当前位置:文档之家› 水体富营养化程度的评价

水体富营养化程度的评价

水体富营养化程度的评价
水体富营养化程度的评价

水体富营养化程度的评价

水中总磷的测定

富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。

许多参数可作为水体富营养化的指标,常用的是总磷、总氮、叶绿素-a含量和初级生产率等。本实验通过测定天然水体中的总磷,来判断水体的富营养化程度。

总磷与水体富营养化程度的关系

富营养化程度极贫贫-中中中-富富

总磷/ mg·L-1<0.005 0.005~0.010 0.010~0.030 0.030~0.100 >0.100

一.实验目的

1.掌握总磷的测定原理及方法

2.评价水体的富营养化状况

二.实验原理

一般地面水在硫酸的酸性条件下,加入一定量的过硫酸铵为氧化剂,加热消解,将各种形态的磷转化成磷酸根离子(PO43-),随后用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。

砷酸盐与磷酸盐一样也能生成钼蓝,0.1μg/mL的砷就会干扰测定。此外,六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。

三.仪器和试剂

1.仪器

1)可见分光光度计,电子天平,电热板

2)移液管:1 mL,10 mL,100 mL

3)锥形瓶:250 mL

4)比色管:50 mL

2.试剂

1)过硫酸铵(NH4)2S2O8(固体)

2)浓硫酸

3)硫酸溶液:2 mol / L

4)氢氧化钠溶液:6 mol / L

5)1%酚酞:1g酚酞溶于90 mL乙醇中,加水至100 mL

6)酒石酸锑钾溶液:将4.4g K(SbO)C4H4O6·1/2H2O溶于200 mL蒸馏水中,用棕色瓶在4℃时保存

7)钼酸铵溶液:将20 g (NH4)6Mo7O24·4H2O溶于500 mL蒸馏水中,用塑料瓶在4℃时保存

8)抗坏血酸溶液:0.1 mol / L,将1.76 g 抗坏血酸溶于100 mL蒸馏水中,用棕色瓶在4℃时保存,可维持一个星期不变。

9)混合试剂:50 mL 2 mol / L硫酸溶液、5 mL酒石酸锑钾溶液、15 mL钼酸铵溶液和30 mL抗坏血

酸溶液。混合前,先让上述溶液达到室温,并按上述次序混合。在加入酒石酸锑钾或钼酸铵后,如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。若在4℃下保存,可维持一个星期不变。

10) 磷酸盐储备液:1.00 mg / mL ,准确称取1.098g KH 2PO 4,溶解后转入250 mL 容量瓶中,稀释至刻度。

11) 磷酸盐标准溶液:10.0 mg / L ,量取1.00 mL 磷酸盐储备液于100 mL 容量瓶中,稀释至刻度。

四. 实验步骤

1. 水样处理:量取100mL 水样(或经稀释的水样),放入250mL 锥形瓶中,另取100 mL 蒸馏水于250mL 锥形瓶中作为对照,分别加入1 mL 2 mol / L H 2SO 4,3g (NH 4)2S 2O 8,混匀后,擦净瓶外壁,分别置于电热炉上,微沸约40min 至体积小于10mL (注意防止烧干),补加蒸馏水使体积约25mL (如锥形瓶壁上有白色凝聚物,用蒸馏水将其冲入溶液中),再加热数分钟,至最后体积约为10 mL 。冷却后,加1滴酚酞,滴加6 mol / L NaOH 将溶液中和至微红色。再滴入硫酸使红色恰好褪去,充分摇匀,转移至50mL 比色管中,用少量水洗锥形瓶至少3次,一并移入比色管中,加水稀释至25mL 刻度线,加1 mL 混合试剂,摇匀后放置10 min ,加水稀释至50mL 刻度线,再摇匀,放置10 min 。

2. 标准曲线的绘制:分别吸取10.0 mg / L 磷的标准溶液0.00、0.50、1.00、1.50、2.00、2.50、

3.00 mL 于50 mL 比色管中,加水稀释至约25 mL ,加1 mL 混合试剂,摇匀后放置10 min ,加水稀释至刻度,再摇匀,放置10 min ,以试剂空白作参比,用1 cm 比色皿,于波长710 nm 处测定吸光度。根据吸光度与浓度的关系,绘制方法的标准曲线。

3. 水样测定:以步骤2中的试剂空白作参比,用1 cm 比色皿,于波长710 nm 处分别测定水样和蒸馏水对照水样的吸光度。

4. 结果处理

将水样测定的吸光度与蒸馏水对照水样测定的吸光度差值代入标准曲线计算磷的含量,按下式计算水中总磷的含量:

)水样的体积()测得的磷量(),总磷(L mg L mg P

/

根据水中总磷的测定结果,评价水体富营养化程度。

五. 思考题

1. 水体中氮、磷的主要来源有哪些?

2. 被测水体的富营养化状况如何?

注意事项:

1. 水样预处理时,水样中如有大的颗粒,可用搅拌器搅拌2~3 min ,混合均匀。

2. 水样加热消解时,如果溶液飞溅,可将漏斗放于锥形瓶上防止液体溅出。

3. 加热预处理并调节pH 值后的溶液如果不澄清,则用滤纸过滤于50 mL 比色管中,用水洗锥形瓶及滤纸至少3次,一并移入比色管中,加水稀释至25mL 刻度线。

4. 测定水样的体积与显色时的溶液体积不同,应注意最后结果是测定原水样中的总磷值,需要进行计算。

水体富营养化程度评价

水体富营养化程度评价 一、实验目的与要求 (1)掌握总磷、叶绿素-a及初级生产率的测定原理及方法。(2)评价水体的富营养化状况。 二、实验方案 1、样品处理 2 、工作曲线绘制 取7支消解管,分别加入磷的标准使用液0.00、0.25、0.50、1.50、2.50、5.00、7.50mL以比色管中,加水至15ml。然后按测定步聚进行测定,扣除空白试验的吸光度后,和对应磷的含量绘制工作曲线。 3、计算 总磷含量以C(mg/L)表示,按下式计算: 式中: M 试样测得含磷量,μg V 测定用水样体积,ml

注意:每个小组做空白2-3个,标线5个,样品3-4个。 图1 采样布点分布 三、实验结果与数据处理 1、工作曲线绘制 根据上表数据,绘制工作曲线如图2所示: 图2 标准工作曲线 从标准工作曲线图可以看出,其相关系数R2 = 0.9969,高于实验室最低要求R2=0.995,可见其相关度较好,可用以求解水样中总磷的浓度。

2、八个水样数据结果与处理 根据上表数据作水中磷质量浓度柱形图,如图2所示: 图2 各组水中总磷质量柱形图 四、实验结果 1、实验结果分析 从实验数据和图2可以看出,第一、三、四、五、八组数据比较准确,因为

这几组平行样数据比较接近,而且跟稀释后所测的浓度也大约呈5倍关系,可以保留作为水中磷质量浓度评价,而其他组数据误差较大,故舍去。根据各组原水样总磷质量浓度求评均整理下表。 从上表数据可以看出,第五组所测的水中总磷浓度较高,根据图1可知第五组采样点为第四饭堂附近,可能是由于饭堂平时清洁所用的洗涤剂含磷较高,排放入河涌的污水导致河水受污染。 2、污染程度分析 表4 总磷与水体富营养化程度的关系 本实验是以水体磷平均浓度平均参数,本次实验所得的监测采样点数据的平均浓度是0.205mg/L,测得的最小浓度为0.142mg/L,测得的最高浓度为0.311mg/L,由表1可知超过0.1mg/L就为水体富营养化,本次实验测得的最低浓度也超出0.1mg/L,本次实验所得数据均说明该水体富营养化。 3、解决措施 该河涌地处大学城内,不受工业排放污染,所以造成该河涌富营养化的主要原因是生活污染,比如饭堂、学生公寓、商业区等,要治理河涌首先还是得从源头抓起,特别是饭堂、学生公寓和商业区,必须监控从这三个地方流出的污水,须进行处理达标后才能排入河涌;其次就是要严格审查各类洗涤剂等,含磷超标的不能进入市场;最后就是要树立环保意识,大家环保觉悟高了,从自己做起,自然就有绿水青山。 五、思考题 (1)查资料说明评价水体富营养化程度的指标有哪些? 答:水体富营养化程度的评价指标分为物理指标、化学指标和生物学指标。物理指标主要是透明度,化学指标包括溶解氧和氮、磷等营养物质浓度等,生物

水体富营养化评价方法

为了进一步认识调查区域水质状况,我们采用了TLI 综合营养指数法运用TP 、TN 、SD 、COD Mn 对其水质进行评价。 综合营养状态指数公式: j 1 ()()m j TLI W TLI j ==?∑∑ (1) TLI(chl)=10(2.5+1.086ln chl ) (2) TLI(TP)=10(9.436+1.624ln TPl ) (3) TLI(TN)=10(5.453+1.694ln TN ) (4) TLI(SD)=10(5.118-1.94ln SD ) (5) TLI(COD)=10(0.109+2.661ln COD ) 式中,TLI (∑)表示综合营养状态指数;TLI (j )代表第j 种参数的营养状态指数;W j 为第j 种参数的营养状态指数的相关权重。以chla 为基准参数,则第j 种参数的归一化的相关权重计算公式为: 221ij m ij j r Wj r ==∑ r ij 为第j 种参数与基准参数chla 的相关系数;m 为评价参数的个数。 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2ij 见表2。 表1 中国湖泊的chla 与其他参数之间的相关关系r ij 和r 2i 值 参数 chla TP TN SD COD Mn r ij 1 0.84 0.82 -0.83 0.83 r 2ij 1 0.7056 0.6724 0.6889 0.6889

为了说明湖泊富营养状态情况, 采用0~100的一系列连续数字对湖泊营养状态进行分级: TL I < 30 贫营养(Oligotropher) 30≤TL I≤50 中营养(Mesotropher) TL I > 50 富营养(Eutropher) 50< TL I≤60 轻度富营养( lighteutropher) 60< TL I ≤70 中度富营养(Middleeutropher) TL I > 70 重度富营养(Hypereutropher) 在同一营养状态下, 指数值越高, 其营养程度越重。 本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!

实验1水体富营养化程度的评价

实验五水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标, 常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1 )。

1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 1. 仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 (9) 多功能水质检测仪。 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。

湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定 2004-08-11 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: 式中:—综合营养状态指数; Wj—第j种参数的营养状态指数的相关权重。 TLI(j)—代表第j种参数的营养状态指数。 以chla作为基准参数,则第j种参数的归一化的相关权重计算公式为: 式中:rij—第j种参数与基准参数chla的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla与其它参数之间的相关关系rij及rij2见下表。 ※:引自金相灿等著《中国湖泊环境》,表中rij来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl) ⑵ TLI(TP)=10(9.436+1.624lnTP)

⑶ TLI(TN)=10(5.453+1.694lnTN) ⑷ TLI(SD)=10(5.118-1.94lnSD) ⑸ TLI(CODMn)=10(0.109+2.661lnCOD) 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn) 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级: TLI(∑)<30贫营养(Oligotropher) 30≤TLI(∑)≤50中营养(Mesotropher) TLI(∑)>50富营养 (Eutropher) 50<TLI(∑)≤60轻度富营养(light eutropher) 60<TLI(∑)≤70中度富营养(Middle eutropher) TLI(∑)>70重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由中国环境监测总站生态室负责解释

水体富营养化程度的评价

实验八水体富营养化程度的评价 富营养化(Eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量急剧下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些水生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的有总磷、叶绿素-a含量和初级生产率的大小(见表8-1)。 表8-1 水体富营养化程度划分 富营养化程度初级生产率/mg O2·m·日总磷/ μg·L无机氮/ μg·L 极贫0~136 <0.005 <0.200 贫-中0.005~0.010 0.200~0.400 中137~409 0.010~0.030 0.300~0.650 中-富0.030~0.100 0.500~1.500 富410~547 >0.100 >1.500 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器和试剂 1. 仪器

湖泊(水库)富营养化评价方法及分级技术规定(eco)(精)

附件1: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1)()( 式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI (j )—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公 式为: ∑==m j ij ij j r r W 122 式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r 及r 2值※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查 数据的计算结果。 营养状态指数计算公式为: ⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )

⑷TLI(SD)=10(5.118-1.94lnSD) )=10(0.109+2.661lnCOD) ⑸TLI(COD Mn 式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。 2、湖泊(水库)富营养化状况评价指标: 叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰 ) 酸盐指数(COD Mn 3、湖泊(水库)营养状态分级: 采用0~100的一系列连续数字对湖泊营养状态进行分级: TLI(∑)<30 贫营养(Oligotropher) 30≤TLI(∑)≤50 中营养(Mesotropher) TLI(∑)>50 富营养(Eutropher) 50<TLI(∑)≤60 轻度富营养(light eutropher) 60<TLI(∑)≤70 中度富营养(Middle eutropher) TLI(∑)>70 重度富营养(Hyper eutropher) 在同一营养状态下,指数值越高,其营养程度越重。 注:此规定由总站生态室负责解释

河流富营养化评价标准

河流富营养化评价标准 能够反映湖泊水库营养状态的变量很多 ,但只部分指标可被用于湖库营养状态的评价 ,而且不同国家和地区所选取的指标各不相同 ,其中总磷(TP)、总氮(TN)和叶绿素 a均为必选指标 ,虽然 TP和 TN中只有部分形式能够为藻类所吸收利用 ,但目前国际上大多是采用 TP和 TN指标 ,而不是选用可利用性总磷或者可利用性总氮等指标 ,这是由于营养盐的可利用态与不可利用态之间存在着复杂的转化关系。而其它指标如透明度、溶解氧 (DO)、化学需氧量 (COD)和 pH 等只是在一些国家和地区被应用。 河道型水库营养状态评价指标的选取应遵循以下几个原则: ( 1)是水库富营养化控制的关键性因素; (2)与藻类生长具有明确的机理性关系; (3)指标相对稳定 ,不易受到其它因素的影响; (4)具有富营养化的早期预警功能 ,为水库富营养化控制提供支持。 基于上述原则 ,对现有指标在河道型水库的适用性进行分析.认为总磷是我国大部分河道型水库的限制性要素 ,是水库富营养化控制的关键因子. 氮不仅是某些水库富营养化的控制性要素,而且是河口以及海岸带水体藻类的关键限制因子,为了体现水库对河口的影响及控制作用 ,在制定河道型水库的营养状态标准时应考虑氮元素.叶绿素a能够反映水库中藻类生物量的大小 ,虽然含量受到藻类种类的影响 ,容易在评价时造成一定的偏差 ,仍然是水体富营养化程度的一个重要表征指标. 因此 ,认为总磷、总氮和叶绿素 a仍然是河道型水库的 营养状态评价的关键指标。 透明度也是一个常用的湖泊水库营养状态评价指标 ,这是因为在一般的湖泊水库中 ,透明度变化主要源于水体中悬浮的藻类数量的差异 ,因此 ,它能够很好表征湖库的富营养化程度 ,甚至有人认为透明度是识别湖泊、水库营养状态趋势的最好变量. 但河道型水库与一般的湖泊水库不一样 ,其透明度指标受河流流速、泥沙含量的影响较大 ,与真正意义上的湖泊水库中的透明度不同.以三峡水库为例 , 1年中出现富营养化敏感时期分别是 3~6月和 9~10月 ,而两个时期的透明度存在显著差异 , 9~10月为汛后期 ,平均透明度为0.54 m, 3~6月为汛前期 ,平均透明度为1.76m,原因在于汛期泥沙含量的影响作用 ,使得透明度作为河道型水库的营养状态评价指标中具有一定局限性.因此 ,作者认

水体富营养化环境影响评价(一)

水体富营养化环境影响评价(一) 摘要:环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 关键词:环保水环境环境影响评价 0引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直接排入量的总和;输出量是河道出水、地下渗透、蒸发和工农业用水的总和。其中河流进出水量、大气降水量和蒸发量一般可从水文气象部门监测资料获得,有关各类水中磷浓度需要定期测定。地下水输入与输出较难确定,但不能忽略。 估计地下水进出量的一种方法就是通过流量网的测量,用下式计算地下水量: Q=K·I·A(8-2)式中,Q——地下水输入或输出量; K——水的电导率; I——水流的坡度; A——地下水流截面积。 以上从湖泊外部输入的磷称为磷的外负荷。由湖泊内释放的磷引起的富营养化称为磷的内负荷。在湖下层无氧气的湖泊中,沉积物释放磷较多,可能导致湖水实际总磷浓度的低估。

富营养化评价方法

总站水字[2009]14号 关于113个环保重点城市湖库型地表水 集中式饮用水源地加测叶绿素a和透明度的通知 各环保重点城市环境监测中心(站): 根据环保部污防司的要求,为做好国家环保重点城市对集中式饮用水源地水质监督性监测工作,客观科学地评价饮用水源水质,湖库型地表饮用水源地增加富营养化状态评价。各环保重点城市在进行2009年集中式饮用水源地水质全部项目监督性监测时,湖库型地表饮用水源地加测叶绿素a和透明度,数据报送顺序见附件1,评价方法见附件2。报送时间及方式参照饮用水源地全部项目监督性监测数据上报的相关要求。 - 1 -

附件:1、集中式饮用水源地水质监测数据表格 2、湖泊(水库)富营养化评价方法及分级技术规定 二〇〇九年二月十一日 - 2 - 主题词:湖库 饮用水源地 加测 通知 抄送:环保部监测司、污防司、各省、自治区、直辖市环境监测中心(站)中国环境监测总站办公室 2009年2月11日印发

附件1: XXXX年XX月XX市集中式饮用水源地水质(地表水)监测数据表格式 *由总站统一编

附件2: 湖泊(水库)富营养化评价方法及分级技术规定 1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为: ∑=?=∑m j j TLI Wj TLI 1) ()(式中:)(∑TLI —综合营养状态指数; Wj —第j 种参数的营养状态指数的相关权重。 TLI(j)—代表第j 种参数的营养状态指数。 以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑== m j ij ij j r r W 1 2 2 式中:r ij —第j 种参数与基准参数chla 的相关系数; m—评价参数的个数。 中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。 中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值 ※ ※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。 营养状态指数计算公式为: ⑴ TLI(chl)=10(2.5+1.086lnchl)

水体富营养化环境影响评价

水体富营养化环境影响评价 环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 标签:环保水环境环境影响评价 0 引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1 流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。 水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直接排入量的总和;输出量是河道出水、地下渗透、蒸发和工农业用水的总和。其中河流进出水量、大气降水量和蒸发量一般可从水文气象部门监测资料获得,有关各类水中磷浓度需要定期测定。地下水输入与输出较难确定,但不能忽略。 估计地下水进出量的一种方法就是通过流量网的测量,用下式计算地下水量: Q=K·I·A(8-2)式中,Q——地下水输入或输出量;

水体富营养化实验报告

《环境化学》实验报告 实验项目:水体富营养化程度评价 实验考核标准及得分

环境化学实验报告 一、实验目的与要求 1、了解周边水体的污染状况,进一步认识水体富营养化的形成的原因; 2、掌握水体中总磷的测定原理及方法; 3、评价水体富营养化的程度。 二、实验方案 1、实验原理: 在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43- )。随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。再用分光光度仪对吸光度进行测定。 2、实验步骤: (1)、取4ml磷储备溶液(50mg/L)于100ml比色管中,定容至标线,配制成2mg/L的磷标准溶液; (2)、分别取0mL、0mL、、、、、磷标准溶液于7支25ml消解管中,并加蒸馏水至15ml线处,并做好标签; (3)、将所取的西区河涌水样混匀后,取15ml于25ml消解管中,共取3支作为平行实验,并做好标签; (5)、往12支消解管中加入过硫酸钾,旋紧密封盖,依次将消解管插入已达140℃的消解装置恒温体孔中,启动消解15min; (6)、消解结束后,将消解管取出,待管内液体冷却至室温后,用蒸馏水定容至25mL;

(7)、向消解管中加入抗坏血酸,混匀30秒后,加入钼酸盐溶液充分混匀;(8)、将上述12支消解管室温下放置15min后,调节分光光度计λ=880nm,测出吸光度,并记下读数。 三、实验结果与数据处理 1、标准曲线的绘制 (1)标准曲线实测数据: 表1 标准曲线测定结果表 (2)绘制标准曲线:

图1 总磷标准曲线 由于图1 总磷标准曲线的R2=0849,标准曲线不存在相关线性,所以要进行标准曲线的校正。对比同样条件下,所测到水样的吸光度,可初步估算其总磷的浓度在2 mg/L以下,再加上图1 总磷标准曲线上第5点和第6点偏离很大。综上分析,可以去除第5个点和第6个点,再进行标准曲线绘制: 图1-2 校正后的总磷标准曲线 2、水样的测定:

水体富营养化程度的研究

PINGDINGSHAN UNIVERSITY 毕业论文 题目:平西湖水体富营养化程度的研究 院(系): 化学化工学院 专业年级: 化学工程与工艺2010级 姓名: 贾晓青 学号:101170111 指导教师: 杜娴讲师 2014年5月6日

原创性声明 本人郑重声明:本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。毕业论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究成果做出重要贡献的个人和集体,均已在文中以明确方式标明。 本声明的法律责任由本人承担。 论文作者签名:日期:

关于毕业论文使用授权的声明 本人在指导老师指导下所完成的论文及相关的资料(包括试验记录、原始数据、实物照片、图片等),知识产权归属平顶山学院。本人完全了解平顶山学院有关保存、使用毕业论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权平顶山学院可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为平顶山学院。本人离校后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为平顶山学院。 论文作者签名:日期: 指导老师签名:日期:

平西湖水体富营养化程度的研究 摘要 平西湖位于平顶山市新城区,是本市重要的地表饮用水水源。随着城市经济的迅速发展,作为水源地——平西湖的生态环境变化备受各方关注。本课题选取总氮(TN)、总磷(TP)、化学需氧量(COD)作为平西湖水体富营养程度的评价指标,2014年4月份采集平西湖的8个采样断面进行测定,COD含量范围为51.2 mg/L~137.29 mg/L,为地表水质III类标准的2.56~6.86倍,TN污染水平为2.82 mg/L~9.40 mg/L,为地表水质III类标准的2.86~9.40倍,TP浓度范围为0.11 mg/L~0.69 mg/L,为地表水质III类标准的0.22~1.38倍,并对各因子做了比较。研究结果表明平西湖已经处于富营养化状态,现状令人担忧。 关键词:平西湖;化学需氧量;总氮;总磷;富营养化

水体富营养化环境影响评价

水体富营养化环境影响评价 来源:考试吧(https://www.doczj.com/doc/f618580615.html,)2010-8-18 15:24:00【考试吧:中国教育培训第一门户】论文大全 摘要:环境影响评价简称环评,是指对规划和建设项目实施后可能造成的环境影响进行分析、预测和评估,提出预防或者减轻不良环境影响的对策和措施,进行跟踪监测的方法与制度。通俗说就是分析项目建成投产后可能对环境产生的影响,并提出污染防止对策和措施。水体富营养化环境影响评价是规划和建设项目水环境影响评价的重要内容。鉴于此,本文援引其他文献,就水体富营养化环境影响评价予以浅议。 关键词:环保水环境环境影响评价 0 引言 水体富营养化主要指人为因素引起的湖泊、水库中氮、磷增加对其水生生态产生不良的影响。富营养化是一个动态的复杂过程。一般认为,水体磷的增加是导致富营养化的主因,但富营养化亦与氮含量、水温及水体特征(湖泊水面积、水源、形状、流速、水深等)有关。 1 流域污染源调查 根据地形图估计流域面积;通过水文气象资料了解流域内年降水量和径流量;调查流域内地形地貌和景观特征,了解城区、农区、森林和湿地的面积和调查污染物点源和面源排放情况。 水中总磷的收支数据可用输出系数法和实际测定法获得。 输出系数法:这种方法是根据湖泊形态和水的输出资料,湖泊周围不同土地利用类型磷输出之和,再加上大气沉降磷的含量,推测湖泊总磷浓度、径流图、湖泊容积和水面积,估计湖泊水力停留时间和更新率,进而估计湖泊总磷的全年负荷量。要预测湖泊总磷浓度,除需要了解水量收支外,还需要了解污水排入磷的含量。 实测法:是精确测定所有水源总磷的浓度和输入、输出水量,需历时一年。湖泊水量收支通用式为:输入量=输出量+△储存量 湖水输入量是河流、地下水输入,湖面大气降水、河流以外的其他地表径流量和污水直

北京城市湖泊富营养化评价与分析

J. Lake Sci.(湖泊科学), 2008, 20(3): 357-363 https://www.doczj.com/doc/f618580615.html,. E-mail: jlakes@https://www.doczj.com/doc/f618580615.html, ?2008 by Journal of Lake Sciences 北京城市湖泊富营养化评价与分析? 荆红卫, 华 蕾, 孙成华, 郭 婧 (北京市环境保护监测中心, 北京100044) 摘要: 根据2006年对北京市区不同功能重点湖泊水体进行的逐月监测, 采用综合营养状态指数法, 对湖泊富营养化现状进行了评价. 结果表明, 水源湖泊目前处于中营养状态,但在夏秋季由于温度和光照等气象条件的影响, 可接近轻富营养; 重要景观湖泊处于轻—中度富营养; 一般景观湖泊处于中度—重度富营养状态. 湖泊富营养程度随季节变化明显: 盛夏和初秋形成高峰, 冬、春季最低, 总磷、总氮含量与叶绿素a呈显著正相关关系, 尤其总磷与叶绿素a的相关性更加显著. 由于城市排水管网不健全, 雨污分流不彻底, 暴雨期大量溢流生活污水直接向湖泊补水河道中排放; 湖泊补水沿线降雨径流产生的非点源污染较严重;加上污水处理厂再生水水质较差, 加重了补给湖泊富营养程度. 关键词: 北京; 城市湖泊; 富营养化 Analysis on urban lakes’ eutrophication status in Beijing JING Hongwei, HUA Lei, SUN Chenghua & GUO Jing (Beijing Municipal Environmental Monitoring Center, Beijing 100044, P.R.China) Abstract:Referring to the different water body function, the survey of water quality was carried out on major urban lakes of Beijing monthly in 2006. According to TLI method, the state was evaluated on the basis of measurement result: lakes of drinking water source were mesotropher; lakes of major landscape water were light-middle eutropher; lakes of ordinary landscape water were middle-hyper eutropher. The eutrophic characteristics and its changing trend were analyzed. The causes were analyzed. The measures and suggestions were expounded on different water body function for improving water quality and reducing eutrophication. Keywords:Beijing; urban lakes; eutrophication 北京市区共有大小湖泊30余个, 水面面积约7.3km2. 最大的是昆明湖, 面积1.94km2. 湖泊水深一般为1.5-2m, 属于城市小型浅水湖泊. 绝大部分湖泊与河道相通, 汛期可防洪、排水, 大的水域可调节周围小气候. 2001年夏季北京市城市河湖爆发了大面积的蓝藻水华. 2005年8月底至9月初, 昆明湖又出现了较严重的水华现象, 营养级别为中度富营养, 叶绿素a含量高达70.8mg/m3, 浮游植物数量4108.28×104cells/L, 给首都的生态环境和声誉带来了不良影响. 本文以2006年对市区重点湖泊进行的富营养化采样监测为依据, 采用综合营养状态指数法, 对湖泊水体富营养化现状进行评价, 分析市区浅水湖泊富营养化特征和变化规律, 研究其产生的原因, 提出有针对性的防治措施. 1 监测与分析、评价方法 1.1 监测布点 2006年4-12月(1月至3月结冰期除外)对北京市区21个重点湖泊开展了手工采样监测, 监测湖泊水面面积达6.9km2, 占市区湖泊总面积的95%. 湖泊监测点位设置在湖心区和岸边区, 在0.5m左右深处采集亚表层水样. 采样频次为每月一次, 采样时间为每月1-10日之间. ?北京市科委项目(Z0005184040991)资助. 2007-09-03收稿; 2007-12-28收修改稿. 荆红卫, 女, 1966年生, 高级工程师; E-mail: jinghongwei@https://www.doczj.com/doc/f618580615.html,.

水体富营养化程度分析评价

水体富营养化程度分析评价 水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。 提到富营养化,普遍想到的就是营养盐总磷、总氮超标。诚然,总磷总氮等营养盐是发生富营养化的必要条件。如果水体中总磷总氮浓度很低,不可能发生富营养化;但是,反之则不然,水体中总磷总氮浓度的升高,并不一定能发生富营养化问题。富营养化发生发展是由于水体整个环境系统出现失衡,导致某种优势藻类大量繁殖生长的过程。因此,了解富营养化的发生机理和发生条件,实质上需要了解的是藻类生长繁衍的过程。尽管对于不同的水域,由于区域地理特性、自然气候条件、水生生态系统和污染特性等诸多差异,会出现不同的富营养化表现症状,也即出现不同的优势藻类种群,并连带出现各种不同类型的水生生物种类的失衡。但是,富营养氧化发生所需的必要条件基本上是一样的,最主要影响因素可以归纳为以下三个方面:(1)总磷、总氮等营养盐相对比较充足;(2)缓慢的水流流态;(3)适宜的温度条件;只有在三方面条件都比较适宜的情况下,才会出现某种优势藻类"疯"长现象,爆发富营养化。其中的水流流态主要指以流速、水深为要素的水流结构。 一、水体富营养化的主要原因: 水体富营养化的根本原因是营养物质的增加。一般认为主要是磷,其次是氮,可能还有碳、微量元素或维生素等。受控生态系统装置和试验湖区的研究结果表明磷是主要“限制因子”。Vollenweider等关于磷负荷和初级生产关系的研究也表明磷的重要性.在氮磷比低于10: 1时,或在某个季节,氮也可能成为限制因子。导致富营养化的营养物按其来源可分为点源和非点源(或面源)。前者是排放集中、位置固定的污染源,也较容易测定:非点源污染是通过地表径流、降水、地下水等进入水体,较难以测定和控制。 二、水体富营养化的监测和评价指标: 常用指标: 水体富营养化的监测和评价指标包括地理、理化、生物等指标,标准也有差异。一般有: ⑴ Ac/V指标: Ac——总集水区 V ——胡泊容积

实验三 水体富营养化程度的评价

实验三水体富营养化程度的评价 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。 一、实验目的 1. 掌握总磷、叶绿素-a及初级生产率的测定原理及方法。 2. 评价水体的富营养化状况。 二、仪器设备及试剂 1. 仪器 (1) 可见分光光度计。

(2) 移液管:1mL、2mL、10mL。 (3) 容量瓶:100mL、250mL。 (4) 锥型瓶:250mL。 (5) 比色管:25mL。 (6) BOD瓶:250mL。 (7) 具塞小试管:10mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子 (9) 多功能水质检测仪 2. 试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L硫酸溶液。 (4) 2 mol/L盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1g酚酞溶于90mL乙醇中,加水至100mL。 (7) 丙酮:水(9:1)溶液。 (8) 酒石酸锑钾溶液:将4.4gK(SbO)C4H4O6 ·1/2H2O溶于200mL蒸馏水中,用棕色瓶在4℃时保存。 (9) 钼酸铵溶液:将20g(NH4 )6MO7O24 ·4H2O溶于500mL蒸馏水中,用塑料瓶在4℃时保存。 (10) 抗坏血酸溶液:0.1 mol/L(溶解1.76g抗坏血酸于100mL蒸馏水中,转入棕色瓶,若在4℃时保存,可维持一个星期不变)。 (11) 混合试剂:50mL 2 mol/L硫酸、5mL酒石酸锑钾溶液、15mL钼酸铵溶液和30mL抗坏血酸溶液。混合前,先让上述溶液达到室温,并按上述次序混合。在加入酒石酸锑钾或钼酸铵后,如混合试剂有浑浊,须摇动混合试剂,并放置几分钟,至澄清为止。若在4℃下保存,可维持1个星期不变。

实验一 水体富营养化程度的评价

实验一水体富营养化程度的评价 一、实验目的和要求 1、掌握总磷、叶绿素-a的测得原理及方法。 2、评价水体的富营养化状况。 二、实验原理和方法 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成“死海”,或出现“赤潮”现象。 植物营养物质的来源广、数量大,有生活污水、农业面源、工业废水、垃圾等。每人每天带进污水中的氮约50 g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。 许多参数可用作水体富营养化的指标,常用的是总磷、叶绿素-a含量和初级生产率的大小(见表7-1)。

1、磷的测定 在酸性溶液中,将各种形态的磷转化成磷酸根离子(PO43- )。随之用钼酸铵和酒石酸锑钾与之反应,生成磷钼锑杂多酸,再用抗坏血酸把它还原为深色钼蓝。砷酸盐与磷酸盐一样也能生成钼蓝,0.1 μg/mL的砷就会干扰测定。六价铬、二价铜和亚硝酸盐能氧化钼蓝,使测定结果偏低。 三、仪器设备及试剂 1、仪器 (1) 可见分光光度计。 (2) 移液管:1 mL、2 mL、10 mL。 (3) 容量瓶:100 mL、250 mL。 (4) 锥型瓶:250 mL。 (5) 比色管:25 mL。 (6) BOD瓶:250 mL。 (7) 具塞小试管:10 mL。 (8) 玻璃纤维滤膜、剪刀、玻棒、夹子。 2.试剂 (1) 过硫酸铵(固体)。 (2) 浓硫酸。 (3) 1 mol/L 硫酸溶液。 (4) 2 mol/L 盐酸溶液。 (5) 6 mol/L氢氧化钠溶液。 (6) 1%酚酞:1 g酚酞溶于90 mL乙醇中,加水至100 mL。 (7) 丙酮:水(9:1)溶液。 (8) 酒石酸锑钾溶液:将4.4 g K(SbO)C4 H4 O6 ·1/2H2 O溶于200 mL蒸馏水中,用棕色瓶在4℃时保存。 (9) 钼酸铵溶液:将20g (NH4 )6M O7 O24 ·4 H2 O溶于500 mL蒸馏水中,用塑料瓶在4℃时保存。

水体富营养化

洞庭湖水体富营养化评价 摘要:为了准确评价洞庭湖所处的营养状态,进而为湖泊富营养的防治提供科学依据,以2002年洞庭湖监测数据为依据,在对各评价指标进行评价分析的基础上,选择了比较适合洞庭湖富营养状态评价的指标体系,得出了洞庭湖目前处于中营养状态,并进行了初步分析论证。分析了洞庭湖水体中氮、磷分布情况,采用指数评价法和浮游植物评价法划分了洞庭湖的营养类型,阐述了总磷与洞庭湖富营养化的关系,提出了减少总磷和防止湖泊富营养化的对策。 关键词:洞庭湖富营养化评价指标 富营养化的含义是指湖泊、水库、缓慢流动的河流以及某些近海水体中营养物质(一般指氮和磷的化合物)过量从而引起水体植物(如藻类及大型植物)的大量生长。其结果是引起水质恶化、味觉和嗅觉变坏、溶解氧耗竭、透明度降低、渔业减产、死鱼、阻塞航道,对人和动物产生毒性。富营养化是水体由生产力较低的贫营养状态向生产力较高的富营养状态变化的I种自然现象,为了准确评价湖泊所处的营养状态,进而为湖泊富营养化的防治提供科学依据,国内一些研究者先后提出了模糊数学评价、灰色关联评价、神经网络评价等多种评价方法,在湖泊富营养化评价的应用中均取得了较好的效果。但由于影响湖泊富营养化的环境因子众多,难以根据环境因子的监测数据建立确定性的富营养化评价模型,而且相邻两个评价等级之间的界限是不明确的,评价因子在综合评价中应占多大权重也是不明确的,导致富营养化评价方法具有很强的不确定性。 到目前为止,洞庭湖富营养化有2种评价指标体系,并得出中营养与中富营养2种不同的结论,大多学者认同目前洞庭湖富营养化水平处在中营养状态,但对于评价指标体系未进行深入讨论。为此本文就洞庭湖富营养化评价指标结合水动力条件进行分析讨论,提出比较切合实际的评价指标体系,为洞庭湖富营养化的防治提供科学依据。湖泊富营养化是对湖泊过量营养盐输入的生物响应,湖泊生物量的增加将导致水体功能受损。1评价指标与分析1评价指标与分析 、TN、TP、ChIa、浮游藻类。 洞庭湖富营养化2种评价指标概括起来包括SD、SS、COD Mn 以2002年洞庭湖水质实测数据进行统计分析。 SD与SS 2002年洞庭湖水质透明度在 m m之间,全湖平均透明度为 m,全湖透明度最高值

相关主题
文本预览
相关文档 最新文档