当前位置:文档之家› 小RNA测序

小RNA测序

小RNA测序
小RNA测序

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

高通量测序NGS数据分析中的质控

高通量测序错误总结 一、生信分析部分 1)Q20/Q30 碱基质量分数与错误率是衡量测序质量的重要指标,质量值越高代表碱基被测错的概率越小。Q30代表碱基的正确判别率是99.9%,错误率为0.1%。同时我们也可以理解为1000个碱基里有1个碱基是错误的。Q20代表该位点碱基的正确判别率是99%,错误率为1%。对于整个数据来说,我们可以认为100个碱基里可能有一个是错误的, 在碱基质量模块报告的坐标图中,背景颜色沿y-轴将坐标图分为3个区:最上面的绿色是碱基质量很好的区,Q值在30以上。中间的橘色是碱基质量在一些分析中可以接受的区,Q值在20-30之间。最下面红色的是碱基质量很差的区。在一些生信分析中,比如以检查差异表达为目的的RNA-seq分析,一般要求碱基质量在Q在Q20以上就可以了。但以检查变异为目的的数据分析中,一般要求碱基质量要在Q30以上。 一般来说,测序质量分数的分布有两个特点: 1.测序质量分数会随着测序循环的进行而降低。 2.有时每条序列前几个碱基的位置测序错误率较高,质量值相对较低。 在图中这个例子里,左边的数据碱基质量很好,而右边的数据碱基质量就比较差,需要做剪切(trimming),根据生信分析的目的不同,要将质量低于Q20或者低于Q30的碱基剪切掉。 2)序列的平均质量 这个是碱基序列平均质量报告图。横坐标为序列平均碱基质量值,纵坐标代表序列数量。通过序列的平均质量报告,我们可以查看是否存在整条序列所有的碱基质量都普遍过低的情况。一般来说,当绝大部分碱基序列的平均质量值的峰值大于30,可以判断序列质量较好。如这里左边的图,我们可以判断样品里没有显着数量的低质量序列。但如果曲线如右边的图所示,在质量较低的坐标位置出现另外一个或者多个峰,说明测序数据中有一部分序列质量较差,需要过滤掉。 3)GC含量分布 这个是GC含量分布报告图。GC含量分布检查是检测每一条序列的GC含量。将样品序列的GC 含量和理论的GC含量分布图进行比较,用来检测样品数据是否有污染等问题。理论上,GC含量大致是正态分布,正态分布曲线的峰值对应基因组的GC含量。如果样品的GC含量分布图不是正态分布,如右图出现两个或者多个峰值,表明测序数据里可能有其他来源的DNA序列污染,或者有接头序列的二聚体污染。这种情况下,需要进一步确认这些污染序列的来源,然后将污染清除。 4)序列碱基含量

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

高通量基因组测序中 测序深度,覆盖度

高通量基因组测序中,什么是测序深度和覆盖度? 1G=1024M 测序深度是指测序得到的总碱基数与待测基因组大小的比值。假设一个基因大小为2M,测序深度为10X,那么获得的总数据量为20M。(测序深度=总数据量20M/基因组大小2M=10X) 覆盖度是指测序获得的序列占整个基因组的比例。由于基因组中的高GC、重复序列等复杂结构的存在,测序最终拼接组装获得的序列往往无法覆盖有所的区域,这部分没有获得的区域就称为Gap。例如一个细菌基因组测序,覆盖度是98%,那么还有2%的序列区域是没有通过测序获得的。 1、全基因组重测序是对已知基因组序列的物种进行不同个体的基因 序的个体,通过序列比对,可以找到大量的单核苷酸多态性位点(SNP),插入缺失位点(InDel,Insertion/Deletion)、结构变异位点(SV, 技术路线 提取基因组DNA,利用Covaris进行随机打断,电泳回收所需长度的DNA片段(0.2~5Kb),加上接头, 进行cluster制备(Solexa)或E-PCR (SOLiD),最后利用Paired-End(Solexa)或者Mate-Pair(SOLiD)的方法对插入片段进行重测序。图1-1,以SOLiD为例,说明整个实验方案。

也称目标外显子组捕获,是指利用序列捕获技术将全基因组外显子区域DNA 捕捉并富集后进行高通量测序的基因组分析方法。是一种选择基因组的编码序列的高效策略,外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel 等具有较大的优势。 外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。外显子是最后出现在成熟RNA中的基因序列,又称表达序列。既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。在人类基因中大约有180,000外显子,占人类基因组的1%,约30MB。

RNA-Seq 测序数据分析服务流程 (试运行)

北京大学生科院/CLS生物信息平台 RNA-Seq测序数据分析服务流程 (试运行) 2015.3 平台联系人:李程(lch3000@https://www.doczj.com/doc/f418522271.html,) 文档撰写:张超

Table of Contents 1. 测序质量评估 (3) 1.1 测序数据过滤 (3) 1.2 质量值分布 (3) 1.3 GC含量分布 (4) 2. 参考序列比对 (4) 3. 基因表达水平 (6) 3.1 基因表达水平定量 (6) 3.2 基因表达水平分步 (6) 3.3 生物学重复相关性分析 (6) 3.4 样本间层次聚类及PCA分析 (7) 4. 差异基因分析 (7) 4.1 基因表达标准化 (7) 4.2 差异基因列表 (8) 4.3 差异基因可视化 (8) 4.4 差异基因聚类 (9) 5. 差异表达基因功能分析 (10) 5.1 GO富集分析 (10) 5.2 信号通路富集分析 (10) 5.3 癌基因功能注释 (11) 6.基因结构差异分析 (11) 6.1 可变剪切分析 (11) 7. SNP分析 (12) 7.1 SNP检测 (12) 7.2 SNP 筛选 (12) 7.3 GO/KEGG富集 (12)

1. 测序质量评估 通过测序的数据进行进行质控,保证数据质量适合下游分析。这里我们使用fastqc和RNA-SeQC来对数据进行质量评定。 1.1 测序数据过滤 测序得到的原始下机数据往往有许多问题,不能直接使用,通常会经过以下过滤,尽量保证测序数据的质量。 a.去除带测序接头的测序序列(reads); b.去除低质量的reads 1.2 质量值分布 按照现有的测序技术(illumina平台)单碱基的错误率应控制在1%以下,即质量值在20以上。 横坐标为reads的碱基位置,纵坐标为单碱基质量值 质量值与错误率的关系:Q =-10log10(e);其中Q phred为测序碱基质量值,e为测 phred 序错误率。

深度测序数据分析部分

1基因数据库的建立 1.1建立病原体数据库 肺炎的发生是有很多原因所致。病因可分为以下几类:①细菌性肺炎,可分为肺炎链球菌肺炎、金黄色葡萄球菌、甲型溶血性莲球菌、肺炎克雷白杆菌、流感嗜血杆菌、铜绿假单胞菌肺炎等。②非典型病原体所致肺炎,如军团菌、支原体和衣原体等。③病毒性肺炎,如冠状病毒、腺病毒、呼吸道合胞病毒、流感病毒、麻疹病毒、巨细胞病毒、单纯疱疹病毒等。④真菌性肺炎,如白色念珠菌、曲霉、放线菌等。⑤其他病原体所致肺炎,如立克次体(如Q热立克次体)、弓形虫(如鼠弓形虫)、原虫(如卡氏肺囊虫)、寄生虫(如肺包虫、肺吸虫、肺血吸虫)等。⑥理化因系所致的肺炎如放射性损伤引起的放射性肺炎,胃酸吸入引起的化学性肺炎,对吸入或内源性脂类物质产生炎症反应的类脂性肺炎等。 凡是能引起肝脏损害、出现肝功能异常的肝脏炎症性疾病,称之为肝炎。它是一类严重危害人体健康的疾病。我们常说的肝炎,主要是指病毒性肝炎。据近几年科学研究,因其致病病原体的不同而有甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、己型肝炎、庚型肝炎等。另外,因大量、长期饮酒引起的肝炎,叫做酒精性肝炎;对肝脏有损害的药物引起的叫做药物性肝炎;还有由于机体免疫功能紊乱引起的叫做自身免疫反应性肝炎。 本项目不考虑由理化原因引起的肺炎和肝炎疾病,因此,只需建立目前已知的所有肺炎和肝炎致病基因的数据库。 1.2建立人体常见的微生物基因组数据库 人体有四个大的细菌储存库,即皮肤、口腔、结肠、泌尿生殖道。种类繁多,多与人类能和平共处,少数是条件致病菌。论个难以数计,论重量,据估计每个活的个体可达3-4公斤。 人类体表和肠道是无数微生物的居所。Elizabeth Costello及其同僚对多达27个身体部位的微生物进行了调查,其中包括肠道、口腔、耳朵、鼻子以及多达18个区域的皮肤表面。研究人员还发现,某些皮肤部位,如食指或膝盖的背侧常常比肠道或口腔能容留更为多元的微生物。他们的数据所强调的事实是,我们身体的个体化的微生物随着时间的推移仍然保持着相对的稳定,而且它们展现了在我们身体各个位置生长的可预测的模式。 人体微生物基因组计划又称第二人类基因组计划,已由美国国立卫生研究院资助,于2007年开始启动。研究人体微生物对于疾病的预防和治疗有重大意义。 1.3人体全基因组数据库 人类基因组计划于20世纪80年代提出的,由国际合作组织包括有美、英、日、中、德、法等国参加进行了人体基因作图,测定人体23对染色体由3×109

全基因组重测序数据分析

全基 1. 简 通过变(d 的功况,dise 比较 实验 (1)(2) 基因组重测序简介(Introduc 过高通量测序识deletioin, du 功能性进行综合杂合性缺失ease (cance 较基因组学,群验设计与样本 Case-Contr )家庭成员组序数据分析 ction) 识别发现de plication 以及合分析;我们(LOH )以及r )genome 中群体遗传学综ol 对照组设计 组设计:父母novo 的som 及copy numb 们将分析基因及进化选择与中的mutation 综合层面上深计 ; -子女组(4 人matic 和germ ber variation 因功能(包括与mutation 之n 产生对应的深入探索疾病基人、3 人组或m line 突变,)以及SNP miRNA ),重之间的关系;以的易感机制和基因组和癌症多人); 结构变异-SN 的座位;针对重组率(Rec 以及这些关系功能。我们将症基因组。 NV ,包括重排对重排突变和combination )系将怎样使得 将在基因组学排突 SNP )情在 学以及

初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。 高级数据分析 1.测序短序列匹配(Read Mapping) (1)屏蔽掉Y染色体上假体染色体区域(pseudo-autosomal region), 将Read与参考序列NCBI36进行匹配(包括所有染色体,未定位的contig,以及线粒体序列mtDNA(将用校正的剑桥参考序列做替代))。采用标准序列匹配处理对原始序列文件进行基因组匹配, 将Read与参考基因组进行初始匹配;给出匹配的平均质量得分分布; (2)碱基质量得分的校准。我们采用碱基质量校准算法对每个Read中每个碱基的质量进行评分,并校准一些显著性误差,包括来自测序循环和双核苷酸结构导致的误差。 (3)测序误差率估计。 pseudoautosomal contigs,short repeat regions(包括segmental duplication,simple repeat sequence-通过tandem repeat识别算法识别)将被过滤; 2. SNP Calling 计算(SNP Calling) 我们可以采用整合多种SNP探测算法的结果,综合地,更准确地识别出SNP。通过对多种算法各自识别的SNP进行一致性分析,保留具有高度一致性的SNP作为最终SNP结果。这些具有高度一致性的SNP同时具有非常高的可信度。在分析中使用到的SNP识别算法包括基于贝叶斯和基因型似然值计算的方法,以及使用连锁不平衡LD或推断技术用于优化SNP识别检出的准确性。 统计SNV的等位基因频率在全基因组上的分布

RNA-Seq测序数据分析服务流程(试运行)(精)

北京大学生科院/CLS生物信息平台RNA-Seq测序数据分析服务流程(试运行 2015.3 平台联系人:李程(lch3000@https://www.doczj.com/doc/f418522271.html, 文档撰写:张超 Table of Contents 1. 测序质量评估 (3 1.1 测序数据过滤 (3 1.2 质量值分布 (3 1.3 GC含量分布 (4 2. 参考序列比对 (4 3. 基因表达水平 (6 3.1 基因表达水平定量 (6 3.2 基因表达水平分步 (6 3.3 生物学重复相关性分析 (6 3.4 样本间层次聚类及PCA分析 (7 4. 差异基因分析 (7 4.1 基因表达标准化 (7

4.2 差异基因列表 (8 4.3 差异基因可视化 (8 4.4 差异基因聚类 (9 5. 差异表达基因功能分析 (10 5.1 GO富集分析 (10 5.2 信号通路富集分析 (10 5.3 癌基因功能注释 (11 6.基因结构差异分析 (11 6.1 可变剪切分析 (11 7. SNP分析 (12 7.1 SNP检测 (12 7.2 SNP 筛选 (12 7.3 GO/KEGG富集 (12 1. 测序质量评估 通过测序的数据进行进行质控,保证数据质量适合下游分析。这里我们使用fastqc和RNA-SeQC来对数据进行质量评定。 1.1 测序数据过滤 测序得到的原始下机数据往往有许多问题,不能直接使用,通常会经过以下过滤,尽量保证测序数据的质量。

a.去除带测序接头的测序序列(reads; b.去除低质量的reads 1.2 质量值分布 按照现有的测序技术(illumina平台单碱基的错误率应控制在1%以下,即质量值在20以上。 横坐标为reads的碱基位置,纵坐标为单碱基质量值 质量值与错误率的关系:Q =-10log10(e;其中Q phred为测序碱基质量值,e为测 phred 序错误率。

高通量测序数据分析-环境样品数据处理方法

环境微生物群落多样性分析 QQ空间新浪微博腾讯微博微信更多71微生物群落多样性的基本概念 环境中微生物的群落结构及多样性和微生物的功能及代谢机理是微生物生态学的研究热点。长期以来,由于受到技术限制,对微生物群落结构和多样性的认识还不全面,对微生物功能及代谢机理方面了解的也很少。但随着高通量测序、基因芯片等新技术的不断更新,微生物分子生态学的研究方法和研究途径也在不断变化。第二代高通量测序技术(尤其是Roche 454高通量测序技术)的成熟和普及,使我们能够对环境微生物进行深度测序,灵敏地探测出环境微生物群落结构随外界环境的改变而发生的极其微弱的变化,对于我们研究微生物与环境的关系、环境治理和微生物资源的利用以及人类医疗健康有着重要的理论和现实意义。 在国内,微生物多样性的研究涉及农业、土壤、林业、海洋、矿井、人体医学等诸多领域。以在医疗领域的应用为例,通过比较正常和疾病状态下或疾病不同进程中人体微生物群落的结构和功能变化,可以对正常人群与某些疾病患者体内的微生物群体多样性进行比较分析,研究获得人体微生物群落变化同疾病之间的关系;通过深度测序还可以快速地发现和检测常见病原及新发传染病病原微生物。 研究方法进展 环境微生物多样性的研究方法很多,从国内外目前采用的方法来看大致上包括以下四类:传统的微生物平板纯培养方法、微平板分析方法、磷脂脂肪酸法以及分子生物学方法等等。 近几年,随着分子生物学的发展,尤其是高通量测序技术的研发及应用,为微生物分子生态学的研究策略注入了新的力量。 目前用于研究微生物多样性的分子生物学技术主要包括:DGGE/TGGE/TTGE、T-RFLP、SSCP、FISH、印记杂交、定量PCR、基因芯片等。DGGE等分子指纹图谱技术,在其实验结果中往往只含有数十条条带,只能反映出样品中少数优势菌的信息;另一方面,由于分辨率的误差,部分电泳条带中可能包含不只一种 16S rDNA序列,因此要获悉电泳图谱中具体的菌种信息,还需对每一条带构建克隆文库,并筛选克隆进行测序,此实验操作相对繁琐;此外,采用这种方法无法对样品中的微生物做到绝对定量。生物芯片是通过固定在芯片上的探针来获得微生物多样性的信息,“只能验证已知,却无法探索未知”,此方法通过信号强弱判断微生物的丰度也不是非常的准确。 而近年来以454焦磷酸测序为代表的高通量测序技术凭借低成本、高通量、流程自动化的优势为研究微生物群落结构提供了新的技术平台。Roche 454高通量测序技术能同时对样品中的优势物种、稀有物种及一些未知的物种进行检测,获得样品中的微生物群落组成,并将其含量进行数字化。最近,美吉生物推出了新的测序平台———MiSeq。MiSeq高通量测序平台集中了Roche 454和Illumina HiSeq 2500的优点,不仅可实现

相关主题
文本预览
相关文档 最新文档