中首先走向实用化的研究方向。目前量子通信主要以极化光子作为信息载体,釆用纠缠光子对作为传送的量子通道。量子通信可以分为光纤量子通信和自由空间量子通信两个方向。关于光纤量子通信方面,建立光纤量子通信局域网和延长光纤量子通信鉅离的时机已经到来。而利用纠缠光子实施自由空间量子通信,其最终目标是通过卫星实现全球化量子通信。量子通信要求长程、高品质、高強度的纠缠光源。这需要掌握包括纠缠纯化、纠缠交换与纠缠焊接的量子中继器技术。同时还需要展开各类量子编码(纠错码、避错码、防错码)研究,各类量子态超空间传送方式研究,进而逐步创立完善的量子网络理论。 第三方面是关于量子计算机。目前的经典计算机受到经典物理原理限制,己经接近其处理能力的极限。而由于量子态迭加原理和量子纠缠特性,量子计算机具有经典计算机无法比拟的、快速的、高保密的计算功能,所以,有必要研究量子计算机。制造量子计算机的核心任务是造出可控多位量子比特的量子信息处理器。这里的关键是寻求能够避免退相干、易于操控和规模化的多位量子比特。这正是制约量子计算机研制进度的主要困难。1994年,计算机专家Chair C.H.Bennett宣布,量子计算机的研制己进入工程阶段。根据近10年来各国量子计算机研制己报导的有关资料预计,量子计算机技术的长远发展,最终有赖于固体方案。关于量子计算机研制进度:乐观估计是到20l0年可以在硅片技朮基础上制造出10多位可控量子比特,从而造出简单的台式计算机; 较稳健的估计是可能在下一个l0年之內; 持悲观估计的人们有个比喻:现在不必做出发展量子计算机的“哈曼顿计划”,因为现在还没有发现“核裂变”。 二、国內外量子信息专业的发展状况 2006年9月1日~4日,来自世界21个国家和地区的近200名科技人员聚集在北京友谊宾馆,参加由中国科大量子信息国家重点实验室举办的亚洲量子信息科学会议。在这次会议中首次提出量子隐形传态思想、首次提出第一个量子密钥分配协议的IBM研究机构科学家Chair C.H.Bennett接受采访时说:“量子信息现在还是个婴儿!”但鉴于量子信息科学技术的巨大发展潜力,目前已受到各国政府、科技专家和公众的广泛关注。 1、国外量子信息的研究和进展: 国际上重要的西方国家(美、英、法、加拿大、以色列、日本、瑞典、奥地利、意大利、瑞士等),特别是美国和欧盟均投入大量人力物力于量子通讯和量子计算的理论和实验研究,量子信息已成为学术界的热门课题,其发展十分迅猛,参与研究的国家、机构和人员日益增多,有关国际会议连接不断。以美国为例,加州理工大学、MIT和南加州大学联合成立了量子信息和计算研究所,其长远目标就是

大学物理(下)十五章作业与解答

第十五章量子物理基础 一. 选择题 1. 所谓“黑体”是指这样的一种物体: (A) 不能反射任何可见光的物体 (B) 不能发射任何电磁辐射的物体 (C) 能够全部吸收外来的所有电磁辐射的物体 (D) 完全不透明的物体 [ ] 2. 用两束频率、光强都相同的紫光照射到两种不同的金属上,产生光电效应,则 (A) 两种情况下的红限频率相同 (B) 逸出电子的初动能相同 (C) 单位时间内逸出的电子数相同 (D) 遏止电压相同 [ ] 3. 以一定频率的单色光照射在某种金属上,测出其光电流曲线在图中用实线表示,保持光频率不变,增大照射光的强度,测出其光电流曲线在图中用虚线表示,满足题意的图是 [ B ] 4. 光电效应和康普顿散射都包含有电子和光子的相互作用过程,以下几种解释正确的是 (A) 两种情况中电子与光子组成的系统都服从动量守恒定律和能量守恒定律 (B) 两种情况都相当于电子与光子的完全弹性碰撞过程 (C) 两种情况都属于电子吸收光子的过程 (D) 光电效应是电子吸收光子的过程,康普顿散射相当于光子与电子的完全弹性碰撞过程 [ ]

5.根据玻尔氢原子理论,巴尔末线系中最长波长和其次波长之比为 (A) 错误!未找到引用源。 (B) 错误!未找到引用源。 (C) 错误!未找到引用源。 (D) 错误!未找到引用源。 (-1/9+1/4)/(-1/16+1/4) = [ ] 6.两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相等 (B) 能量相等 (C) 速度相等 (D) 动能相等 [ ] 7. 关于不确定关系错误!未找到引用源。,有以下几种理解 (1) 粒子的动量不可能确定 (2) 粒子的坐标不可能确定 (3) 粒子的坐标和动量不可能同时准确地确定 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子 其中正确的是 (A) (1),(2) (B) (2),(4) (C) (3),(4) (D) (4),(1) [ ] 8. 波函数在空间各点的振幅同时增大D倍,则粒子在空间的概率分布将 (A) 增大D2倍 (B) 增大2D倍 (C) 增大D倍 (D) 不变 [ ] 二. 填空题 9. 普朗克的量子假说是为了解释__________________________ 的实验规律而提出的,它的基本思想是______________________________________________________________. (黑体辐射;略) 10. 已知某金属的逸出功为A,则光电效应的红限频率为_______________,对应的红限波长为_________________.(错误!未找到引用源。;错误!未找到引用源。)

第15章量子物理指导

第15章 量子物理基础 内容提要 1.黑体辐射基本定律和普朗克量子假设 黑体:能完全吸收入射辐射的物体,有最大的发射本领。 黑体辐射的两条实验规律: (1) 斯忒藩一玻尔兹曼定律:4 )(T T M σ= 式中4 2 8 1067.5---???=k m W σ称为斯忒藩一玻尔兹曼常数。 (2) 维思位移定律: b T m =λ 式中k m b ??=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动 (3) 普朗克量子假设 黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。νεh =称为能量子,s J h ??=-34 1063.6称 为普朗克常量。 2.光电效应的实验规律 实验发现,光电效应表现出四条规律: (1) 入射光的频率一定时,饱和光电流与光强成正比; (2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。 3.光量子假设与爱因斯坦方程 (1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量

νεh = 光子的静质量为零,动量为 λ h p = (2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。即 A mv h m +=2 2 1ν 4.康普顿效应 康普顿效应的实验规律 (1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。 (2) 波长差0λλλ-=?随散射角θ的增大而增加。其增加量为 2 sin 2200θλλλc m h = -=? (3) 0λλλ-=?与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数 增加而增大,而λ的光强则相对减小。 利用光量子理论对康普顿效应能给予很好的解释。康普顿效应进一步证实了光的量子性。 4.光的波粒二象性 光既具有波动性又具有粒子性。光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为: 光子能量νεh = 光子动量 λ h P = 光子质量 2 c h m ν = 光子的静质量为零。 5.玻尔的氢原子理论 (1) 氢原子光谱的实验规律 实验发现,氢原子光谱系的波数可以写成 )1 1( 1 ~22n m R -==λ ν

量子力学知识总结

量子力学基础知识总结 一.微观粒子的运动特征 1.黑体辐射和能量量子化 黑体:一种能全部吸收照射到它上面的各种波长辐射的物体 普朗克提出能量量子化假设:定温下黑体辐射能量只与辐射频率有关,频率为ν的能量,其数值是不连续的,只能是hν的整数倍,称为能量量子化。 2.光电效应与光子学说 爱因斯坦将能量量子化概念用于电磁辐射,并用以解释光电效应。其提出了光子学说,圆满解释了光电效应。 光子学说内容: ①光是一束光子流,每一种频率的的光的能量都有一个最小单位,称为光子 光子能量ε=hν/c ②光子质量m=hν/c2 ③光子动量p=mc=hν/c= h/λ ④光的强度取决于单位体积内光子的数目,即光子密度。光电效应: hν= W+E K =hν +2 1 mv2,W为脱出功,E k 为光电子的动能。 3.实物微粒的波粒二象性 德布罗意提出实物微粒也具有波性:E=hν p=h/λ 德布罗意波长:λ=h/p=h/(mv) 4. 测不准原理:?x?x p≥h?y?p y ≥h?z?p y ≥h?tE≥h 二、量子力学基本假设 1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x,y,z,t)来描述,它包括体系的全部信息。这一函数称为波函数或态函数,简称态。 不含时间的波函数ψ(x,y,z)称为定态波函数。在本课程中主要讨论定态波函数。 由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψdτ为空间某点附近体积元dτ中电子出现的几率。 对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。 波函数ψ可以是复函数, 合格(品优)波函数:单值、连续、平方可积。 2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。 算符:作用对象是函数,作用后函数变为新的函数。

量子信息学

量子信息学 20世纪前半叶,自然学科诞生了最具影响力的两门学科,量子力学和信息学。前者成为目前研究微观粒子运动规律离不开的理论基础,使人类对自然界的认识发生了里程碑的突破,它解释和预言了大量奇妙的物理现象,如微观粒子的波粒二象性、隧道效应和纠缠现象等等。利用量子力学原理,不仅解释了原子结构、化学键、超导现象、基本粒子的产生和湮灭等重要物理问题,而且也促成了现代微电子技术、激光技术和核能利用技术等的出现。而后者已明显地改变了人们的生产和生活方式,提高了工作效率和生活质量。20世纪末叶,它们交汇在一起,产生了一门新的交叉学科——量子信息学。 鉴于量子信息学研究与应用的巨大潜力,特别是关系到国家信息安全的重大问题,许多国家投入了大量人力物力开展相关方面的研究工作,促进了这一学科在诞生后的10多年时间内飞速发展。目前主要在以下几个方面开展研究。下面简单介绍两个方面。 纠缠理论的研究:在量子信息学中,量子态是信息的载体,量子信息的许多技术是建立在量子态纠缠的基础之上

的。因此,量子纠缠是量子信息学中最重要的研究课题,在理论和实验上均有重要意义。但遗憾的是,对此问题的研究还处于初级阶段。现在只有2×3量子系统纠缠的充要判断|,而对一般量子体系仅有充分性或必要性判据。对于不同纠缠态,其内部的关联程度也是不同的。如果量子态之间纠缠,那么就要掌握其纠缠的程度(即纠缠度)。纠缠度是系统各个部分之间纠缠程度的量度,理想的纠缠度应满足3个条件:①对任意量子态,纠缠度大于零;对正交直积态,纠缠度等于零;②在子系统的么正变换下纠缠度不变;③在局域操作和经典通信条件下纠缠度不能增加。对对多粒子多维纠缠态的纠缠性质研究是目前量子信息学最重要、最活跃的研究方向之一。 量子计算机设计和硬件研究:由于量子计算机具有很高的商业价值,所以研制量子计算机从一开始就是各个国家关注的一个研究重点。目前,关于量子计算机的可行性问题已经解决,IBM公司在实验室中已经研制出7位量子计算机原型系统。由于量子计算机的信息媒介是量子比特,因此对它的储存、处理、提取所使用的方法与设备和经典计算机相比是完全不同的。虽然利用核磁共振、离子阱等物理技术已实现了量子态的纠缠与储存,但总的来说量子器件实现技术还处于实验研究阶段。由于量子态储存过程中,量子系统不可

大学物理 量子物理基础知识点总结

大学物理 量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是:h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中 2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 122 13.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2 x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ* =? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++= ∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ??? =-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。

第十五章量子物理

第十五章 量子物理 班号 学号 姓名 日期 一、选择题 1.按照爱因斯坦光子理论,下列说法正确的是 (A) 光的强度越大,光子的能量就越大; (B) 光的波长越大,光子的能量就越大; (C) 光的频率越大,光子的能量就越大; (D) 光波的振幅越大,光子的能量就越大。 ( ) 2.钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光的强度,则 (A) 单位时间内逸出的光电子数增加; (B) 逸出的光电子初动能增大; (C) 光电效应的红限频率增大; (D) 发射光电子所需的时间增长。 ( ) 3.要使处于基态的氢原子受激发后能发射赖曼系的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5eV ; (B) 3.4eV ; (C) 10.2eV ; (D) 13.6eV 。 ( ) 4.一初速为150s m 106-??=v 的电子进入电场强度为1C N 400-?=E 的均匀电场,朝着 阳极方向加速行进。则电子在电场中经历位移为cm 20=s 时的德布罗意波长为 (A) 12nm ; (B) 0.14nm ; (C)340nm ; (D) 4200nm 。 ( ) 5.关于不确定关系2 ≥??p x 有以下几种理解: (1)粒子的动量不可能确定; (2)粒子的坐标不可能确定; (3)粒子的动量和坐标不可能同时确定; (4)不确定关系不仅适用于电子和光子,也适用于其它粒子。 (A) (1)、(2); (B) (2)、(4); (C) (3)、(4); (D) (4)、(1)。 ( ) 6.如图所示,一频率为ν的入射光子与初始静止的电子(其静止质量为m )发生散射。如果散射光子的频率为'ν,反冲电子的动量为p ,则在与入射光平行的方向上动量守恒定律的分量形式为 (A) p h h +='νν; (B) 422'c m p h h ++=νν; (C) φθννcos cos 'p h h +=; (D) p c h c h +='νν; (E) φθννcos cos 'p c h c h += 。 ( ) 选择题6图

高中物理选修3-5知识点最全

高中物理选修3-5 知识点梳理 一、动量动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释: ①物体的质量跟其速度的乘积,叫做物体的动量。 ②动量是物体机械运动的一种量度。 动量的表达式P = mv。 单位是kg m s. 动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。 2、动量守恒定律: 当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间,系统部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间遵循动量守恒定律。 ③计算动量时要涉及速度,这时一个物体系各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ④动量是矢量,因此“系统总动量” 是指系统中所有物体动量的矢量和,而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用围。只要系统不受外力或所受的合外力为零,那么系统部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。 3、动量与动能、动量守恒定律与机械能守恒定律的比较。 动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用围,而后者是标量式其适用围则要窄得多。这些区别在使用中一定要注意。 4、碰撞:

量子通信技术基于量子物理学的基本原理

关键词:量子通信安全性中国发展 摘要:用国际顶级量子专家王肇中教授的话说,量子通信就是单模光纤两端加上能代替常用光模块功能的、光量子态的发送和接收设备,实现基于物理加密的保密通信。 量子通信技术基于量子物理学的基本原理,克服了经典加密技术内在的安全隐患,是迄今为止唯一被严格证明是无条件安全的通信方式。为了拓展应用、与现有通信系统兼容以及大量减少成本,需对点对点的通信方式进行组网并充分利用经典通信设施。与此同时,量子克隆技术的出现也使得我们开始重新审视量子通信的安全性问题。量子通信是相对最安全的,但任何事情都不是绝对的,有矛就有盾。一方面有“量子非克隆原理”,另一方面有实现近似量子克隆的“量子克隆机”。怎样可靠地评估安全性?怎样进行攻击?是值得研讨的问题。在不久的将来,量子通信与经典通信的融合发展将会带来通信世界的新纪元。 例如一个量子态可以同时表示0和1两个数字,7个这样的量子态就可以同时表示128个状态或128个数字:0~127。光量子通信的这样一次传输,就相当于经典通信方式的128次。可以想象如果传输带宽是64位或者更高,那么效率之差将是惊人的2,以及更高。 1. 欧洲联合了来自12个欧盟国家的41个伙伴小组成立了SECOQC量子通信网络[8][9]。并于2008年10月在维也纳现场演示了一个基于商业网络的安全量子通信系统。该系统集成了多种量子密码手段,包含6个节点。其组网方式为在每个节点使用多个不同类型量子密钥分发的收发系统并利用可信中继进行联网。 息量子通信验证网”在北京开通,在世界上首次将量子通信技术应用于金融信息安全传输。 2014年11月15日,团队研发的远程量子密钥分发系统的安全距离扩展至200公里,刷新世界纪录。 2. 应用与用途 潘建伟教授指出,量子通信技术的实际应用将分三步走:一是通过光纤实现城域量子通信网络;二是通过量子中继器实现城际量子通信网络;三是通过卫星中转实现可覆盖全球的广域量子通信网络。 对市场角度来说,互联网本质上是一个不安全的网络,而量子通信在理论上的绝对保密特征,已经得到物理定理的证明,很显然在军事、国防、金融等领域有着广阔的应用前景。在大众商业市场,随着技术成熟,量子通信也将具有极大的发展潜力。 3.量子通信技术的发展趋势 4.不足 但量子通信本身,仍然处在研究阶段,还远远没有达到大规模商用化的水平,实用的量子通信网络其保密的绝对性还有待商榷。 量子通信面临四项难点:可扩展、强抗毁、广覆盖、立体化 子密钥分发在未来推广应用方面面临两大挑战:融合性和安全性。量子通信从量子力学的

量子物理基础

第 42 次课 日期 周次 星期 学时:2 内容提要: 第十一章量子物理基础 §11.1 实物粒子的波粒二象性 一.德布罗意假设 二.德布罗意假设的实验验证 三.德布罗意假设的意义 四.电子显微镜 目的与要求: 1.理解德布罗意的物质波假设及其正确性的实验证实。理解实物粒子波粒二象性。 2.理解物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)间的关系。 重点与难点: 德布罗意假设; 物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)间的关系。 教学思路及实施方案: 本次课应强调: 类比法是科学研究中的一种重要方法。科学理论的发展总是在前人已有的理论基础上发展和创新的,学生既要善于继承前人已有的知识,又要有所创新。电子通过不均匀电场和磁场时要发生偏转是电子显微镜成像原理的主要部分。 教学内容: §11.1 实物粒子的波粒二象性 一.德布罗意假设 1.德布罗意假设 1924年德布罗意大胆地提出假设:实物粒子也具有波动性。他并且把光子的能量一频率和动量—波长的关系式借来,认为一个实物粒子的能量E 和动量P 跟和它相联系的波的频率ν和波长λ的定量关系与光子一样,为 υh mc E ==2 λh mv p = = 这些公式称为德布 罗意公式或德布罗意假设。和实物粒子相联系的波称为物质波或德布罗意波。 德布罗意波长 k k E E E hc c v v m h mv h p h 0222021+=-=== λ 其中2 02c m mc E k -=是粒子的相对论动能。 如果c v <<,因而粒子的动能k E 也就远小于粒子的静能0E 。在这种情况下,可用非相对论公式计算德布罗意波长 k E m h v m h 002=≈ λ 以电子为例,电子经电场加速后(设加速电势差为U)电子的速度在c v <<的情况下,将由下式决定 eU v m E k == 2021 ο A U U em h 2 .121 20= ? =?λ 应强调指出的是: 1.实物粒子的德布罗意波长一般是很短的,在通常实验条件下显露不出来。

大学物理讲义(第15章量子力学基础)第五节

§15.5 量子力学的基本概念和基本原理 描述微观粒子运动的系统理论是量子力学,它是薛定谔、海森伯等人在 1925~1926年期间初步建立起来的.本节介绍量子力学的基本概念和基本方程. 一、波函数极其统计解释 在经典力学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用 它的位置矢量和动量来描述的.但是,对于微观粒子,由于它具有波动性,根据不确 定关系,其位置和动量是不同时具有确定值的,所以我们就不可能仍然用位置、动 量及轨道这样一些经典概念来描述它的运动状态.微观粒子的运动状态称为量子 态,是用波函数来描述的,这个波函数所反映的微观粒子的波动性,就是德布罗意 波.这是量子力学的一个基本假设. 例如一个沿X 轴正方向运动的不受外力作用的自由粒子,由于能量E 和动量p 都是恒量,由德布罗意关系式可知,其物质波的频率ν和波长λ也都不随时间变化,因此自由粒子的德布罗意波是一个单色平面波. 对机械波和电磁波来说,一个单色平面波的波函数可用复数形式表示为 )(2)x/λνt πi Ae t y(x,--= 但实质是其实部.类似地,在量子力学中,自由粒子的德布罗意波的波函数可表示 为 η)/(0)(Px Et i e t x,--ψ=ψ 式中0ψ是一个待定常数, η/0iPx e ψ相当于x 处波函数的复振幅,而ηiEt/e -则反映波函 数随时间的变化. 对于在各种外力场中运动的粒子,它们的波函数要随着外场的变化而变化.力 场中粒子的波函数可通过下面要讲的薛定谔方程来求解. 经典力学中的波函数总代表某一个物理量在空间的波动,然而量子力学中的 波函数又代表着什么呢?对此,历史上提出了各种不同的看法,但都未能完善的解 释微观粒子的波—粒二象性,直到1926年玻恩(M.Born,1882—1970)提出波函数的 统计解释才完善的解释了微观粒子的波—粒二象性.玻恩认为:实物粒子的德布 罗意波是一种几率波;t 时刻,粒子在空间 r 附近的体积元dV 中出现的几率dW 与该处波函数的模方成正比,即 V t r,Ψt r,ΨV t r,ΨW *d d d 2 )()()(== (15.35) 由式(15.35)可知,波函数的模方2)(t r,Ψ代表t 时刻粒子在空间r 处的单位体积中 出现的几率,称为几率密度.这就是波函数的物理意义,波函数本身没有直接的物

大学物理 量子物理基础知识点总结

大学物理量子物理基础知识点 1.黑体辐射 (1)黑体:在任何温度下都能把照射在其上所有频率的辐射全部吸收的物体。 (2)斯特藩—玻尔兹曼定律:4 o M T T σ()= (3)维恩位移定律:m T b λ= 2.普朗克能量量子化假设 (1)普朗克能量子假设:电磁辐射的能量是由一份一份组成的,每一份的能量是: h εν= 其中h 为普朗克常数,其值为346.6310h J s -=?? (2)普朗克黑体辐射公式:2 5 21 M T ( )1 hc kt hc e λπλλ =-(,) 3.光电效应和光的波粒二象性 (1)遏止电压a U 和光电子最大初动能的关系为:21 2 a mu eU = (2)光电效应方程: 21 2 h mu A ν= + (3)红限频率:恰能产生光电效应的入射光频率: 00V A K h ν= = (4)光的波粒二象性(爱因斯坦光子理论):2 mc h εν==;h p mc λ ==;00m = 其中0m 为光子的静止质量,m 为光子的动质量。 4.康普顿效应: 00(1cos )h m c λλλθ?=-= - 其中θ为散射角,0m 为光子的静止质量,1200 2.42610h m m c λ-= =?,0λ为康普顿波长。 5.氢原子光谱和玻尔的量子论: (1)里德伯公式: ()221 11 T T H R m n n m m n ν λ ==-=->()()(), % (2)频率条件: k n kn E E h ν-= (3) 角动量量子化条件:, 1,2,3...e L m vr n n ===

其中2h π = ,称为约化普朗克常量,n 为主量子数。 (4)氢原子能量量子化公式: 12213.6n E eV E n n =-=- 6.实物粒子的波粒二象性和不确定关系 (1)德布罗意关系式: h h p u λμ= = (2)不确定关系: 2x p ??≥ ; 2 E t ??≥ 7.波函数和薛定谔方程 (1)波函数ψ应满足的标准化条件:单值、有限、连续。 (2)波函数的归一化条件: (,)(,)1V r t r t d ψψτ*=? (3)波函数的态叠加原理: 1122(,)(,)(,)...(,)i i i r t c r t c r t c r t ψψψψ=++=∑ (4)薛定谔方程: 22(,)()(,)2i r t U r r t t ψψμ???=-?+????? 8.电子自旋和原子的壳层结构 (1)电子自旋: 1 ,2 S s = = ;1, 2 z s s S m m ==± 注:自旋是一切微观粒子的基本属性. (2)原子中电子的壳层结构 ①原子核外电子可用四个量子数(,,,l s n l m m )描述: 主量子数:0,1,2,3,...n = 它主要决定原子中电子的能量。 角量子数:0,1,2,...1l n =- 它决定电子轨道角动量。 磁量子数:0,1,2,...l m l =±±± 它决定轨道角能量在外磁场方向上的分量。 自旋磁量子数:1 2 s m =± 它决定电子自旋角动量在外磁场方向上的分量。 ②在多电子原子中,决定电子所处状态的准则是泡利不相容原理和能量最低原理。 9.X 射线的发射和发射谱 (1)X 射线谱是由两部分构成的,即连续谱和线状谱(也称标识谱)。 (2)连续谱是由高速电子受到靶的制动产生的韧致辐射;线状谱是由高速电子的轰击而使靶原子内层出现空位、外层电子向该空位跃迁所产生的辐射。

第15章 量子物理基础习题解答

126 第15章 量子物理基础 15-1 太阳可看作是半径为m 100.78?的球形黑体,试计算太阳表面的温度。太阳光直射到地球表面上单位面积的的辐射功率为321.510W/m ?,地球与太阳的距离为111.510m d =?。 解 已知32 0 1.510W/m P =?,8s 7.010m R =?,m 105.111?=d 。太阳辐射的总功率2s 4πE R ?,假设 辐射没有能量损失,则分布在2 4πd 的球面上, 有 22s 04π4πE R p d ?=? 运用斯特藩—玻耳兹曼定律4E T σ=,得 113 1/21/41/21/43088 1.510 1.510()()()() 5.910(K)7.010 5.6710s p d T R σ-??===??? 15-2 已知地球到太阳的距离81.510km d =?,太阳的直径为61.410km D =?,太阳表面的温度为 5900K T =,若将太阳看作绝对黑体,求地球表面受阳光垂直照射时,每平方米的面积上每秒钟得到的辐 射能为多少? 解 根据斯特藩—玻耳兹曼定律4E T σ=和能量守恒方程220π4πE D p d =,得 ()942428 232011 11 1.410()() 5.67105900W/m 1.510W/m 441.510 D p T d σ-?==???=?? 15-3 在加热黑体的过程中,其单色辐出度的最大值所对应的波长由0.69μm 变化到0.50μm ,其总辐射出射度增加了几倍? 解 由维恩位移定律m T b λ =和斯特藩—玻耳兹曼定律4T E σ=得 444 22m111m20.69()()() 3.630.50 E T E T λλ====(倍) ,即增加了2.63倍. 15-4 从铝中移出一个电子需要4.2eV 的能量,今有波长为2000 ?的光投射到铝表面,求(1)从铝表面发射出来的光电子的最大初动能是多少?(2)遏止电势差为多大?(3)铝的红限频率为多大? 解 (1)由 2 m 12 h m W νυ= +得 34821919m 10 1 6.62610310 4. 2 1.60210J 3.2110J 2200010hc m h W W υνλ----?????=-=-=-??=?????? (2) 2 m 12a eU m υ= 2 m 12 2.0V a m U e υ== (3)由 0W h ν= 19150344.2 1.60210Hz 1.0210Hz 6.62610 W h ν--??===?? 15-5 用波长为4000 ?的紫光照射金属,产生光电子的最大初速度为5 510m/s ?,则光电子的最大初动能是多少?该金属红限频率为多少? 解 光电子的最大初动能为 ()2315219m m 11 9.1110(510) 1.1410J 22 k E m υ--= =????=?

量子信息简介

量子信息简介 Brief Introduction to Quantum Information
量子信息是指以量子力学基本原理为基础、通过量子系统的各种相干特性(如量子并行、量 子纠缠和量子不可克隆等),进行计算、编码和信息传输的全新信息方式。 根据摩尔(Moore)定律,每十八个月计算机微处理器的速度就增长一倍,其中单位 面积(或体积)上集成的元件数目会相应地增加。可以预见,在不久的将来,芯片元件就 会达到它能以经典方式工作的极限尺度。因此,突破这种尺度极限是当代信息科学所面临 的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥 量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突 破芯片极限提供新概念、新思路和新途径。量子力学与信息科学结合,不仅充分显示了学科 交叉的重要性, 而且量子信息的最终物理实现, 会导致信息科学观念和模式的重大变革。 事 实上, 传统计算机也是量子力学的产物, 它的器件也利用了诸如量子隧道现象等量子效应。 但仅仅应用量子器件的信息技术,并不等于是现在所说的量子信息。目前的量子信息主要 是基于量子力学的相干特征,重构密码、计算和通讯的基本原理。
1. 量子相干性与量子纠缠
在经典信息处理过程中,刻画信息的二进制经典比特(Bit)由经典状态(如电压的高 低) 1 和 0 表示。对于量子信息而言, 由于微观世界中量子效应会鲜明地凸现出来, 经典比 特状态的 1 和 0 必须由两个量子态 |1> 和|0> 来取代;处于这样两种不同状态之上的粒子 就是量子信息的基本存储单元—量子比特(Qubit)。 任意两态量子体系都可成为量子信 息的载体,如二能级原子、分子或离子,光子偏振态或其它等效的自旋 1/2 的粒子。
图 1: 二能级原子构成量子比特 与经典比特本质不同,一个量子比特可以处在|0>和|1> 的相干叠加态 |u> = a|0>+b|1> 上。即,量子比特可以随机地存在于状态| 0>和|1>上,且在每种状态上出现的概率 p=|c| 由复数系数 c=a ,b 确定。需要指出,这样的叠加态具有明显的量子相干特征,经典概率 p=|c|2 不足以描写这个叠加态,a 和 b 相对的位相在量子信息过程中,起着至关重要的 作用。
2
1

9 第15章 量子物理 作业 答案

一、简答题: 1. 电子和质子具有相同的动能,二者谁的德布罗意波长较短? 答:在非相对论情况下,粒子的动量 k mE p 2=,k E 是粒子的动能,而k mE p 2 = =λ,在相同的k E 情况下,质量大的有较短的波长,所以质子波长短。 2.什么是不确定关系?为什么说不确定关系指出了经典力学的适用范围? 答:微观粒子的位置和动量是不能同时被精确确定的。在一维情况下,它们各自不确定范围满足如下关系 , ≥???x p x 这个关系式为不确定关系,这是微观粒子波粒二象性的必然表现。对于宏观物体,波动性可以忽略,因而不确定关系可以不考虑,而粒子的位置和动量可以同时确定的。经典力学认为物体的位置和动量是可以同时精确确定的,因此经典力学适用于宏观物体而不适用于微观粒子。 3.什么是光的波粒二象性? 答:光的波粒二象性指的是光即有粒子性又具有波动性,其中,粒子的特性有颗粒性和整体性,没有“轨道性”;波动的特性有叠加性,没有“分布性”。一般来说,光在传播过程中波动性表现比较显著,当光与物质相互作用时,粒子性表现显著。光的这种两重性,反映了光的本质。 4.如果一个粒子的速率增大了,其德布罗意波长增大了?还是减小了?试给以解释。 根据德布罗意假设,粒子波长和动量关系为p =λ,对非相对论情形,粒 子动量v m p 0=,所以有v m 0 =λ,显 然随着速率的增大,波长变短。对于相对论情况,粒子动量 c m c v v m p 02 1 220)1(-==γ,所以 v m c v v m 021 220)1( -= =γλ,同样随着速率v 的增大,波长λ会减小,因此粒子 的波长随v 的增加总是减小。 二、填空题: 1.质量为m 的粒子,以速率v 运动(v<< c )。①该粒子的德布罗意波长 为 ;②如果对该粒子波长的测定可以精确到3 10-(精确度),该粒子位置的不确定度为 。 (1)h h p mv λ= = (2)3 2 10h h p p λ λλ λλ -??=- ?= =? 310 h h x p mv -?≥ =?? 2. 如果某系统属于激发态,此状态能量的最小不确定度为2.21×10-23J ,求此激发态的寿命是 。 E t h ???≥, 341123 6.6310 3.0102.2110 h t s E ---??≥==??? 3.一光子位置不确定度为0.3m ,若测定该光子的波长的精确度为10-5,该光子的波长 。(普朗克常数h=6.63×10-34s J ?)。 x h P ?≥ ?

相关主题
文本预览
相关文档 最新文档