当前位置:文档之家› Power supply 安规设计手册1

Power supply 安规设计手册1

Power supply 安规设计手册1
Power supply 安规设计手册1

n

1. s G

z P w s A w W c s A O2?X

s W w C

z o s s A2T w s O B w A b

s W i A A s A t X2£~

A w o s s A h t X2£~

Y i C

2. A o s U C G

power cord set (plug, cable, connector), plastic enclosure, appliance inlet, appliance outlet, power switch, voltage selector switch, fuse, pcb, primary connector, X capacitor, Y Capacitor, Line chock (temperature), Isolated transformer (isolation class), photo couple, Varistor, Triple insulation wire, EMI filter, Relay, Thermal fuse, Foam, Mylar sheet, terminal block.

G

1. 2£~:

z q –

c B w q O B w q

d A V;

d B w W2v?O B w W2v?d A Hz;

e B w q y, mA A,

f p o s h q O t2?A h t~A p: 2φ,

z s y W A22.

z C

z p Class II, h J””a2C

2. O I G

z B w q y

z B w q

z2S(¨p fast, slow, time lage)

z z S(¨p Low-breaking, High-breaking)

d

T2.5AL, 250V

F3.15AH, 250V

3. a O l,

4. u(Neutral)?, ”N”a.

P.S.:

1. ¥i H B~A O M O i H y~2V2c?C

2. |p q(mains)?A h i H X V, A Hz?C

3. ?i m i U~W

4. ?2M′i A B C

T B M I

3.1 i I2u G

z SELV q r S

z q y q r S

z EN60950 6.2.2z TNV q

3.2 i I2u G

z ELV q r S O M I q r S

z ELV q M I q r S A H2?B W B q

B B B t D~h O C

z 2.1.3~A H t t O ELV q M I q u C

z P ELV q O M I q A H t t j

a C

z M I

3.3 ~P q I A K2N D P D q

q e q2q M I C G n D q i W L1(-Y q e q p0.1μF h L n D)?C

q = |q e(μF) X q (M?)?A Y H M w

q e q A i H q I p k A k q I

q I37%?A Y q A M A

i j1C N O A b M w q A q”ON”¤”OFF”

C

: ” Capacitance Discharge Test”?C

3.4 t A U z

z T A O w t A B p u C

z C

3.5 b t A U C G

z q j

z j

z j

z u q W2v

z u(|p B O B V)

3.6 l A M A A i t C t O

l A i Humidity Test Electric Strength Test M w A k p U G

J c A w20°C30°C(·~t b1°C ) A w b%~95%¤A m p C A

c A i q j(Electric Strength Test) A t

u q M w q A b I H A u n S t Y

A Y2X n D A Y i w l C N A q w

q(Corona discharge)?O q(Flash-over)¤i t Y C

3.7. |U t A p U G

A. G

a. P q s F

b. ELV q(?SELV q)¤a q s C

B. G

a. M I q s a q s F

b. M I q s a SELV q F

c. q a D q K F

d. t C

C. R G

a. A i2s b t l a i a

M I q s A p G

I. A s A~a b C

II. ¤2G~P L~q u~C

III.¤ELV q a~C

b. t C

3.8 p M w u q(Working Voltage)?G

z q2W e A H T q A p r.m.s.-A

h q O i D i A true r.m.s.-F

z q d.c.1q A i p A b F

z D i F

z b M w(clearance)¤q j q A ELV SELV q q0?A b M w u(creepage distance)?A h q

p F

z i2a s a F

z Y2L B A h B a A P

j u q F

z b t B A t u q A N R t B u A

o X q A M C2t A h N t

u A b t W u q2F

z2t A u q22I j q A

i s2~q A A b F

z2P L s t A u q2I L

s j q F

z i~q B w(nominal value)?F

z u q(¨p TNV u a T)?F

3.9 s t j t

z Y q e j t A h q e22X IEC 60384-14:1993Y1q e C

z Y q e p t A h C q e2X IEC 60384-14:1993Y2Y4q e A O2?X IEC 60384-14:1981U

Y q e C B q e B w u t u q A2q

e q e C

z Y q p j t t A h C q b

u2X W 2.9.2 2.9.3n D C B2q

C

z i2I u Y P L s O a2?X W z q e q H

j t j A h i2I s2X limited current circuit n D A B b q j A~i limited current circuit C

3.10 q y q(limited current circuit):

q y q w q b~U A i q V X q y A

M I C Y O M I q r S s A u n q y q A h r

S s(operator)3B I A P y M I C

3.11 a O W w G

I G i I2A c a a

A. Class

O a l W C i2I s A s a O

l W A Y W x A h b s W i A

H i H s a A I2e d O M I q

C

B. Class II G L a O W w A a

O D a A H t j t P M I q j

C

C. W w G

a. a O A i t O I C

b.

a O i r S s t C Y t A h C u A Y a s u A t h i u z A Y u O A t i C A u n y 2V2c§Y i C

c. A a O s 2A N P N M I q C

d. b A a O s 2B i A D M I q h C

e.

a O A P A g 22£G k 2{H A G a O N J.1n D (?q q p 0.6V?A 2X n D )?A H K

G k o A v T a s C

f.

a O l P W w a s q i W L

0.1?

3.12 (clearance)aM w G

w u q t A Y i M w C u o n D A 34?C G u o n D A 5?C M w O 2X n D e A s I 10N O A ~I H 30N O A H A T b D p U A 2X W w C

3.13 u (creepage distances)aM w G

w u q t A i M w u A 6n D o C 3.14 d G

Figure A, Two insulation system in series between mains primary circuit and user accessible circuits

User accessible circuit

AC 230 V

t

t

Figure B, One insulation system and shielding connected to PE between mains primary circuit and user accessible circuits

Figure C. PCB layout of Class I switching power supply

Figure D. working voltage high than mains voltage

AC 230 V

t Metal shielding

t t t

t t t

Figure E, Shielding of secondary circuit with GND trace

Figure F, slot inside the BCB between primary and secondary L

3. 15 t p (Distance through insulation)aM w G

t p u q t U z M w C z u q W L 50V (71Vpeal dc)?h L p n D F z R t A t p 0.4mm?F z j t A t p b u U A O A

O 0.4mm p p C W z p n D A A t A u n t O A B P 2N i l Y i A 2X U C F z R t 2h t A B h q R t n D q j F

t

t t

z R t3h t2A2h2X A q L

R t n D q j F

z j t2h t2A h q L j

t n D q j C

z j t3h t2A2h2X A q L

j t n D q j C

3.16 w2v1q:

w2v1q t w j2X U z F

z j X A B2?X Table 8n D

z q X T w A B2?X Table 8n D

z q X L q y O m A B2?X Table 9n D

z q X t2?A b p b t2?

~(μu)±p A2X Table 8n D

z q X t2?A b p U A2X Table8 n D C t~A q X a L q y O m A b t2?

~(μu)±p A2X Table9n D C

(μ)1L q y O m2O I(fuse)?O D i q

m(non-adjustable non-autoreset electromechanical device)?C

3.17q2~n D EN 60950

3.17.1 u~q l G

z u~q l(?D q u l)a22A A U q

y j p M w n j p A H T O W X~B w C

z u B y U t A u K P2

A N o A T w s2A H t h i l C p G

u L A h A O bushing?C z u u A A n A n T w H C t l a A l

P2?A L j O u l A2M I C

z t2?P t2?s u2q l2?A22X B j

q A q y C t~A2bushing strain relief?A

q L Strain Relief Test n D C p G u2r S

I A h b I P j a A i q M I O q M I C

3.17.2 q u

u P i A h u(Cord

anchorage)?A B q L Strain Relief Test?C

3.17.3a(¤j a)

A. a u18 AWG u u A AC Inlet a l(?

H T w A2k?W)?A t W l(ring

terminal)?C

B. a A i U C i

1. t X(Nut)?A(Star toothed washer)±N q u W

l T w W(pillar or stud) W C W2k±

W A B 3.0 mm H W C

2. A H(screw)±N a u W l

W(|r X2H W)C 3.5 mm

H W C

(μ)-Y a u A P W W A h t T w C

3.18 ~n D G

3.18.1 ~

W G2?X U C n D Y i

a. V q A o W L 5 mm?C

b. e b 1 mm A h A

c. o j p A T O~J I2

M I q s A p8k C

G2?X U C n D Y i

a. V q A o W L 5 mm?C

b. e b 1 mm A h C

c. p A p9A H K~i J C

d. m A A b v5d A L M I q

s s b C v5d w q p10

U: 2?X U C n n D Y i

a. L

b. j p A b U C~U

z PVC A TFE,PTFE,TEP neoprene

s

z O L O F

z2?X~n D O2óO

l C

c. i40mm2¥H U A b v-1H W s

U C

d. j p A W B O A c y p12

C

e. Y A j p2X15n D C

f. H2óA j p W L 2 mm x 2

mm?A B p0.45 mm?C

G~A T M d U A O H test pin A i I M I q

r S s C

3.18.2. 2c p G

A. w G b U z i P M I G

z w G m10°

B. j G

z~30 mm O W A I H5250 N ± 10 N w O C

z H test finger W A I H530 N ± 3 N w O C

z~q L K2y?2K2ya50 mm?A q500 g ± 25 g?A21300 mm?C

z s~A q L70 °C?A7 hr N c A w T w

2c O X A P C

3.18.3 G

A. u H G o w A HF-1HF-2u A HF-2u HBF?C

A5V u V-0?A u V-1?A V-1u V-2?A V-2u HB?C

B. M s G

z PCB?G V-1H W

z FBT, CRT, YOKE?G V-2H W

z Wiring harness?G V-2H W

z Cord anchorage?G HB H W

z s G V-2H W HF-2H W

z~G

U z s P q l s b~p U A L U q l s

Y j13mm H W A O H V-1j A

h M n D p U G

p A Y A a A b L p s A

2G?A e A o w s A

HB H W HBF H W C

z U z s G

a A

-¤w s s W A W w

i A

-±K L B n p0.06 mm s A

-?A A O A A m V-1PCB W IC?A q A X L p s~C

3.18 Thermal and electrical requirements

3.18.1

A. q l s G s W B w A M w W C

B. u G t t2?M w

(105°C?

Class A→?T ≤ 75 K

120°C?

Class E→?T ≤ 90 K

130°C?

Class B→?T ≤ 95 K

155°C?

Class F→?T ≤ 115 K

180°C?

Class H→?T ≤ 140 K

C. H y PVC u q u G

T→?T ≤ (T-25) K

L→?T ≤ 50 K

D. bobbin G L w A125°C2yàBall Pressure Test?

E. l G?T ≤ 60 K

F. i I2a G p16

G. G

1. t G t Normal load?A Y b U j

t C

2. J q G

I B w q+6%¤-10%A p B w q230V A h?+10-10%

II B w q d j M p

*|G X

H. G

q A A G~A Clause 1.4.7q A p

U z G G

1. p G W w Tmax?A h?T ≤ Tmax Tmra

2. p G W w?Tmax?A h?T ≤? Tmax + 25 Tmra

A Tmra = s y W w A O25°C?A

j C

3.20a q y G

A. a q y G17

B. k G q B w q 1.06p q230V A h

1.1O B w q d W C

z Class I G J q g j A q y

a O l W A t J q u W

g j C

z Class II G J q j A q y W

~10 cm x 20 cm j p

~D A t J q u W C

C. n D G

z s2A U W q t2?A h a q y

q C

z s2A q t2?A h a q y G X

q C

z p A P q redundant power supply?A h a q y q C

5.21q j

t A q j S A H K b L q

y t a C n C

5.22~p G

A. G K T A2êA G A q l G A q l L

A y q M I C A b

~p U A u n y M I Y i A G n D O

B C

B. s u G

z F G b L F l A L p U A i

y M I C F u p B.1 B.2C z G L t O A H K b L p U A L

l a t C u p C b

L t A Y i q j A w T

b L t A t C

z t G b U t A C t2X A u A

q j n D A O t i H2X U C V Y i

-u F

-n D q j F

-u A P y s L H y q M I C z G u G F H~A i o M I q s A H U

z k A w T y M I C

-s b p U A N2w b

m F

-p Y s q u O u A A h s

s A H C

z¨?|?G?e-z a.b.d.?t s u A G C U C s i G G

1. u s F

2. ~v T R t j t s F

3. 2X 5.18.3n D A s F

4. D q l~A i2t C q

T l p2F

5. G u X~q u/1q l A I i

L t u C

G1A t B2?X u n D s A

u A s A e o i s A A o s

s u A h i G C

C. G

b i p b~p U i A q

B w q O B w q d W

C i o p Y i

w~p A p U G

a. ~p G e L h A…….μF

b. i y X F d L t d u F

c. F F

d. s y J s A F

e. q f C

建筑电气设计手册[1].

建筑电气设计手册(含材料表及工程概算)

§表达线路敷设方式、部位、照明灯具安装方式的文字代号§ 表达内容 标注代号对照 表达内容 标注代号对照 表达内容 标注代号对照 英文代号汉语拼音代号英文代号汉语拼音代号英文 代号 汉语拼音代号 用轨形护套线敷设GBV 沿钢索敷设SR S 线吊式CP 用塑制线槽敷设PR XC/VXC 沿屋架或层架下弦敷设BE LM 自在器线吊 式 CP X 用硬质塑制管敷设PC VG 沿柱敷设CLE ZM 固定线吊式CP1 X1 用半硬塑制管敷设FEC ZVG/BYG 沿墙敷设WE QM 防水线吊式CP2 X2 用可挠型塑制管敷设KRG 沿天棚敷设CE PM 吊线器式CP3 X3 用薄电线管敷设TC DG 在能进入的吊顶内敷设ACE PNM 链吊式CH L 用厚电线管敷设G 暗敷在梁内BC LA 管吊式P G 用水煤气钢管敷设SC G/GG 暗敷在柱内CLC ZA 吸顶式或直 附式 S D 用金属线槽敷设SR GC/GXC 暗敷在屋面内或顶板内CC PA 嵌入式R R 用电缆桥架(或托盘)敷设CT 暗敷在地面内或地板内FC DA 顶棚内安装CR DR 用瓷夹敷设PL CJ 暗敷在不能进入的吊顶内AC PNA 墙壁内安装WR BR 用塑制夹敷设PCL VT 暗敷在墙内WC QA 台上安装T T 用蛇皮管敷设CP 柱上安装(灯具)CL Z 支架上安装SP J 用瓷瓶式或瓷柱式绝缘子敷设K CP 座装(灯具)HM ZH 壁装式W B 2

3 §室内电气管线、配电设备与其它管道、设备之间的最小距离表§ 注:1、表内无括号数字为电气管线在管道上面时的数据,有括号数字为电气管线在管道下面时的数据。 2、在不能满足表中所列距离情况下,应采取下列措施: (1) 电气管线与蒸气管线不能保持表中距离时,应在蒸气管或电气管外包以绝热层,此时平行净距可减减至200毫米,交叉处仅 须考虑施工操作和便于维护的距离。 (2) 电气管线与暖水管不能保持表中距离时,可在暖水管外包绝热层。 (3) 裸母线与其它管道交叉不能保持表中距离时,应在交叉处的裸母线外加装保护网或罩。 3、当上水管与电气管线平行敷设且在同一垂直面时,应将电气管线敷设于水管之上。 线路布线 方式 各种布线与其它用途的管道间最小距离 煤气管 乙炔管 氧气管 蒸气管 暖热水管 通风管 上水、下水管 压缩空气管 工艺设备 平行 交叉 平行 交 叉 平行 交 叉 平行 交叉 平行 交叉 平行 交 叉 平行 交叉 平行 交 叉 平行 交叉 导线穿金属管 100 100 100 100 100 100 1000 (500) 300 300 (200) 100 电缆 500 300 1000 500 500 300 1000 (500) 300 500 100 200 100 200 100 200 100 明敷绝缘导线 1000 300 1000 500 500 300 1000 (500) 300 300 (200) 100 200 100 200 100 200 100 裸母线 1000 300 2000 500 1000 500 1000 500 1000 500 1000 500 1000 500 1000 500 1500 1500 吊车滑触线 1500 500 3000 500 1500 500 1000 500 1000 500 1000 500 1000 500 1000 500 1500 1500 配电设备 1500 3000 1500 500 100 100 100 100

PCBLAYOUT安规设计注意事项

安规设计注意事项 1.零件选用 (1)在零件选用方面,要求掌握: a .安规零件有哪些?(见三.安规零件介绍) b.安规零件要求 安规零件的要求就是要取得安规机构的认证或是符合相关安规标准; c.安规零件额定值 任何零件均必须依MANUFACTURE规定的额定值使用; I 额定电压; II 额定电流; III 温度额定值; (2). 零件的温升限制 a. 一般电子零件: 依零件规格之额定温度值,决定其温度上限 b. 线圈类: 依其绝缘系统耐温决定 Class A ΔT≦75℃ Class E ΔT≦90℃ Class B ΔT≦95℃ Class F ΔT≦115℃ Class H ΔT≦140℃ c. 人造橡胶或PVC被覆之线材及电源线类: 有标示耐温值T者ΔT≦(T-25)℃ 无标示耐温值T者ΔT≦50℃ d. Bobbin类: 无一定值,但须做125℃球压测试; e. 端子类: ΔT≦60℃ f. 温升限值 I. 如果有规定待测物的耐温值(Tmax),则: ΔT≦Tmax-Tmra II. 如果有规定待测物的温升限值(ΔTmax),则: ΔT≦ΔTmax+25-Tmra 其中Tmra=制造商所规定的设备允许操作室温或是25℃ (3).使用耐然零件: a.PCB: V-1以上; b.FBT, CRT, YOKE :V-2以上; c.WIRING HARNESS:V-2以上; d.CORD ANONORAGE: HB以上; e.其它所有零件: V-2以上或HF-2以上; f.例外情形: 下述零件与电子零件(限会在失误状况下,因温度过高而引燃的电子零件)若相隔

13mm以上,或是相互间以至少V-1等级之障碍物隔开,则其耐燃等级要求如下: I.小型的齿轮,凸轮,皮带,轴承及其它小零件,不须防火证明; II.空气载液的导管,粉状物容器及发泡塑料零件,防火等级为HB以上或HBF以上 g.下述件不须防火证明: I.胶带; II.已获认证零件; III.密封于无开孔且体积小于0.06m 金属壳之零件; IV.仪表壳,仪表面,指示灯或宝石,置于至少V-1等级的PCB上的IC,晶体管,光耦合器及其它小零件的外壳. 2.整体配置 (1)安全距离(沿面距离和空间距离) 如果知道了工作电压及绝缘等级,就可决定所需之安全距离. 表一: 绝缘等级及各式绝缘适用情形

建筑电气课程设计---M户型住宅楼电气设计

建筑电气课程设计 工程名称:M户型住宅楼电气设计 目录 第一章建筑电气课程设计任务书 (3) 第二章照明系统 (5) 第三章建筑物防雷系统及做法 (9) 参考文献…………………………………………………

第一章建筑电气课程设计任务书 1设计题目:多层住宅楼电气设计 1.1本设计为一栋六层住宅楼的电气设计,一梯两户,层高为3.3m,包含 供配电、照明系统、防雷接地系统三部分。 2设计目的 2.1通过课程设计的实践环节,明确电气设计的流程和步骤,了解相关规 范要求,掌握建筑电气工程设计方法,熟悉电气制图及图形符号国家 标准的应用和电气工程图纸的绘制方法。训练学生的专业设计思维, 培养综合应用理论知识进行实际电气工程设计的能力。 3设计内容 3.1 计算部分 3.1.1电力负荷计算; 3.1.2照度计算及照明线路布置; 3.1.3配电线路截面积的选择计算; 3.1.4防雷、接地计算; 3.2 主要完成图纸 3.2.1干线系统图; 3.2.2配电箱系统图; 3.2.3住宅楼防雷与接地平面; 3.2.4住宅楼电气照明平面图; 3.2.5其他形成整套图纸的必须文件。 3.3 编制、编号的主要表格,文字资料 3.3.1编制设备材料表; 3.3.2编制施工图设计说明书。 4设计要求 4.1 设计原则 4.1.1设计应贯彻实用、经济、运行安全可靠、维护方便等原则,供电照 明灯具的布置、选型、色彩的配合要适当。

4.1.2设计中,在降低工程造价的前提下,应尽量采用新工艺、新技术、 新设备和新产品,达到实用、经济、美观的要求。 4.1.3设计规程、参考资料、设计手册、标准图集由设计者到图书馆查阅。 设计时从规程、手册上取用的数据、定额、计算公式应注明出处。 4.2 设计要求 4.2.1设计应遵守各项规范、定额和规定,综合运用所学理论知识和技能 独立完成工程设计,充分发挥主观能动性,严格要求,一丝不苟, 做到计算准确、说明清楚,图纸清晰美观,要能经受实践的检验; 4.2.2设计成果格式:设计说明书按照封面,任务书,摘要,目录,正文, 参考文献,封底的顺序装订。图纸需遵循绘图规范绘制,图纸幅面 不得小于A3。 4.2.3设计时间:1周,计算1天,选择方案1天,绘图2天,整理设计 说明书1天。 5设计所需原始数据资料 5.1 电源资料 5.2电源为从变电所引来一回380V/220V线路。 5.3 气象资料 5.4设计地点自定,要求同组人员选择地点不得相同。 5.5 水文、地质资料 5.6地面表层为砂质粘地、中性,地下0.5~1.0米以下为砂岩,地耐压力 不低于8T/m2;土壤电阻率雨后数天实测30欧/米;地下水位在5米以 下,含钙镁盐较多。 参考资料 6JGJ16-2008,民用建筑电气设计规范[S]. 7GB 50057-94(2000版),建筑物防雷设计规范[S]. 8GB 50034—2004,建筑照明设计标准[S]. 9段春丽,黄仕元.建筑电气[M].北京:机械工业出版社,2006. 10戴瑜兴.民用建筑电气设计手册[M].北京:中国建筑工业出版社,2000.11《建筑电气设计手册》编写组.建筑电气设计手册[M].北京:中国建筑工业出版社,1991. 12吕大光.建筑电气安装工程图集[M].北京:中国电力出版社,1997. 13戴瑜兴.民用建筑电气设备手册[M].北京:中国建筑工业出版社,1998.

电源pcb设计指南,包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺

电源pcb设计指南包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺 导读 1.安规距离要求部分 2.抗干扰、EMC部分 3.整体布局及走线部分 4.热设计部分 5.工艺处理部分 1.安规距离要求部分 安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。 1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。 一、爬电距离和电气间隙距离要求,可参考NE61347-1-2-13/GB19510.14. (1)、爬电距离:输入电压50V-250V时,保险丝前L—N≥2.5mm,输入电压250V-500V时,保险丝前L—N≥5.0mm;电气间隙:输入电压50V-250V时,保险丝前L—N≥1.7mm,输入电压250V-500V时,保险丝前L—N≥3.0mm;保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。 (2)、一次侧交流对直流部分≥2.0mm (3)、一次侧直流地对地≥4.0mm如一次侧地对大地 (4)、一次侧对二次侧≥6.4mm,如光耦、Y 电容等元器零件脚间距≤6.4mm 要开槽。 (5)、变压器两级间≥6.4mm 以上,≥8mm加强绝缘。 2.抗干扰、EMC部分

在图二中,PCB 布局时,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4、C2应靠近IC1的第 4 Pin,如图一所说的R应尽量靠近运算放大器缩短高阻抗线路。因运算放大器输入端阻抗很高,易受干扰。输出端阻抗较低,不易受干扰。一条长线相当于一根接收天线,容易引入外界干扰。 在图三的A中排版时,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,则R1、R2不能远离Q1。 在图三的B中排版时,C2要靠近D2,因为Q2三极管输入阻抗很高,如Q2至D2的线路太长,易受干扰,C2应移至D2附近。 二、小信号走线尽量远离大电流走线,忌平行,D>=2.0mm。

民用建筑电气设计手册(学习笔记)

民用建筑电气设计手册 ——学习笔记 一、民用建筑电气工程设计的内容 1、变配电所设计 (1)根据变配电所供电的负荷性质及其对供电可靠性的要求,进行负荷分级,从而确定所需的独立供电电源个数与供电电压等级,并确定是否设置应急备用发电机组。 (2)进行变配电所负荷计算与无功功率补偿计算,确定无功补偿容量。 (3)确定变压器形式、台数、容量。进行主接线方案选择。 (4)变配电所选址。为了节约电能与减少有色金属耗量,通常应尽可能使高压深入负荷中心。但在建筑高度甚高和大容量负荷相当分散的情况下,也可分散设置多处变电所,其布置方案应经过技术经济进行比较确定。 (5)短路电流计算与开关设备选择。 (6)二次回路方案的确定,继电保护的选择和整定计。操作电源的选择。计量与测量。(7)防雷保护与接地装置设计。 (8)变配电所电气照明设计。 高压与低压配电所的设计、除不需进行变压器选择之外,其余部分的设计内容与变电所设计基本相同。 2、高低压供配电系统设计 (1)输电线路设计 包括:线路路径及线路结构型式(架空线路还是电缆线路)的确定,导线截面选择,架空线路杆位确定及标准电杆绝缘子、金具的选择,弧垂的确定与荷载的校验,电缆敷设方式的确定,线路的导线或电缆及配电设备和保护设备选择,架空线路的防雷保护及接地装置的设计等。 (2)高压配电系统设计 高压配电多采用放射式系统,以增强其供电可靠性与控制的灵活性。对于有多处变压器分散设置的高层建筑,高压配电网络也可以采用环网结构。 主要任务:确定配电电压与网络结构;进行配电线负荷计算;选择开关设备并进行短路校验;拟定二次回路方案并进行继电保护整定计算;选择高压电缆截面、形式,确定配电干线路径与敷设方式。 还应做好防雷击与电气防火设计,以确保安全。 (3)、低压配电系统设计 主要任务:确定低压配电方式与配电网络的结构,其主要内是竖直配电干线与水平配电干线的个数,位置与走向。进行分干线与干线的负荷计算,选择开关设备及导线、电缆、封闭式母线的截面与形式。选择保护装置,进行保护整定计算并保证其级间的选择性配合,以防止穿越性跳闸。确定线路敷设方式,进行电气竖井与配电小间的设计。低压无功补偿容量计算,补偿方式与调节方式的选择。按需配置电气测量与电能计量装置。保护接地、重复接地系统的设计。 3、电力设计 电力设计通常指动力负荷的供电设计。 主要内容:在建筑平面图上确认各动力负荷的位置、容量;按各动力负荷的性质及其对供电可靠性的要求,进行负荷分级,并采取相应的供电保证措施(如双电源互投的供电方式);确定动力负荷的配电网络形式,通常多采用放射式供电。确定配电装置的位置、选择

电源的EMC及安规设计

电源的EMC及安规设计 开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标有严格要求的场合下被采用。 开关电源产生噪声的原因 开关电源的种类很多,按变换器的电路结构可分为串并联式和直流变换式两种;按激励方式可分为自激和它激两种;按开关管的组合可分为桥式、半桥式、推挽式等。但无论何种类型的开关电源都是利用半导体器件的开和关工作的,并以开和关的时间比来控制输出电压的高低。由于它通常在20kHz以上的开关频率下工作,所以电源线路内的dv/dt、di/dt很大,产生很大的浪涌电压、浪涌电流和其它各种噪声。它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。图1给出了一种典型的开关电源电路的简图,下面以此为例分析其产生噪声的主要原因。 一次整流回路的噪声 在一次整流回路中,整流二极管D1~D4只有在脉动电压超过C1的充电电压的瞬间,电流才从电源输入侧流入。所以,一次整流回路产生高次畸变波,形成噪声。 开关回路的噪声 一是电磁辐射。电源在工作时,开关管T处于高频率通断状态,在由脉冲变压器初级线圈L、开关管T和滤波器C构成的高频电流环路中,可能会产生较大的空间辐射噪声。如果C的滤波不足,则高频电流还会以差模方式传导到交流电源中去。二是感性负载引起的浪涌电压。在开关回路中开关管T的负载是脉冲变压器的初级线圈L,是感性负载,所以开关管在通断时,在脉冲变压器的初级线圈的两端会出现较高的浪涌电压,很可能造成与此同一回路的电子器件(尤其是开关管T)的损坏。 二次整流回路的噪声 一是电磁辐射。电源在工作时,整流二极管D也处于高频通断状态,由脉冲变压器次级线圈L、整流二极管D和滤波电容C构成了高频开关电流环路,可能向空间辐射噪声。如果电容C滤波不足,则高频电流将以差模形式混在输出直流电压上,影响负载电路的正常工作。 二次整流回路的噪声 二是浪涌电流。硅二极管在正向导通时PN结内的电荷被积累,二极管加反向电压时积累的电荷将消失并产生反向电流。由于二次整流回路中D在开关转换时频率很高,即由导通转变为截止的时间很短,在短时间内要让存储电荷消失就产生反电流的浪涌。由于直流输出线路中的分布电容、分布电感的存在,使因浪涌引起的干扰成为高频衰减振荡。 控制回路的噪声 控制回路中的脉冲控制信号是主要的噪声源。 分布电容引起的噪声 一是Ci的作用。散热片K与开关管T的集电极间虽然有绝缘垫片,但由于其接触面较大,绝缘垫较薄,因此两者之间的分布电容Ci在高频时不能忽略。因此高频电流会通过Ci流到散热片上,再流到机壳

建筑电气课程设计参考.

目录 第1章概述 (3) 1.1工程概述........................................................................ .. (3) 1.2 设计要求 (3) 第2章供配电系统设计 (4) 2.1动力系统的负荷计算 (4) 2.2插座的选择与布置 (5) 2.3 动力系统导线型号及截面的选择 (5) 第3章照明系统设计 (12) 3.1 光源的选择 (12) 3.2灯具的选择 (13) 3.3照明负荷计算 (17) 第4章电气设备的选择 (19) 4.1低压断路器的选择 (19) 4.2低压开关柜的选择 (21) 4.3 系统原理图 (22) 参考资料 (23) 课程设计总结 (23)

一、概述 1.1工程概述: 设计对象为某部队综合楼第二层,假设其高为3.5m,窗高1.8m,卫生间,开关,楼梯间的工作面高度为地面,其余工作面高度均为0.75米。电源采用三相四相制AC380v/220v供电。设计内容包括照明灯具设计、开关、插座、配电箱布置,电气管线选用,以及总配电箱、分配电箱内部线路、电气设备选用。 1.2设计要求: (1)总的要求: 室内布线应在基建施工时布置在墙内,墙上应留有足够的插座,保证居民住进去后不需要布置明线而各种家电都可以使用。由于单相用电设备的使用是经常变化的,不可能做到两相平衡,因此一般情况下不要两个单相支路共用一根中性线。 (2)配线: 室内配线不仅要使电能的输送可靠,而且要使线路布置合理、整齐、安装牢固,符合技术规范的要求。内线工程不能降低建筑物的强度和影响建筑物的美观。在施工前要考虑好与给排水管道、热力管道、风管道以及通讯线路布线等的位置关系。室内配线技术要求如下: ①室内布线根据绝缘皮的颜色分清火线、中性线和地线。 ②选用的绝缘导线其额定电压应大于线路工作电压,导线的绝缘应符合线路的安装方式和敷设的环境条件。导线的截面应满足供电能力和供电质量的要求。还应满足防火的要求。 ③配线时应尽量避免导线有接头。因为往往接头由于工艺不良等原因而使接触电阻太大,发热量较大而引起事故。必须有接头时,可采用压接和焊接,务必使其接触良好,不应松动,接头处不应受到机械力的作用。 ④当导线穿过楼板时,应装设钢管或PVC管加以保护,管子的长度应从高楼板面2m处到楼板下出口处为止。 ⑤当导线互相交叉时,为避免碰线,在每根导线上应套上塑料管或绝缘管,并需将套管固定。 (3)穿管: 若导线所穿的管为钢管时,钢管应接地。当几个回路的导线穿同一根管时,管内的绝缘导线数不得多于8根。穿管敷设的绝缘导线的绝缘电压等级不应小于500V,穿管导线的总截面积(包括外护套)应不大于管内净面积的40%。 (4)开关: 住宅室内的总开关、支路总开关和所带负荷较大的开关(如电炉、取暖器等)应优先选用具有过流保护功能、维护操作简单且能同时断开火线和中性线的负荷开关,如HK-2系列闸刀等。表箱内每户出线的火线上安置1个单极自动开关,用户住宅门口的接线盒内安装1个漏电开关,室内总开关和分支总开关用闸刀。所有灯具的开关必须接火线(相线),否则会影响到用电安全及经济用电。 1)有利于对人的活动安全、舒适和正确识别周围环境,防止人与环境之间失去协调;

开关电源 安规要求

安规知识解读 以下如未特别说明,安规要求均指GB4943-2001 1、基本绝缘:对防电击提供基本保护的绝缘。 2、加强绝缘:除基本绝缘外施加的独立的绝缘,用于确保基本绝缘一旦失效时仍 能防止电击。 3、电气间隙(clearance):两个导电零部件之间的最短空间距离。 4、爬电距离(creepage distance):沿绝缘表面测得的两个导电零部件之间的最短 路径。 5、Y1电容可以认为具有加强绝缘的功能。 初—次级跨接的电容用Y1 初—地之间可用Y2电容(1.5.7.1) ?工程师设计时常见错误: 没有Y1和Y2电容的使用概念,以致初---次级之间也“不知不觉”地用了Y2电容。 6、设备的防电击保护类别: Ⅰ类设备:采用基本绝缘,而且有保护接地导体; Ⅱ类设备:采用双重绝缘,这类设备既不依靠保护接地,也不依靠安装条件的保护措施; Ⅲ类设备:SELV供电,且不会产生危险电压; 7、电源上的铭牌标示 i.电源额定值标志 1)额定电压及电流 对具有额定电压范围的设备:

100V—240V; 2.8A 100V—240V; 2.8—1.1A 200V—240V; 1.4A 对多个额定电压: 120/ 220V ; 2.4/1.2A 2)电源的性质符号: 直流——交流~(GB8898-2001) ii.制造厂商名称或商标识别标记 iii.型号 iv.符号“回”,仅对Ⅱ类设备适用。

?工程师设计时常见错误: Ⅱ类设备大标贴没有“回”字符 没有LOGO或LOGO与认证证书不是同一公司 交流输入性质用“AC”表示,不用“~”表示 具有额定电压范围或多个额定电压的设备,电流标示本应是“100V—240V; 2.8—1.1A”或“120/ 220V ; 2.4/1.2A”,错写成“100V—240V; 1.1—2.8A” 或“120/ 220V ; 1.2/2.4A” 8、保护接地和等电位连接端子标示 预定要与保护接地导线相连的接线端子 应标示符号,该符号不能用于其它接地端子。 对保护连接导线的端子不要求标示,

10kV及以下供配电设计与安装图集 - 副本

10kV及以下供配电设计与安装图集(上册)1.pdf 110~500KV变电所总布置设计规程.pdf 35KV及以下架空电力线路施工及验收规范.pdf 35KV无人值班变电所典型方案设计.pdf 35~110KV小型化无人值班变电站标准工程图集:设计、加工安装、设备材料、概算.pdf GB2682-1981电工成套装置中的指示灯和按钮的颜色.pdf GB50045.CHM GB50054-95低压配电设计规范.chm GB50096-1999住宅设计规范.chm GB50116-98火灾自动报警系统设计规范.chm GB50116-98自动报警设计规范.chm GB50194-1993建设工程施工现场供用电安全规范.pdf GB50261-96自动喷水灭火系统施工及验收规范.pdf GB50303-2002《建筑电气工程施工质量验收规范》.pdf GB50343-2004.pdf _新编电气工程师实用手册(上、下册) 《电气制图与读图手册》.pdf 《电气装置安装工程施工及验收规范》汇编.pdf 《建筑电气专业设计技术措施》..pdf 常用低压设备供配电设备选型与安装技术手册.pdf 电缆计算程序V1.1.zip 电气符号00DX001.dwg 电气设备实用手册(上下册).rar 电气设计安装技术实用手册 电气设计规范大全.chm 电气设计数据查询.chm 防雷计算软件.exe 建筑安装工程质量工程师手册 建筑电气工程施工质量验收表格 建筑电气数据软件版 建筑灭火器配置设计计算程序.exe 建筑弱电工程设计手册 建筑物电子信息系统防雷技术规范.txt 民用建筑电气设计手册 民用建筑电气设计资料集办公、住宅 实用电工计算手册 实用电工计算手册2 实用节电技术与方法 需要系数法负荷计算.exe 照度计算 整定保护.exe 注册考试用规范目录.txt 电力系统继电保护最新实用技术及检验标准规程规范实用手册.rar

安规要求

安全距离及其相关安全要求 安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离 1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。 电气间隙的决定: 根据测量的工作电压及绝缘等级,即可决定距离 一次侧线路之电气间隙尺寸要求,见表3及表4 二次侧线路之电气间隙尺寸要求见表5 但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。一次侧交流对直流部分≥2.0mm 一次侧直流地对大地≥2.5mm (一次侧浮接地对大地) 一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件 二次侧部分之电隙间隙≥0.5mm即可 二次侧地对大地≥1.0mm即可 附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。 爬电距离的决定: 根据工作电压及绝缘等级,查表6可决定其爬电距离 但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。 (2)、一次侧交流对直流部分≥2.0mm (3)、一次侧直流地对地≥4.0mm如一次侧地对大地 (4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。 (5)、二次侧部分之间≥0.5mm即可 (6)、二次侧地对大地≥2.0mm以上 (7)、变压器两级间≥8.0mm以上 3、绝缘穿透距离: 应根据工作电压和绝缘应用场合符合下列规定: ——对工作电压不超过50V(71V交流峰值或直流值),无厚度要求; ——附加绝缘最小厚度应为0.4mm; ——当加强绝缘不承受在正常温度下可能会导致该绝缘材料变形或性能降低的任何机械应力时的,则该加强绝缘的最小厚度应为0.4mm。 如果所提供的绝缘是用在设备保护外壳内,而且在操作人员维护时不会受到磕碰或擦伤,并且属于如下任一种情况,则上述要求不适用于不论其厚度如何的薄层绝缘材料; ——对附加绝缘,至少使用两层材料,其中的每一层材料能通过对附加绝缘的抗电强度试验;或者:——由三层材料构成的附加绝缘,其中任意两层材料的组合都能通过附加绝缘的抗电强度试验;或者:——对加强绝缘,至少使用两层材料,其中的每一层材料能通过对加强绝缘的抗电强度试验;或者:——由三层绝缘材料构成的加强绝缘,其中任意两层材料的组合都能通过加强绝缘的抗电强度试验。 4、有关于布线工艺注意点: 如电容等平贴元件,必须平贴,不用点胶 如两导体在施以10N力可使距离缩短,小于安规距离要求时,可点胶固定此零件,保证其电气间隙。

新手如何学习建筑电气设计

新手如何学习建筑电气设计 从事建筑电气设计工作,到如今已经将近两年。虽然是电气工程及其自动化专业毕业,但是电气这个专业实在太大,在学校里没有接触过建筑电气的内容,几乎所有的知识都是在工作之后一点一点重新学习的。正好总结一下这一年多来自己的学习之路,不敢说是指南,只能说是经验,一家之见,浅薄得很。 什么是建筑电气设计,这可是一篇大文章,我们先说「建筑」,后说「电气」,最后说「设计」。 建筑按功能分,可以分为民用建筑和工业建筑,民用建筑又分为公共建筑和居住建筑,往下还可以细分。按照高度可以分成低层、多层、中层(小高层)、高层、超高层。不同的分类对应不同的设计要求,确定了建筑的类别,是设计的第一步。 对于建筑设计来说,主要分为五大专业:建筑、结构、给排水、暖通、电气,每次建筑设计都是所有专业合作的结果,其他专业的设计会影响电气的设计,而电气的设计也会影响其他专业,所以要想做好建筑电气设计,至少要对其他各个专业都有基本的了解。 这方面的内容,推荐马志溪主编的《建筑电气工程》,在第一部分《基础篇》对各个专业均有介绍,而且特别强调出电气专业需要特别关注的内容。 说过了其他专业,接下来再来说回本专业「电气」,电气的一大特点就是涉及的内容多而杂,每个工程最后的图纸里,电气差不多总是最厚的那一摞。单单一个工程内,电气设计就可能包括照明、配电、防雷、接地、电视、电话、网络、消防、安防、广播等等十余个小系统,要想成为一名优秀的建筑电气设计师,要学的东西还是挺多的。还记得我一开始接触建筑电气的时候,真是觉得千头万绪,无处下手,很是苦恼了一段时间,才算渐渐摸对门路。 首先,我建议你先对建筑电气的知识体系有个总体的认知,不求都明白,至少要知道都有啥,哪些是基本的,哪些是附加的,就像车一样,哪些算是「低配」,哪些算是「高配」。知识体系建立了,再去学习就不会盲目了。所以这个阶段就需要一本能有总论性质的教材,如果你的专业有相关的课程那自然是极好的,如果没有,那么依然推荐上边那本马志溪主编的《建筑电气工程》。 学校的课程还是建议好好学的。理论扎实对于一名建筑电气设计师,是相当有好处的,所以本专业的课程,类似电路、模电、数电、电力电子、电力拖动、电磁场,对今后的工作都是有帮助的。甚至于高度数学、大学物理、大学化学这样的课程也别小看,建筑电气设计师最有价值的一个证书是注册电气工程师证,以上这些都是考试的范围之内。我的考试复习过程,就被高数折磨得痛苦不堪。 有一门课叫「供配电设计」,对于建筑电气设计相当重要,不过反正我本科的时候没有接触过,还是后来工作以后自学的,看的是翁双安主编的《供配电工程设计指导》。 行了,以上都是准备内容,下边正式介绍电气设计师的几大法宝:规范、图集、手册、图纸。 规范,是建筑设计最重要的依据之一,它规定了什么是对的,什么是错的,什么是好的,什么是差的。对于建筑电气设计来说,「符合规范」是基本的要求。但是真正实施起来,却未必那么容易,因为相关的规范实在是太多了。 规范分四种:国家标准、行业标准、地方标准、企业标准。注册电气工程师考试考到的常用国家标准就有六七十种,摞起来应该比我还高。不同的地区因为发展程度不同,还会各自出台各自的地方标准,有些企业(比如大型房地产公司、高级酒店、大型工业企业)也有自己成熟的企业标准。

安规设计注意事项(doc 14页)_New

安规设计注意事项(doc 14页)_New

安规设计注意事项(doc 14页)

安规设计注意事项 1.零件选用 (1)在零件选用方面,要求掌握: a .安规零件有哪些?(见三.安规零件介绍) b.安规零件要求 安规零件的要求就是要取得安规机构的认证或是符合相关安规标准; c.安规零件额定值 任何零件均必须依MANUFACTURE规定的额定值使用; I 额定电压; II 额定电流; III 温度额定值; (2). 零件的温升限制 a. 一般电子零件: 依零件规格之额定温度值,决定其温度上限 b. 线圈类: 依其绝缘系统耐温决定 Class A ΔT≦75℃ Class E ΔT≦90℃ Class B ΔT≦95℃ Class F ΔT≦115℃

a.

b.例外情形: 下述零件与电子零件(限会在失误状况下,因温度过高而引燃的电子零件)若相隔13mm以上,或是相互间以至少V-1等级之障碍物隔开,则其耐燃等级要求如下: I.小型的齿轮,凸轮,皮带,轴承及其它小零 件,不须防火证明; II.空气载液的导管,粉状物容器及发泡塑料 零件,防火等级为HB以上或HBF以上 g.下述件不须防火证明: I.胶带; II.已获认证零件; III.密封于无开孔且体积小于0.06m 金属壳内之零件; IV.仪表壳,仪表面,指示灯或宝石,置于至少V-1等级的PCB上的IC,晶体管,光耦合 器及其它小零件的外壳. 2.整体配置 (1)安全距离(沿面距离和空间距离) 如果知道了工作电压及绝缘等级,就可决定所需之安全距离.

表一: 绝缘等级及各式绝缘适用情形绝缘等级适用情形 操作型(OPERAATIONAL INSULATION) 介于两不同电压之零件间 介于ELV(SELV)及接地导电零件 间 基本型(BASIC INSULATLON)介于具危险电压零件及接地导电 零件间 介于具危险电压零件及依赖接地 SELV电路间 介于PRI的电源导体及接地屏蔽 物或主电源变压 器的铁心间 做为双重绝缘一部分 补充型(SUPPLEMENTARY INSULATION)介于可触及导体零件及在基本绝 缘损坏后有可 能带有危险电压的零件间 做为双重绝缘一部分 介于PRI电路及可触及未接地导 电零件间

(完整版)工业与民用配电设计手册

⒈负荷 计算的内容和目的⒉负荷计算的方法 第二节设备功率的确定?????????1 ⒈单台 用电设备的设备功率?????????2 ⒉用电设备组的设备功率⒊变电所或建筑物的总设备功率⒋柴 油发电机的负荷统计 第三节需要系数法确定计算负荷????3 ⑴用电设备组的计算负荷⑵配电干线或车间变电所的计算负荷⑶配电所或总降压变电所的计算负荷?????7 ⑷对于台数较少的用电设备(4 台及以下)的计算负荷用系数 ⑸自备柴油发电机组的计算负荷 第四节利用系数法确定计算负荷????7 ⑴用电设备组在最大负荷班内的平均负荷⑵平均利用系数 ??????????????8 ⑶用电设备的有效台数 ???????????8 ⑷计算负荷 ????????????????9 ⑸例1-1 第五节单位面积功率法和单位指标法确定计算负荷????????????11 ⒈单位面积功率(或负荷密度)法⒉单位指标法⒊单位产品耗电法 第六节单相负荷计算??????????12 ⒈计算原则⒉单相负荷换算为等效三相负荷的一般方法⒊ 单相负荷换算为等效三相负荷的简化方法?13 ⒋例 1-2 第七节电弧炉负荷计算????????14 第八节尖峰电流的确定????????15 起动时的尖峰电流公式 ⑶对于自起动的一组电动机 ⑷供电给起重机的线路 第九节企业年电能消耗量计算?????15 ⑴用年平均负荷来确定(公式)⑵单位产品耗电量法 第十节电网损耗计算??????????16 ⒈电网中的功率损耗 ⑴三相线路中有功及无功功率损耗(公式)⑵电力 变压器的有功及无功功率损耗(公式)⑶变压器空 载无功损耗公式????????1 9 ⑷变压器满载 无功损耗公式 ⑸变压器负荷率不大于85% 时,功率损耗公式⒉电 网中电能损耗????????????? 20 ⑴供电线路年有功电能损耗公式⑵变压器年有功电 能损耗 第十一节无功功率补偿????????20 一、提高用电设备的自然功率因数 二、采用并联电力电容器补偿????????2 1 ⒈ 功率因数计算 ⑴补偿前平均功率因数公式 ⑵已经投入使用的用户,其平均功率因数 ⒉补偿容量的计算 ⑴补偿容量的计算方法 ⑵补偿计算负荷下的功率因数 三、利用同步电动机补偿??????????22 ⒈同 步电动机输出无功功率公式一⒉同步电动机输出无功功率公式二 四、电力电容器补偿、控制及安装方式的选择?23 五、全厂负荷计算及无功功率补偿计算实例?? 23 第一节负荷分级及供电要求???????25 一、规范对负荷分级的原则规定???????25 ㈠一级负荷及一级负荷中特别重要的负荷(4 条) ㈡二级负荷(2 条) ㈢三级负荷 、部分行业的负荷分级 ⒈机械工厂的负荷分级表?????????? 26 ⒉民用建筑负荷分级???????????? 27 三、一级负荷对供电电源的要求(2 条) ⒈应由两个电源供电,一个电源故障时,另一个不应同时损坏 ⒉特别重要的负荷,还必须增设应急电源 四、二级负荷对供电电源的要求????????27 ⒈应由两个电源供电,即两回线路供电,供电变压器亦应有两台 ⒉负荷较小地区可由一回6kV 及以上专用架空线供电;采用电缆线路时,应采用两根电缆组成的电缆段供电,每根应能承受100% 的二级负荷第二节供配电系统设计要则???????29 ⒉用电单位宜设置自备电源时符合的条件(4 条) ⒊应急电源与正常电源之间必须采取防止并列运行的措施(保证专用性、防止反送电) ⒋除特别重要的负荷外,不应考虑电源检修时,另一个又发生故障 ⒌需要两回电源线路的用电单位,宜采用同级电压⒍有一级负荷的用电单位,难从地区电力网取得两个电源时,宜从临近单位取得第二电源 ⒎同时供电的两回及以上供配电线路中,一回中断时,其余能满足全部一级、二级负荷的用电需要同一电压供配电系统的变配电级数不宜多于两级⒏变电所、配电所宜靠近负荷中心,可将35kV 直降至220 /380V 配电电压 ⒐单位内部邻近的变电所之间宜设置低压联络线⒑小负荷的一般用电单位宜纳入地区低压电网⒒冲击性负荷引起的电网电压波动和电压闪变(不含电动机起动),宜采取下列措施(4 条) ⒓非线性用电设备的谐波引起的电网电压正弦波形畸变率,应采取的措施(4 条)?????????30 第三节高压配电系统??????????30 一、电压选择 ⒈3kV 及以上交流三相系统的标称电压及电气设备的最高电压值(表)??????????????31 ⒉各级电压线路的送电能力(表)???????31 ⒊决定配电电压高低的因素 ⒋供电电压为35kV 及以上的单位,配电电压宜采用35kV 二、接地方式????????????????31 ㈠接 地种类 ⒈中性点直接接地(大接地电流系统、有效接地)⑴零序电抗与正序电抗的比值X0/X1≤ 3,零序电阻与正序电抗的比值R0/X1≤ 1 ⑵过电压水平、设备绝缘水平低,动态电压升高不超过系统额定电压的80% ⑶单相接地电流大。供电连续性差⑷要保证任何 故障,不应使系统解列为不接地⑸变压器中性点 接地点的数量要求 ①零序电抗与正序电抗的比值X0/X1≤3,零序电阻与正序电抗的比值R0/X1≤1,以使单相接地时健全相上工频过电压不超过阀型避雷器灭弧电压 ②X0/X1 还应大于1~1.5,使单相接地短路 ⑴单台电动机、电弧炉或电焊变压器的支线尖峰电流公式 ⑵接有多台电动机的配电线路,只考虑一台电动机

iec60950产品设计结构简介安规要求安全距离 (1)

IEC 60950产品设计/结构简介 IEC 60950 Design / Construction 1. 绝缘方式 (Insulation, Clause 1. 2.9) 做为电击保护者基本绝缘 (Basic Insulation) –针对于电击之保护所提供之基本绝缘。 辅助绝缘 (Supplementary Insulation) –附加于基本绝缘上之独立性绝缘,以 在基本绝缘失败时,可以减少电击之危险。 双重绝缘 (Double Insulation) - 基本绝缘加辅助绝缘之总称。 强化绝缘 (Reinforced Insulation) - 相等于双重绝缘之单层绝缘。 非做为电击保护者功能绝缘 (Fuctional Insulation) –产品正常使用时所必要之绝缘。

2. 直接插入式产品 (Direct Plug-In Unit) 可以使用 UL 60950/CSA 60950 (I.T.E产品)或 UL1310/CSA223 (Class 2 Power Supply) 做验证。 美规插头尺寸须符合NEMA 1-15P (2-pin) or 5-15P (3-pin)。 插头拉力测试 (20 lb, 2 min each blade, UL 1310)。 插头推力测试 (30 lb each blade, 40 lb together, 1 min, UL 1310)。 插头至外壳边缘≥ 5.1mm(for UL),7.9 mm (CSA)。 输入线须耐 35 lb 拉力测试 (UL 1310)。 输出线须耐 20 lb 拉力测试 (UL 1310)。 3. 空间/沿面距离 (Clearance/Creepage Distances,Clause 2.10, Tables 2H, 2J, 2K and 2L) 空间直线距离以峰值电压,根据 Table 2H (primary)、2J (primary additional)、2K (secondary) 计 算。 沿面爬行距离以RMS电压值,根据 Table 2L 计算,但不小于空间直线距离。 250 V 以下时,L 至 N、初级至地:creepage 2.5 mm,clearance 2.0 mm (整流前)。 250 V 以下时初级至次级:creepage 5 mm,clearance 4 mm。 TNV 至 SELV线路:creepage 2.5 mm,clearance 2.0 mm (Nemko):creepage 2.0 mm,clearance 1.8 mm (TüV)。 PCB 间距应参照实际工做电压 (peak or dc),若间距不足时 UL 可做耐压测试,CSA 做短路测试。 零件应施以 10 N 之推力作判断。 空间距离: 空间距离的数值应符合下列最小值的规定: —立地式产品的外壳或桌上型产品上非重直面顶部,可接近导电零件,与危险性电压上零件,用作强化绝缘 (Reinforced insulation) 之空气间隙,不得小于10mm。 —A类插头式产品之外壳上,已接地之可接近导电零件,与危险性电压上零件,用作基本绝缘 (Basic insulation) 之空气间隙,不得小于2mm。 Primary Circuit之空间距离应符合Table 2H 及2J中最小值之规定。 如果工作电压之峰值超过AC主电源电压之峰值时,绝缘之最小空间距离为下列两项数值之和:—工作电压等于AC主电源电压时,Table 2H之最小空间距离值;以及 —Table 2J中附加空间距离值。 沿面距离: 沿面距离不得少于Table 2L之最小数值。 强化绝缘或双重绝缘 (Reinforced or Double insulation) 之沿面距离是Table 2L中基本绝缘数值的两倍。 如果Table 2L之沿面距离小于Table 2H, 2J 与2K之空间距离时,则空间距离即是最小沿面距 离。 判定沿面距离时之工作电压应考虑下列要项: —实际的RMS值或DC 电压值。 —如使用DC 电压值,不必考虑附加之纹波。 —短期情况 (如TNV线路中之振铃信号),不必考虑。 —短暂之干扰不必考虑 (如噪声)。 —连到TNV 线路中,如果无法得知通讯网络之特性时,其工作电压应假定,TNV-1 线路为60 Vdc,TNV-2 与TNV-3线路为120Vdc。 如果所量测之工作电压,在相邻两点之间可使用内插法,来决定最小沿面距离。

某住宅楼电气照明系统设计任务书

课程设计任务书1 一、设计题目 某教学用楼电气照明系统设计。 二、设计资料 1.基本概况 本工程是一栋高六层的教学用建筑,其建筑类别为三类建筑.结构形式为底框结构,基础为桩基础,所有楼板均为现浇。设计内容为电气照明系统。 1)建筑为6层教学楼。 2)每层层高3.5米。 3)室内外高差0.3米。 2.参考资料 1)民用建筑电气设计规范及条文解释 2)2009全国民用建筑工程设计技术措施电气 3)建筑电气设计手册 4)国家标准电气制图电气图形符号应用示例图册 5)有关产品样本 6)建筑电气施工验收规范 7)供配电系统设计规范 8)低压配电系统设计规范 三、设计任务 1、计算书 内容包括:照度计算、负荷计算、线缆及保护管的选择、配电箱的选择。 2、图纸 1)设计说明、图例、图纸目录 2)层照明平面图(1:100)和层插座平面图(1:100) 3)供电干线平面图(1:100) 4)供电干线系统图(1:100) 5)照明配电箱系统图 3、课程设计说明书 四、设计步骤 1.熟悉资料、设计规范。对已给资料进行整理。根据建筑物的特点,确定供电等级:

根据建筑平面图,拟定各户配电箱具体位置;根据外线情况确定进户总箱位置;并 在平面图上绘出。 2.绘制照明平面图(包括楼梯间设照明) 根据建筑平面图针对不同的使用功能,按照电气照明设计规范进行照度设计.以满足使用对照度及功能要求. (1)根据房间的用途确定灯具的种类、型号及安装高度。 (2)查出各房间的照度标准,进行照度计算。 (3)根据计算结果绘出照明平面布置图。 (4)绘出线缆(单线图)。 3.根据房间的用途确定插座的种类、型号及安装高度. (1)绘出插座平面布置图。 (2)绘出线缆(单线图)。 4. 绘出各层供电系统图。 5. 负荷计算 (1)计算各支线负荷,选择支线线缆(型号、规格)及敷设方式并标注在平面图上,选择支线开关(型号、规格)并标注在系统图上。 (2)计算每层的负荷,选择每层的线缆(型号、规格)及敷设方式并标注在平面图上,选择开关(型号、规格)并标注在系统图上。 (3)计算整座楼的负荷,选择进户线缆(型号、规格)及敷设方式并标注在供电干线平面图上,选择总开关(型号、规格)并标注在系统图上。 6.整理图纸并写出设计说明、图例及图纸目录。 (1)说明书 内容包括:建筑用途、设计依据、负荷等级及电源进户方式、配线、配电箱及等电位联结。 (2)图例 内容包括:符号、名称、规格型号、容量、安装高度、方式及场所。 (3)图纸目录 内容包括:图别、名称、 8.整理计算书 内容包括:照度计算、负荷计算、线缆、开关及配电箱的选择。 9.设计注意 安全、可靠、经济实用、美观。 设计前应先学习有关的规范,严格按照规范设计。 选择导线截面时,留有余地。

相关主题
相关文档 最新文档