当前位置:文档之家› 基坑变形监测毕业设计

基坑变形监测毕业设计

基坑变形监测毕业设计
基坑变形监测毕业设计

摘要

随着建筑物的规模和层数的扩大及增高,其基坑开挖的面积和深度也随之变化,基坑的高精度的变形监测和深入分析已然成为建筑物安全施工的科学可靠的措施。本文通过尚德国际工程深基坑变形监测工程,探讨了深基坑变形监测的监测方案、监测方法、监测流程、数据分析等诸多内容,在监测方案、监测精度、监测手段和数据分析方法等方面都得出了有益结论。如果建筑物基础发生了较大或不均匀的变形,这将对该基础上承载的建筑物带来极大的安全隐患。因此,在工程建设中和工程建筑物投入运行后,有效地对建筑物变形大小进行变形监测并对所测量数据的分析,可以得出建筑物的安全稳定情况。

关键字:高层建筑基坑变形监测回弹安全稳定

I

山东科技大学泰山科技学院毕业设计

目录

摘要................................................................................................................................ I 1 变形监测概述.. (1)

1.1变形监测的意义和目的 (1)

1.2变形监测的特点 (2)

1.3变形监测的内容 (3)

1.4变形分析的发展与应用 (4)

2 变形观测技术 (6)

2.1变形监测的精度 (6)

2.2观测点的结构与埋设 (7)

2.3基坑回弹监测 (8)

3 基坑变形监测与变形分析 (13)

3.1基坑工程概念 (13)

3.2工程概况 (15)

3.3工程地质条件 (16)

3.4技术依据 (17)

3.5监测工程流程 (18)

3.6控制点的布设 (18)

3.7基坑变形监测精度方法及周期确定 (22)

3.8观测方案 (26)

3.9观测仪器与施测方法及技术指标 (26)

4 变形监测的影响因素 (29)

5 内业数据处理及提交成果 (31)

5.1内业处理 (31)

5.2警戒值的确定 (31)

II

山东科技大学泰山科技学院毕业设计

5.3观测成果表 (32)

5.4变形监测位移曲线图 (34)

5.5成果分析 (36)

结束语 (37)

致谢 (38)

参考文献 (39)

III

山东科技大学泰山科技学院毕业设计

1 变形监测概述

1.1 变形监测的意义和目的

在测量工程的实践和科学研究活动中,变形监测占有重要的位置。工程建筑物的兴建,从施工开始到竣工,以及建成后整个运营期间都要不断地监测,以便掌握变形的情况,及时发现问题,保证工程建筑的安全。人类开发自然资源的活动(例如抽取地下水、采油、采矿等)会破坏地壳上部的平衡,造成地面变形。这种变形需要长期监测监视,以便采取措施控制其发展,保证人类正常的生产和生活。例如,在人口密集的地区大量抽取地下饮用水,造成地面沉陷,地面不均匀的沉陷会引起建筑物和工业设施的损坏。地下采矿引起矿体上方岩层的移动,严重的会造成地面滑坡和塌方,危机人民生命财产,需要监测。近年来,人们开始在城市下面、工业设施和交通干线下面,水体(河流、湖泊、海洋)下面采矿(称为三下采矿),这些对变形监测都提出了更高的要求。地壳中地应力的长期积累,造成地震,严重地危及人类的生存,监测地壳的变形是预报地震的重要手段。尽管地壳变形监测不是本书讨论的重点,但本篇讨论的监测技术,监测网设计方法,以及观测数据处理技术对地壳变形(也有书叫地壳形变)监测仍有很好的参考价值。

变形监测有实用上和科学上两方面的意义。实用上的意义主要是检查各种工程建筑物和地质构造的稳定性,及时发现问题,以便采取措施。科学上的意义包括更好地理解变形的机理,验证有关工程设计的理论,以及建立正确的预报变形的理论和方法。

1

山东科技大学泰山科技学院毕业设计

1.2 变形监测的特点

与工程建设中的测图与施工测量相比,变形监测有很多自身特点,有以下几点:

1.精度要求:

与其他测量工作相比,变形监测的精度要求高,典型的精度要求在1mm。一般来说,如果变形监测是为了是变形值不超过某一允许的数值,以确保建筑的安全,则其观测的误差小于允许值的1/10~1/20;如果是为了研究变形的过程,则其误差应比上面的数值小的多,甚至应采用目前测量手段和仪器发所能达到的最高精度。

2.重复观测:

众所周知,一般城市测量控制网,改造或补充一些点时,一般不再重复观测。而用于变形监测的网则必须相隔一定时间进行重复观测。只有重复观测,才能从坐标或高程值的变经中发现变形。

3.严密地进行数据处理:

一些变形体的变形大都较小,有的与测量误差有相同的数量级,故要采取一些方法从含有观测误差的观测值中分离出变形信息。

4.多学科的配合:

变形测量工作不仅需要测绘学,尚需要土木工程和土力学及岩石力学等方面的知识。

5.责任重大:

变形观测责任重大,它需要一丝不苟地认真工作。由于变形量都是微观变化,更应从带有观测误差的观测值中,找出变形规律的蛛丝马迹,及时正确预报危害变形,使人们避免灾害,减少损失。

2

山东科技大学泰山科技学院毕业设计

1.3 变形监测的内容

变形观测的内容,应根据建筑物的性质与地基情况来定。要求有明确的针对性,既要有重点,又要作全面考虑,以便能正确反映出建筑物的变化情况,达到监视建筑物的安全运营、了解其变形规律之目的。例如:

1、工业与民用建筑物:对于基础而言,主要观测内容是均匀沉陷与不均匀沉陷,从而计算绝对沉陷值、平均沉陷值、相对弯曲、相对倾斜、平均沉陷速度以及绘制沉陷分布图。对于建筑物本身来说,则主要是倾斜与裂缝观测。对于工业企业、科学试验设施与军事设施中的各种工艺设备、导轨等,其主要观测内容是水平位移和垂直位移。对于高大的塔式建筑物和高层房屋,还应观测其瞬时变形,可逆变形和扭转(即动态变形)。

2、土工建筑物:以土坝为例,其观测项目主要为水平位移、垂直位移、渗透(浸润线)以及裂缝观测。

3、钢筋混凝土建筑物:以混凝土重力坝为例,其主要观测项目为垂直位移(从而可以求得基础与坝体地转动)、水平位移(从而可以求得坝体的挠曲)以及伸缩缝的观测。以上内容通常称为外部变形观测,也就是说用测量的方法求出建筑物外形在空间位置方面的变化。此外,由于混凝土坝是一种大型水工建筑物,其安危影响很大,设计理论也比较复杂,除了观测其外形的变化之外,还要了解其结构内部的的情况。例如混凝土应力、钢筋应力、温度等,这些内容通常称为内部观测。它一般是将电学仪器(或其它仪器)埋设在坝体内部,以电缆(管道)连至廊道内,定期进行观测。外部观测与内部观测之间有着密切的联系,应该同时进行,以便在资料分析时可以互相补充,互相验证。本篇所讨论的内容仅艰于外部变形观测。

4、地表沉降:对于建立在江河下游冲积层上的城市,由于工业用水需要大量地吸取地下水,而影响地下土层的结构,将使地面发生沉降现象。例如,我国某城市地表沉降观测的结果表明地表有时沉降,有时回升,这与季

3

山东科技大学泰山科技学院毕业设计

节性地吸取地下水有关。对于地下采矿地区,由于在地下大量的采掘,也会使地表发生沉降现象。这种沉降现象严重的城市地区,暴雨以后将发生大面积的积水,影响仓库的使用与居民的生活。有时甚至造成地下管线的破坏,危及建筑物安全。因此,必须定期地进行观测,掌握其沉降与回升的规律,以便采取防护措施。

为了更全面地了解影响工程建筑物变形的原因及其规律,以及有些特种工程建筑物的要求,有时在其勘测阶段要进行地表形变观测,以研究地层的稳定性。

为了达到上述各项目的,通常在工程建筑物的设计阶段,在调查建筑物地基负载性能、研究自然因素对建筑物变形影响的同时,就应着手拟定变形观测的设计方案,并将其作为工程建筑物的一项设计内容,以便在施工时,就将标志和设备埋置在设计位置上。从建筑物开始施工就进行观测,一直持续到变形终止。

1.4 变形分析的发展与应用

在变形分析中,出于实用、简便上的考虑,我们一般应用较多的是单测点模型,同时,为顾及监测点的整体空间分布特性,多测点变形监控模型也得到了发展。

但是,从现行的变形分析方法中,我们不难发现,大多都是离线的(事后的),不能进行即时预报与监控,无法在紧急关头为突发性灾害提供即时决策咨询,这与目前的自动化监测系统的要求很不相符,为此,研究在线实时分析与监控的方法成为技术的关键。已有研究表明,采用递推算法的贝叶斯动态模型进行大坝监测的动态分析是可行的。在隔河岩大坝GPS自动化监测系统中,我们采用递推式卡尔曼滤波模型进行全自动在线实时数据处理起到了较好效果。

4

山东科技大学泰山科技学院毕业设计

诞生于20世纪80年代末的小波分析理论,是一种最新的时频局部化分析方法,被认为是自傅立叶分析方法后的突破性进展。应用小波方法,进行时频分析,可望有效地求解变形的非线性系统问题,通过小波变换提取变形特征。但这一研究领域才刚刚起步,在变形分析方面尚无实质性的研究成果。第二十一届IUGG大会“小波理论及其应用”被IAG确定为大地测量新理论的研究方向之一。在1999年召开的第二十二届IUGG大会上,“小波理论及其在大地测量和地球动力学中的应用”再次被IAG确定为GIV分会(大地测量理论与方法)的新的研究小组。可见,开展小波理论及其应用研究的重要性。从目前的应用研究来看,虽然小波分析要求大子样容量的时间序列数据,但是,长序列数据可从GPS、TPS等集成的自动化监测系统中得到保障。小波分析为高精度变形特征提取提供了一种数学工具,可实现其他方法无法解决的难题,对非平稳信号消噪有着其他方法不可比拟的优点。小波理论在变形监测(尤其是动态变形监测)的数据分析方面将会发挥巨大的作用。

总之,随着变形观测技术、计算机软件和新兴数学理论的发展,变形分析的新方法研究将会不断涌现。同时,由于变形体的不确定性和错综复杂性,各种自然灾害的突发性,需要我们用新的思维方式和方法来研究变形观测问题,将各种灾害损失减少到最低程度。

5

山东科技大学泰山科技学院毕业设计

2 变形观测技术

2.1 变形监测的精度

工程建筑物的变形观测能否达到预定目的,要受很多因素的影响。其中,最基本的因素是观测点的布置、观测的精度与频率,以及每次观测所进行的时间。观测点的布置与各类工程的特点有关。

在工业与民用建筑物的变形观测中,由于其主要观测内容是基础沉陷和建筑物本身的倾斜,其观测精度应根据建筑物基础的允许沉陷值、允许倾斜度、允许相对弯矩等来决定,同时也应考虑其沉陷速度。例如,我国建筑设计部门在研究高层建筑物的倾斜时,根据前述的观点以允许倾斜值的1/20作为观测的精度指标。某综合勘察院在观测一幢大楼的变形时,根据设计人员提出的允许倾斜度a=4‰求得顶点的允许偏移值为120mm,以其1/20作为最后观测中误差。即m=±6mm。在生产实践中,求得必要的中误差以后,如果根据本单位的仪器设备和技术力量,能够比较容易地达到精度要求,而且在不必花费很大的精力、不增加很多工作量的情况下,还能达到更高的精度时,也可以将观测精度指标提高。例如前述的情况,在求得m=±6mm后,即按此思想将精度指标提高,取±2mm作为最后的观测中误差。对于根据沉陷速度确定观测精度,是指沉陷延续的时间很长而沉陷量又较小的基础,其观测的精度就应当高些。

一般来讲,从实用的目的出发,对于连续生产的大型车间(钢结构、钢筋混凝土结构的建筑物)通常要求观测工作能反映出1mm的沉陷量;对于一般的厂房,没有很大的传动设备、连续性不大的车间,要求能反映出2mm的沉陷量。因此,对于观测点高程的测定误差,应在±1mm以内。而为了科学研究的目的,往往则要求达±0.1mm的精度。

6

山东科技大学泰山科技学院毕业设计

对于水工建筑物,根据其结构、形状不同,观测内容和精度也有差异。即使对于同一建筑物(如拱坝)的不同部位,其观测精度也不相同,变形大的部位(如拱冠)的观测精度可稍低于变形小的部位(如拱座)。对于混凝土大坝,测定变形值的精度一般为±1mm;对于土工建筑物,测定其变形值的精度不低于±2mm。

2.2 观测点的结构与埋设

平面基准点的标志体应具有较高的稳定性,亦即标志体在水平方向上是保持不动的。

1、观测墩

在基岩较浅或土体稳定的地方,常用钢筋混凝土建造的观测墩作为平面控制点标志。

2、倒锤

倒锤是一种埋设较深、稳定性很好的平面标志。图2-1(a)是倒锤原理图,当钻孔内充满液体时,对中中心与标志中心的相对位置不变,也就是说,如果标志中心是稳定的,则对中中心也是稳定的,其平面位置不会受侧向干扰力影响。图2-1(b)是倒锤的一种实用结构。

7

山东科技大学泰山科技学院毕业设计

8

3、光线传递式标志

光线传递式标志是将固定在底层的中心点利用光线投射到标志顶面上来,即利用光线代替倒锤线。玻璃片上的十字丝代表平面标志的中心,与混凝土结合在一起埋在温度变化不大的岩层中,十字丝下安置一灯泡,为更换灯泡,在标志旁设有进人孔。

2.3 基坑回弹监测

工业与民用建筑物的沉陷观测是最常遇到的变形观测工作,从建筑物基础施工开始到工程交付使用甚至更长一段时间都需进行变形观测。

支架

油箱

连接杆

浮筒

钢丝

锚块

保护管

基岩

(b ) 机械式倒锤结构

图2-1 机械式倒锤装置

(a ) 机械式倒锤原理图 柔性吊丝

标志中心

基岩

液体

浮子

不锈钢丝 0.8-1.0mm

对中中心

图2-2 光线传递式标志

对中盘

观测墩

人孔

平面标志

山东科技大学泰山科技学院毕业设计

9

深埋大型基础在基坑开挖后,由于基坑上面的荷重卸除,基坑底面(地基)隆起,称为基坑回弹。回弹量因土层不同而异,一般土层、软土层回弹量稍大,砾砂岩层回弹量稍小,弱风化岩层一般情况下回弹量较小,而基岩层基本不回弹。

基坑回弹观测的任务是测定基坑开挖后的回弹量。其目的是为改进基础设计,确定室内地坪的适宜标高提供重要资料。

图2-3 基坑回弹量观测

回弹观测要点是:基坑开挖之前先测出设计的坑底土层的准确高程。如图2-3a 中的Q 点的高程为H Q ,当基坑土被取出后再复测坑底土层中Q 点上升Q ′(图2-4b ),Q ′高程为H Q ′,它与初始高程之差为ΔH Q 就是基坑回弹量:

'

Q Q Q H H H ?=-

山东科技大学泰山科技学院毕业设计

10

图2-3a 中,H 坪为室内地坪设计标高,CD 为设计的基坑底面,其标高为H Q ,当土块ABCD 被取走后,CD 面上升到C ′D ′(图2-3b)。为保持设计坑内标高仍是H Q ,将C ′D ′挖去,使原EF 升至E ′F ′即CD 高度。当基础筑完之后,E ′F ′即CD 高度。当基础筑完之后,E ′F ′又被压回到EF(图2-3c)。若按基础设计深度h 施工室内地坪,则±0降低了ΔH Q 。若按±0设计标高施工室内地坪,则h 增加了ΔH Q 尺寸。

如果ΔH Q 是在基础施工后一段时间完成,可能导致整个建筑物降低了ΔH Q 尺寸。由于坑底C 、D 、Q 三点回弹量与下沉量也不均,可导致防水失败,对工程危害极大。因此,回弹观测,特别是软土层深基础的回弹观测有重要意义。

回弹观测应达到一定精度,一般取预计回弹量的1/10为回弹观测高程中误差。观测中,常将各项较差取至1mm 。所用仪器能读出0.1mm 的微小量。

如图2-4所示为回弹观测示意图。准备精密水准仪和铟瓦水准尺,准备经检定的30m 或50m 钢尺,以及与钢尺标准拉力相应的重锤两个和投放钢尺的支架。其观测工作应在开挖前后各进行1次。

图2-4 回弹观测方法

开挖前观测时,将平底重锤放人孔底,让锤与回弹标志顶接触,另一端用检定拉力将钢尺引张。当孔底重锤碰到标志后,用水准仪测量基准点与回弹标志的高差(要注意钢尺的零点值)。观测时钢尺估读到0.1mm ,水准尺读到0.1mm ,以下凑整。

山东科技大学泰山科技学院毕业设计

11

测回观测顺序如下:

①后视水准尺,调平气泡,读基本分划a ′1。

②不动测微器,前视钢尺,调平气泡读钢尺读数b ′1。仍不动测微器,再重新调平气泡,再读钢尺读数三次,当较差小于1mm 时,取三次平均值得b ′1。

③后视水准尺辅助分划,读法同①得a ″1。

④重新引张钢尺,水准仪前视钢尺,读法同②得b ″1。 ⑤测量孔底与地面上的温度,取其中数对钢尺施加温度改正。 ⑥计算高差:

'''111h a b =- ''''''111h a b =-

式中,'1h 、''1h 分别为上、下半测回高差。 ①~⑤步观测为一测回,一测回两次高差之差为:

'1

'''11h f h h =- (2-1)

当'1

h f 不大于1mm 时,取其平均值为第一测回的结果,即:

()'

''11112

h h h =

+ (2-2) 该项观测须进行两测回,其较差不大于1mm ,取两测回平均值作为最后的观测高差值,即:

()121

2

h h h =

+ (2-3) 式中,h 2为第二测回观测高差。

观测完毕,先回填白灰0.5m ,拨出套管,回填素土。

基坑挖至白灰时,应仔细挖坑,以免破坏坑内各观测点。同时在基坑壁一合适的高度做一个临时水准点(设计坑底往上不超过1.5m 高),按开挖前

山东科技大学泰山科技学院毕业设计

12

当回弹观测点被挖露出后,以临时水准点为后视,观测各回弹观测点的标高。从而算得各观测点的回弹量。

山东科技大学泰山科技学院毕业设计

3 基坑变形监测与变形分析

3.1 基坑工程概念

随着城市建设的高速发展和地下空间的开发利用,基坑工程愈来愈多。基坑工程是指建(构)筑物基础工程或其它地下工程(如地铁车站、地下车库、地下商场和人防通道等)施工中所进行的基坑开挖、降水、支护(围护)和土体加固等综合性工程。基坑开挖深度一般≥6m者称为深基坑工程。

基坑支护是指基坑开挖过程中所设置的坑壁支护结构和撑锚体系,其功能是挡土止水、节约施工用地、保护周围环境或可利用作为建筑物地下空间的外墙结构等。支护结构的类型主要有钢板桩支护、地下连续墙、柱列式灌注桩排桩支护、内支撑和锚杆支护、土钉墙支护和深层搅拌水泥土桩支护等。

在深基坑开挖的施工过程中, 基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变, 应力状态的改变引起围护结构承受荷载并将导致围护结构和土体的变形, 这样将引起基坑坑内土体的隆起, 基坑支护结构及其周围土体的沉降和侧向位移等。一旦围护结构及土体的内力、变形的量值超过容许的范围,将导致基坑失稳破坏,或对周边环境造成不利影响,因此,基坑施工期变形监测的任务是监视围护结构以及土体的稳定状态(内力和变形),其目的是:

1、监测基坑工程的变化,确保基坑支护结构和相邻建筑物的安全;

2、检验设计的参数和各种假设的正确性,指导基坑开挖和支护结构的施

工;

3、用反分析法修正计算参数和理论公式,指导设计。

基坑工程变形监测工作,对时间和空间的准确性要求很高,工作拖延或

13

山东科技大学泰山科技学院毕业设计

失误造成的影响往往是难以补救的。因此,在基坑开挖前应制定详细的监测

方案,主要内容包括监测目的、监测内容、测点布置、监测方法、监测项目报警值、监测结果、信息化施工,等等。

监测对象和项目的选择,关系到基坑工程的安全施工,盲目增加监测项目是对工程费用的浪费;但任意削减监测项目,可能造成严重事故的发生。应根据基坑工程的安全等级、地质条件和围护结构的类型确定监测对象和项目。一般包括:

1、围护结构完整性及强度监测;

2、围护结构的水平位移和变形监测;

3、围护结构应力监测;

4、支护结构内外压力监测;

5、支护结构内外孔隙水压力监测;

6、表层土体沉降、水平位移以及深层土体分层沉降和水平位移监测;

7、地下水位变化的监测;

8、邻近基坑的建筑物和管线道路等设施变形监测;

9、支撑轴力监测;

10、基坑坑底隆起的监测。

基坑监测的时段是从基坑开挖直至建筑结构体施工至地面,或土体回填。

基坑工程监测的预警值和预警机制是信息化施工的重要部分。监测的警戒值就是设定一个定量化指标,在其容许的范围内认为工程是安全的,并对周围环境不产生危害,否则认为工程是非稳定或危险的,并将对周围环境产生有害影响,需调整施工工序或优化原设计方案。因此,测试项目警戒值的确定至关重要。一般情况下,每个警戒值应由两部分控制,即允许的累计变化量和允许变化速率。确定预警值是一项十分复

杂的研究课题,没有统一的定量化计算模式和确定准则,通常都是根据

14

山东科技大学泰山科技学院毕业设计

工程地质勘察报告给定的岩性指标,基坑设计的技术参数及区域性经验来确定。确定的原则是:

1、满足设计计算的要求,不可超出设计值;

2、满足测试对象的安全要求,达到保护目的;

3、对于相同的保护对象,应针对不同的环境和不同的施工因素而确定;

4、满足各保护对象的主管部门提出的要求;

5、满足现行的相关规范、规程的要求;

6、在保证安全的前提下,综合考虑工程质量和经济等因素,减少不必

要的资金投入。

总之,确定的警戒值是以达到监测目的,保证基坑工程安全和周围环境的安全,使工程能够顺利地进行为目标。

3.2 工程概况

尚德国际位于青岛经济技术开发区, 气候宜人,交通便利。本项目一期高层住宅区用地面积为20600平方米,总建筑面积为81145平方米,建筑密度11.6%,项目包括4栋高层住宅、地下停车场等;尚德国际一期高层住宅共32层。地上建筑面积22309平方米,地下总建筑面积为6504平方米。该工程地下3层,地上为32层,建筑高度121.895米,建筑总高度130米。筏板基础,现浇混凝土框架-剪力墙结构。2010年8月开工,预计2011年3月底主体封顶;2011年7月竣工。本项目建设单位为青岛上实瑞欧置业有限公司,设计单位为青岛市建筑设计研究院集团股份有限公司。

根据GBJ202—83《地基与基础工程施工及验收规范》的有关规定,应对该工程在整个施工过程中和工程竣工后的一定时间内进行沉降观测工作,动态的监测工程建筑过程中的沉降变化,尤其是不均匀沉降变化的状态,这对工程建筑的结构安全具有重要实际意义。根据设计要求及施工区段的地质、

15

山东科技大学泰山科技学院毕业设计

16

支护结构的特点和所处的周边环境条件, 确定的监测项目有:

1. 围护结构顶部沉降监测;

2. 围护结构顶部水平位移监测;

3. 围护桩(墙)测斜;

4. 围护结构与中间桩差异沉降监测;

5. 支撑轴力监测;

6. 围护结构裂缝及渗水监测;

7. 地下水位及孔隙水压力监测;

8. 周边地表沉降观测;

9. 临近建筑物变形监测;

3.3 工程地质条件

3.3.1 气象水文

青岛市城阳区属华北暖温带沿海湿润季风区气候。年均气温12.3℃,极端最高气温34.4℃,极端最低气温-16.0℃。年均风速5.30m/s ,瞬间最大风速44.20m/s 。年均降雨量711.20mm ,最大年降雨量1272.70mm ,最小年降雨量347.40mm ;季节性冻土深度小于0.50m 。 3.3.2 地形、地貌

拟建场区地形较平坦,孔口标高3.20~4.80m ,最大高差为1.60m ;原地貌类型为滨海潮汐带。

3.3.3 岩土层分层情况及其物理力学性质

① 素填土(Q 4ml ):红褐色,稍湿~饱和,松散,主要为泥岩风化物,局

山东科技大学泰山科技学院毕业设计

17

部见少量的建筑垃圾、植物根系。层厚0.80~4.40m ,层底标高-0.26~3.50m ,层底埋深0.80~4.40m 。

② 淤泥质粉质粘土(Q m 4):灰黑色,流塑~软塑,韧性低,干强度低,有腥臭味,见贝壳残片。层厚0.20~1.70m ,层底标高0.38~2.30m ,层底埋深1.80~3.80m 。

③ 全风化泥岩(K 2W

):红褐色,密实,干钻易钻进,断口有油脂光泽,干后龟裂。层厚0.30~3.20m ,层底标高-1.28~1.50m ,层底埋深 2.50~5.50m 。地基承载力特征值f ak =300kPa ;变形模量E 0=20MPa 。

④ 强风化泥岩(K 2W ):红褐色,密实,干钻不易钻进,岩芯呈土状,断口有油脂光泽,局部含少量长石风化物。随着深度的增加强度逐渐提高,水浸后手捏有滑腻感。岩体完整程度为极破碎,岩体坚硬程度为极软岩,岩体基本质量等级为V 级。

该层未穿透,最大揭露厚度5.50。

3.4 技术依据

《工程测量规范》GB50026-2007

《建筑变形测量规程》JGJT8-2007

《建筑基坑工程监测技术规范》GB50497-2009

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

基坑变形监测方案

本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This desig n is mai nly for a deep foun datio n pit duri ng the con struct ion of foun dati on pit deformatio n and cause the deformati on of the surro unding en vir onment monitoring methods and data processing program design and analysis.The main mon itori ng content of the foun dati on pit wall for mon itori ng horiz on tal displaceme nt and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision an alysis. Keyword: Horizontal displacement observation; settlement observation; tilt observati on; two level; polar coord in ates

最新基坑开挖监测方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

某基坑及周围环境监测方案(精)

XXXX ·文化广场基坑及周围环境监测方案 审定 审核 编制 20XX 年 XX 月 XX 日 目录 第一节工程概况 ........................................................................................................ 2第二节方案编制依据及技术标准 . (2) 第三节监测目的及内容 ............................................................................................ 2第四节监测布点方案 ................................................................................................ 3第五节使用仪器 ........................................................................................................ 6第六节监测方案 ........................................................................................................ 6第七节人员安排 ........................................................................................................ 7第八节观测成果的计算、分析............................................................ 7 第九节观测资料的整理和统计............................................................ 8 第十节质量保证和控制 (9) 第一节工程概况 。本工程地址位于 XXXX ,场地南侧为 XXXX ,东侧为 XXXX 。整个项目包括综合公建 (包括购物中心、办公、酒店等及服务式公寓等。整体开挖深度为22.5米。 第二节方案编制依据及技术标准 (1 根据提供的基坑支护设计方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。 2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

基坑工程监测开题报告

山东科技大学 本科毕业设计(论文)开题报告题目基坑工程的综合监测 学院名称测绘科学与工程学院 专业班级 学生 学号 指导教师 填表时间:年 5 月 6 日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。

设计(论文) 题目 基坑开挖监测 设计(论文)类型(划“√”)工程实际科研项目实验室建设理论研究其它√ 一、本课题的研究目的和意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。监测在取得大量测试数据同时对工程总结经验、完善基坑的支撑、提高设计水平有着重要意义。 根据我市周边地区的基坑工程事故分析可知,由于部分单位不重视基坑施工过程的监测,从而造成了较严重的工程事故,甚至造成了人员伤亡事故。如基坑围护结构的失稳,周边建筑的裂缝及地下设施的破坏。因此,当前对于我基坑开展监测工作已经变得越来越重要。

基坑监测方案资料

海曙科技创业大厦基坑支护工程监测方案 一、编制依据 1.国家行业标准《建筑基坑支护技术规程》(JGJ120-99); 2.《建筑变形测量规程》(JGJ/T 8-97); 3.浙江省标准《建筑基坑支护技术规程》(DB33/T1008-2000); 4.宁波市建筑设计研究院勘察分院提供的《宁波天元大厦工程地质 勘察报告》; 5.《海曙科技创业大厦基坑支护工程施工图》(宁波市建筑设计研究 院); 6.宁波市城乡建委专家组编写的宁波市行业标准《宁波市软土深基 坑支护设计与施工暂行技术规定》; 二、工程概况 宁波海曙科技创业大厦基地位于宁波市海曙区,位于中山西路的北侧,南临花池巷,东靠亨六巷,西到布政巷。基地面积为8084平方米。总建筑面积为59916平方米。地上26层,地下2层,为剪力墙结构,采用孔灌注桩桩基础。 本工程±0.00相当于黄海高程3.8m,基坑开挖深度为约9.5m,基坑开挖面积6645m2,基坑四周延米350m。地下室采用排桩加两道混凝土支撑的支护形式。场地由宁波市建筑设计研究院勘察分院勘察。结构部分由宁波市建筑设计研究院一所设计。 三、监测人员

主要监测管理人员表

四、监测目的、内容、布设及要求 (一)监测目的 为了确保支护结构的安全施工,了解基坑开挖过程中支护结构的安全状况,验证支护结构设计对整个基坑施工过程和内部结构进行施工监测非常必要,监测还可以发现在设计中因地质等因素而没有考虑到可能在施工中影响安全的状况为及时对局部进行加固调整施工提供依据,同时可以根据监测资料总结工程经验,为提高设计水平提供依据。 (二)监测内容 1、深层土体位移观测 基坑侧向变形观测是基坑开挖支护施工过程监测中一项地下各处水平位移的监测方法,常用测斜仪进行测量,它是一种可以精确测量垂直方向土层或围护结构内部水平侧向位移的工程测量仪器,本次工程布设9个水平位移测量监测孔。 2、环梁及立柱水平位移观测 基坑开挖工程施工场地变形观测的目的是通过对设置在支护场地的观测点进行周期性的测量,求得各观测点坐标的变化量,提供评价支护结构和地基土的稳定性技术数据, 本次工程布设了33个环梁和立柱水平位移监测点。 3、环梁及立柱沉降测量 沉降测量是通过精密水准仪以某一起始点为基准测量各点每次高程变化得到各相应点的沉降量(可以用国家水准控制网中的水准控制

基坑变形监测方案

摘要 本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This design is mainly for a deep foundation pit during the construction of foundation pit deformation and cause the deformation of the surrounding environment monitoring methods and data processing program design and analysis.The main monitoring content of the foundation pit wall for monitoring horizontal displacement and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision analysis. Keyword:Horizontal displacement observation; settlement observation; tilt observation; two level; polar coordinates

深基坑变形监测的常见方法及应用

深基坑变形监测的常见方法及应用 本文主要介绍了深基坑的变形监测,分析了深基坑边坡的水平位移和竖向位移的监测方法,阐释了基坑变形监测过程中遇到的各种情况及需要注意的问题。 标签:深基坑;基坑变形监测;水平位移;竖向位移 随着科技的发展和技术的进步,为了解决土地资源日渐减少与城市人口不断增长的矛盾,越来越多的小高层、高层甚至超高层建筑物应运而生。伴随着高层建筑的崛起,深基坑工程也日益发展起来,深基坑的安全问题已经成为基础施工的重中之重。因此深基坑的变形监测也具有更实际更重要的意义。 深基坑工程是指基坑开挖的深度值超过5米(含5米)的基坑(槽)的土方开挖、边坡支护以及降水工程,或者基坑开挖的深度值虽未超过5米,但其地质条件情况、周围环境情况以及地下管线情况等较为复杂,或影响相邻建(构)筑物安全的基坑(槽)的土方开挖、边坡支护以及降水工程。根据规范要求,开挖深度值超过5m、或者开挖深度值虽不超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程变形监测。 基坑监测是指在施工及使用期限内,对深基坑及周边环境实施的检查、监控工作。监测项目主要包括:水平位移监测、竖向位移监测、深层水平位移监测、倾斜监测、裂缝监测、支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测、周边已建建筑的沉降监测等。其中基坑边坡的水平位移和竖向位移监测是最常见的基坑变形监测项目,本文就以此二项监测为例做相应的介绍和分析。 1、基坑变形测置点的设置 变形测量点分为基准点、工作基点和变形监测点。 基准点作为该工程的基准和检核点,必须保证其稳定性,每个基坑工程至少应设置3个基准点。当基准点离所测建筑距离较远致使变形测量作业不方便时,宜在稳定的位置设置工作基点。基准点和工作基点应避开交通干道主路、地下管线、仓库推栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀和破坏的地方,并应选设在变形影响范围以外且稳定、易于长期保存的地方。监测期间,应定期检查基准点和工作基点的稳定性。 基坑工程变形监测点是直接反应基坑变形情况的测量点。根据规范要求,基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。为了满足观测条件,应将点位沿基坑周边布置在边坡顶部,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20米,并应保证每条边坡上监测点数不少于3个。监测点宜采用1015cm长,直径20mm的钢筋,固定在边坡顶部,钢筋顶部刻十字花。

基坑支护监测方案(1)

XXX三期基坑支护 监 测 方 案 XXX有限公司 二O一四年十月十二日

XXX基坑支护监测方案 1.工程概述 工程概况 本工程合肥市XXX?XXX项目三期基坑支护指定分包工程由合肥新站XXX开发有限公司投资新建,工程地点位于合肥市万佛湖路与潜山路交口西北侧ZWQTC-036地块。 合肥市XXX?XXX项目三期基坑支护指定分包工程由江苏东南建筑工程结构设计事务所有限公司设计,基坑支护详见设计图纸。 本支护工程为临时性工程,基坑安全等级为二级,结构重要性系数为,基坑使用期为12个月。 、本工程支护范围内土层分布自上而下依次为素填土、粘土、强风化泥质砂岩、中风化泥质砂岩,基坑底落于粘土中,场地地下水类型为主要为上承滞水。 、基坑开挖深度约为—,基坑靠近星光东路有较多管线,北侧会所周边有天然气管道。经放线,管道在基坑上口线外侧3m,对基坑施工无影响。 、本次设计图纸分为4个剖面,分别为1-1剖面、1a-1a剖面,2-2剖面、3-3剖面。 1-1剖面设计为Φ800旋挖桩,间距,桩长10米,距桩顶2m处设置一道锚索,基坑内侧喷锚护面。1a-1a剖面设计为Φ1000旋挖桩,间距,桩长15米,基坑内侧喷锚护面。 2-2剖面、3-3剖面设计为土钉墙。潜山路一侧设计为自然放坡,放坡比例为1:。 地下底板面标高为,基坑开挖深度为约, 场地岩土工程条件 拟建场地地基土构成层序自上而下为: ①层杂填土(Q ml)——层厚~,层底标高为~。褐、褐灰,褐黄、黄褐色等,湿,松散状态,状态不均匀。该层主要成分为粘性土,表部主要含碎砖石、砼块等建筑垃圾,含有植物根茎,局部地段夹生活垃圾和淤泥质土等。 ②层粉质粘土(Q 4 al+pl)——此层仅局部分布,层厚~,层底标高为~。褐灰、灰黄色等,可塑状态,湿,有光泽,无摇振反应,干强度中等,韧性中等;含少量氧化铁、铁锰结核及高岭土等。 ③ 1层粘土(Q 3 al+pl)——层厚一般为~,层底标高为~。灰褐、褐灰、灰黄、褐黄色等,一般为硬

基坑变形监测方案

佳·5.4克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·5.4克拉项目部 二○一七年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图

一、编制依据 1、佳·5.4克拉基坑开挖图; 2、佳·5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·5.4克拉项目基坑支护结构设计》《佳·5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程±0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为11.77m;西塔筏板厚度为1 500mm,开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q4al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m。

基坑沉降观测方案共9页word资料

大兴康庄两限房(一期) 1#、5#、8#号住宅楼 基坑变形监测方案 北京住总第三开发建设有限公司 康庄工程项目经理部 2009年2月 目录 1. 编制依据 (2) 1.1. 施工图纸 (2) 1.2.主要规程规范 (2) 1.3.其他 (3) 2. 工程概况 (3) 3. 施工部署 (3) 3.1.人员部署 (3) 3.2.监测管理程序 (4) 4. 基坑变形监测的必要性、目的和内容 (4) 4.1.基坑变形监测的必要性 (4) 4.2.监测目的和内容 (4) 5. 监测要求及准备 (5) 5.1.监测要求 (5) 5.2.监测过程控制要求 (6)

5.3.对监测数据结果的要求 (6) 5.4.主要测试设备 (6) 6. 监测方法 (6) 6.1.肉眼观察 (6) 6.2.基坑外半永久性基准点的布置 (7) 6.3.水平位移监测 (7) 6.4.监测频率 (7) 6.5.变形控制标准 (7) 6.6.资料整理和分析反馈 (8) 6.7.其它注意事项 (8) 6.8.监控报警值 (8) 1.编制依据

2.工程概况 3.施工部署 3.1.人员部署 3.1.1.项目部组织机构

项目部施工监测管理人员为岳秀记,负责本工程的基坑变形监测工作;分包单位的监测工作必须严格执行项目部制定的一系列监测管理制度,做到持证上岗。 4.基坑变形监测的必要性、目的和内容 4.1.基坑变形监测的必要性 在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。 4.2.监测目的和内容 监测目的:检验设计所采取的各种假设和参数的正确性,指导基

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

(完整版)深基坑监测方案

************工程 基坑变形监测方案 编制人: 审批人: 施工单位:********************** 2014年10月17日

目录 1、工程概况 (1) 2、监测目的及要求 (1) 3、编制依据 (2) 4、工程地质概要 (2) 5、监测内容 (3) 6、监测频率 (7) 7、测量主要仪器设备 (9) 8、监测工作管理保证监测质量的措施 (9) 9、监测人员配备 (14) 10、监测资料的提交 (14)

基坑变形监测方案 1、工程概况: 1、工程名称:*************** 2、工程地点:***************。 3、建设单位:**************** 4、设计单位:**************** 5、勘察单位:**************** 6、监理单位:***************** 7、施工单位:***************** 8、结构形式:***************** 深基坑支护采用如下方案: 1.1 基坑支护方案 本工程基坑东侧采用钢筋砼排桩支护,北侧采用锚杆加土钉墙支护(详见专项施工方案)。 2、监测目的及要求 2.1.监测目的 在深基坑开挖的施工过程中,基坑内外的土体由原来的静止土压力状态向主动力土压力状态转变,应力状态的改变引起的变形,即使采取支护措施,一定数量的变形总是难以避免的。这些变形包括:深基坑坑内土体的隆起,基坑支护结构以及周围土体的沉降和侧向位移。无论那种位移的量超出了某种容许的范围,都将对基坑支护结构造成危害。因

此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体进行综合、系统的监测,才能对工程情况有全面的了解。确保工程顺利进行。 2.2.深基坑工程监测的要求 在深基坑开挖与支护工程中,为满足支护结构及被护土体的稳定性,首先要防止破坏或极限状态发生。破坏或极限状态主要表现为静力平行的丧失,或支护结构的构造产生破坏。在破坏前,往往会在基坑侧向的不同部位上出现较多的变形或变形速率明显增大。支护结构物和被支护土体的过大位移将引起邻近建筑物的倾斜和开裂。如果进行周密的监测控制,无疑有利于采取应急措施,在很大程度上避免或减轻破坏的后果。 3、编制依据: 3.1《建筑基坑工程变形技术规范》(GB50497-2009) 3.2《城市测量规范》(CJJ8-99) 3.3《精密水准测量规范》(GB/T15314-940) 3.4《工程测量规范》(GB 50026-93) 3.5《建筑边坡工程技术规范》(GB50330-2007) 3.6 《建筑基坑支护技术技术规程》(JGJ120-99) 4、工程地质概要: 4.1本基坑地下水属潜水类型,其主要补给来源为大气降水。 4.2拟建场地浅层土层成份复杂,基坑工程正式施工前应对场地内的障碍物作进一步查明并给予清除,以确保围护体和坑内加固等正常施

深基坑监测方案

目录 一、工程概况 (1) 二、编制依据 (1) 三、基坑侧壁安全等级划分 (1) 四、基坑支护方案 (1) 五、监测目的及要求 (2) 六、工程地质概要 (2) 七、监测内容 (3) 八、监测频率 (8) 九、测试主要仪器设备...................................... - 11 - 十、监测工作管理、保证监测质量的措施...................... - 11 - 十一、监测人员配备........................................ - 14 - 十二、监测资料的提交...................................... - 15 -

一、工程概况: 本项目为CENTER工程,本子项为通风中心;工程号为HB1001,子项号为VX。建设地点:四川省乐山市夹江县南岸乡。 通风中心长58.60m,宽33.10m,建筑高度(室外地坪至女儿墙)为22.900m,消防高度(室外地坪至屋面面层)为22.200m,地上二层,局部三层。占地面积1956.19㎡,建筑面积4298.00㎡。 建筑结构形式:钢筋混凝土框架——抗震墙结构,本建筑设计使用年限为50年,抗震Ⅰ类建筑。 二、编制依据: 1、《建筑基坑工程变形技术规范》(GB50497-2009) 2、《城市测量规范》(CJJ/T8-2011) 3、《精密水准测量规范》(GB/T15314-940) 4、《工程测量规范》(GB 50026-2007) 5、《建筑边坡工程技术规范》(GB50330-2002) 6、《建筑基坑支护技术技术规程》(JGJ120-2012) 7、基坑支护工程施工方案设计 三、基坑侧壁安全等级划分: 基坑 1-2交A-B,1-2交E-F,开挖的基坑深度较大约为8m,放坡系数80°,近似垂直开挖,如破坏后果较严重,因此侧壁安全等级定为一级,侧壁重要性系数1.1。 基坑其他位置地势相对开阔,无相邻建筑等级评定为二级,侧壁重要性系数1.0。

基坑变形监测方案

佳?5.4克拉项目基坑变形监测方案编制:______________ 甘肃统建建筑装饰工程集团有限公司佳?5.4克拉项目部 二O年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图 、编制依据 1、佳?5.4克拉基坑开挖图; 2、佳?5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳? 5.4克拉项目基坑支护结构设计》

《佳? 5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007 5、《建筑工程施工质量验收统一标准》GB50300-2013 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳? 5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳?水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程士0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm开挖深度为11.77m;西塔筏板厚度为1 500mm开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m ②圆砾(Q4al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色,重型动力触探试验修正值N63.5=14.6~23.4 击,中密- 密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中

基坑支护变形监测方案

XXXXXXXXX工程基坑监测 专项案 一、监测工程的概况和边的环境 本工程由一栋18层高层住宅楼及一栋6层多层住宅楼组成,两楼之间有2层商铺连接。该工程含有1层地下室,地下室主要位于18层住宅楼及2层商铺区域,基坑开挖深度约4m。拟建建筑均为框架结构,拟采用桩基础。 拟建工程位于嵊泗县菜园镇,边均有邻近建筑,东侧靠东路,场地东、南、西面山麓距场地3~12m。 二、监测的项目 2.1基坑现场监测的对象: (1)支护结构;(2)相关的自然环境;(3)施工工况;(4)地下水状况;(5)基坑底部及围土体;(6)围建筑物;(7)围重要的道路。 2.2仪器检测: (1)坡顶水平位移;(2)破顶竖向位移;(3)土体深层水平位移;(4)土钉拉力;(5)围建筑物变形。 三、监测的编制依据及人员配置 3.1、编制依据 (2)《建筑基坑工程监测技术规》(GB50497-2009)

(3)《建筑地基基础设计规》(GB50007-2002) (4)《建筑变形测量规》(JGJ8-2007) (5)《建筑基坑支护设计规程》(JGJ120-99) (6)《建筑基坑工程设计规程》(DB33/T1008-2000) (7)本工程围护专项案 (8)瑞邦建设工程检测有限公司基坑监测案 3.2、人员配置如下表 四、监测目的 为了确保在施工期间基坑和围建筑物的安全,对印刷厂商住楼工程进行基坑支护的变形监测。根据定期地进行基坑支护的监测,能动态地反映基坑边的沉降量,当变形超过有关标准或监测结果变形达到报警值时,能够及时地进行加固处理措施,防止出现事故。 监测报警值: (1)深层土体水平位移监测:当日位移超过4mm/d或累计位移达50mm。

基坑变形监测技术方案

基坑变形监测方案2007-11 基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。 本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1.《建筑变形测量规程》(JGJ/T8-97) 2.《工程测量规范》(GB50026-93) 3.《建筑基坑支护技术规程》JGJ120-99 4.《国家一、二等水准测量规范》(GB12897-93) 5.《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

相关主题
文本预览
相关文档 最新文档