当前位置:文档之家› 采用半导体器件的高压纳秒脉冲电路

采用半导体器件的高压纳秒脉冲电路

采用半导体器件的高压纳秒脉冲电路
采用半导体器件的高压纳秒脉冲电路

高精度高重频脉冲激光测距系统

第40卷第8期红外与激光工程2011年8月Vol.40No.8Infrared and Laser Engineering Aug.2011 高精度高重频脉冲激光测距系统 纪荣祎,赵长明,任学成 (北京理工大学光电学院,北京100081) 摘要:在三维激光扫描探测系统中,激光测距的测量重频和测量精度是影响整个系统性能的关键参数。介绍了三维激光扫描探测系统的工作特点,设计了一种以Nios II嵌入式软处理器为核心的高重频、高精度脉冲激光测距系统。通过分析影响测量重频和测距精度的因素,采用双阈值时刻鉴别方法进行计时起止时刻的鉴别,使用TDC-GP2高精度时间间隔测量芯片进行精密计时,设计了基于Nios II嵌入式软处理器的计时控制系统以提高测量重频。实验结果表明:实现了测量重频为20000次/s、测距精度为3cm的激光测距。与传统的单片机控制的计时系统相比,该系统不仅测量重频和测量精度高,且具有更好的可扩展性和灵活性。 关键词:脉冲激光测距;精密时间测量;三维激光扫描;Nios II 中图分类号:TN247文献标志码:A文章编号:1007-2276(2011)08-1461-04 High precision and high frequency pulse laser ranging system Ji Rongyi,Zhao Changming,Ren Xuecheng (School of Photoelectronics,Beijing Institute of Technology,Beijing100081,China) Abstract:In three-dimensional(3D)laser scanning detection system,the measurement repetition rate and measurement precision of laser ranging are the key parameters affecting the performance of the whole system.The work characteristics of3D laser scanning detection system were introduced,and a high repetition rate and high measurement precision pulse laser ranging system based on the Nios II soft-core was designed.According to the analysis of the factors which affected the repetition rate and precision of range measure,the double-threshold time discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2high-precision interval measuring chip was used to achieve high precision on time measure.In addition,the time measure control system based on the Nios II soft-core was designed to improve the measurement repetition rate.Experimental results show that the measurement repetition rate of20000/s and the ranging precision of±3cm are https://www.doczj.com/doc/fb17230747.html,pared with the traditional MCU time measure control system,the designed system owns the advantages of high repetition rate and high measurement precision,furthermore,it is more expandable and flexible. Key words:pulse laser ranging;high precision time measure;3D laser scanning;Nios II 收稿日期:2010-12-18;修订日期:2011-01-17 基金项目:国防科技工业技术基础科研项目(J172009C001) 作者简介:纪荣祎(1984-),男,博士生,主要从事三维扫描激光探测系统的研究。Email:xiaoxiao8673@https://www.doczj.com/doc/fb17230747.html,。 导师简介:赵长明(1960-),男,教授,博士生导师,博士,主要从事新型激光器件与技术、光电子信息技术与系统方面的研究工作。 Email:zhaochm1@https://www.doczj.com/doc/fb17230747.html,

脉冲高压发生器

FS系列直流高压发生器 一、产品介绍 FS系列直流高压发生器采用了高频倍压电路,应用了最新的PWM高频脉宽调制技术,闭环调整,采用了电压大反馈,使电压稳定度大幅度提高。使用性能卓越的大功率IGBT器件及其驱动技术,并根据电磁兼容性理论,采用特殊屏蔽、隔离和接地等措施。使直流高压发生器实现了高品质、便携式,并能承受额定电压放电而不损坏。适用于电力部门、厂矿企业动力部门、科研单位、铁路、化工、发电厂等对氧化锌避雷器、磁吹避雷器、电力电缆、发电机、变压器、开关等设备进行直流高压试验,是新世纪最理想的换代产品。 二、产品特点 1、体积小、重量轻、更美观、更可靠、操作简便、功能齐全,便于野外使用,是新世纪最理想的可靠产品。 2、采用最先进技术、工艺制造,率先应用最新的PWM高频脉宽调制技术、脉冲串逻辑阵列调制,采用大功率IGBT器件,利用高频技术提高频率,频率高达100kHz,从而使

输出高压稳定度更高,波汶系数更小。 3、精度高、测量准确。电压、电流均为数字显示,电压分辨率为0.1kv,电流分辨率为0.1uA,控制箱上电压表直接显示加在负载试品上的电压值,使用时无需外加分压器,接线简单。仪器具有高、低压端测量泄漏电流,高压端采用圆形屏蔽数字表显示,不怕放电冲击,抗干扰性能好,适合现场使用。 4、电压调节稳定度高,全量程平滑调压,输出电压调节采用进口单个多圈电位器,升压过程平稳,调节精度高,并设计有粗调和细调功能。电压调节度优于0.1%,电压、电流测量误差小于1.0%,脉动因数优于0.5%。 5、负极性输出、零启动、连续可调、有过电压、过电流、回零、接地保护、特有断线保护等各种保护功能。自动保护电路功能强,保护完善可靠,使操作安全,各种技术指标均优于行业标准及优于同类产品。 6、增设了高精度75%VDC-1mA的功能,做氧化锌避雷器测量带来极大的方便。轻轻一按无须计算。本仪器控制箱上有75%的电压功能键,在做避雷器氧化锌试验时,当电流升到1000uA时,就打开0.75的按钮,这时,电压表、电流表所显示的值就是75%的数据,做完后应立即将升压的旋钮回到零位上,同时,将细调电压旋钮回到零位上,并应立即按绿色按钮,切断高压并关闭电源开关。再做其它试验。 7、方便的过电压整定设置功能,采用了数字拨盘开关,能将整定电压值直观显示,使你操用更随意,显示数值单位为kv。8、倍压筒可分节结构,现场使用,灵活方便,一机多用,经济实惠。 三、FS系列规格及主要技术参数

高压脉冲发生器的类型

高压脉冲发生器通常有五种方式可以实现: (1)Marx型,其原理图如图1.11所示,工作原理可以简单地概括为“电容器并联充电,串联放电”,即n个电容器对一个电压值为V0的直流电源进行并联充电,串联放电后,在负载上产生一定脉宽、电压幅值为nV0的高压脉冲。Baek等于2007年设计了一套输出为20kV/300A、脉宽为5μs的Marx型高压脉冲发生器。 (2)脉冲升压型,其原理如图1.12所示,这种类型的的发生器是将一个直流电压先经过逆变电路变为双极性的方波,再通过一个脉冲升压器提高电压等级。采用这种方法设计高压脉冲发生器的研究机构比较多,其中美国俄亥俄州立大学的Zhang等在2000年利用该原理搭建了一台输出电压为12kV的高压脉冲发生器,先将1000V的直流电经逆变电路转化为1000V 的双极性方波脉冲,再通过一个变比为1:12的脉冲变压器将电压升至12kV。另外,Alkhafaji 等在2007年也设计一台脉冲升压型结构的高压脉冲发生器,最后输出脉冲幅值30kV、脉宽2.5μs、频率200Hz的高压脉冲发生器。同样地,Rocher等在2010年也根据脉冲升压型的原理设计了一台脉冲幅值为15kV、频率为250~300kHz的高压脉冲发生器。 (3)固态开关串联型,其原理图如图1.13所示,系统一般由高压直流电源、储能电容、固态开关的串、并联模块和负载组成,通过控制串并联开关的导通与关断,可在负载上得到高压脉冲。Prins等于2001年利用IGBT串联技术搭建了一台电压幅值为30kV、电流200A、脉宽在0~99μs可调、频率为1kHz的双极性方波脉冲发生器。在中国,工程物理研究所的孔甘银等研制了电压等级为10kV的固态开关串联型高压脉冲电源。

纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计 随着脉冲功率技术在军事、医疗、环保等领域的快速发展,对于大功率脉冲电源的上升沿宽度要求日益提高,高功率快脉冲也逐渐成为脉冲功率技术的研究热点和发展趋势。而如何以较低的成本在提高脉冲电源电压等级的同时陡化脉冲宽度也是研究的难点之一。 以高压快脉冲为技术核心,以小型化、高重频和高效率为发展方向,本论文提出了一种低成本对称式的脉冲发生拓扑,同时以磁压缩技术陡化脉冲宽度,并深入研究了磁开关的控制技术,以实现高稳定性的纳秒级脉冲电源的研制,论文主要内容分为以下三个部分:1、提出了一种具有对称串联结构的高压脉冲电源拓扑,大幅降低成本;基于这种新型的高压脉冲电源拓扑,分析并初步验证了各种工作环境下的可行性。搭建了该高压脉冲电源的仿真模型,仿真验证了在正常运行和发生闪络等不同状态下电路的工作原理。 在实验室完成了该高压脉冲电源的研制,实验验证了在正常运行和发生闪络等不同状态下对于电路的分析,并在实际应用中证明了该拓扑相对于现有研究的优越性。2、介绍了脉冲磁压缩技术的工作原理,分析了各个磁芯参数对磁开关性能的影响,基于此,确定了磁芯材料的选择,并搭建了磁芯检测平台测量磁芯的磁滞曲线,对比了不同磁芯材料的区别。 基于脉冲电源体积小型化原则,分析了影响磁开关体积的因素,并利用数学模型确定了磁开关参数的最优解。系统地分析了磁复位原理以及磁复位电路与脉冲电源的匹配问题。 最后搭建了30kV/3kW的纳秒级脉冲电源样机,验证了磁复位原理的可行性,以及在高压大功率应用场合可能遇到的问题及其解决方案。3、针对电流型磁复

位方式存在的不足,指出了对于磁开关控制的必要性,并系统地分析了磁开关控制原理,提出了相应的控制方案。 最后基于PLECS软件搭建了35kV的纳秒级脉冲电源的仿真模型,通过仿真验证了控制方案的可行性和稳定性,并从实际应用角度分析了磁开关的最佳工作区间。

快前沿纳秒高压脉冲源的开发及实验研究

第16卷 第11期 强激光与粒子束V ol.16,N o.11 2004年11月HIG H POWER LASER AND PARTIC LE BE AMS N ov.,2004 文章编号: 100124322(2004)1121434203 快前沿纳秒高压脉冲源的开发及实验研究 Ξ 谭坚文1, 石立华1, 李炎新1, 张力群1, 谢彦召2 (1.解放军理工大学工程兵工程学院,江苏南京210007; 2.西北核技术研究所,陕西西安710024) 摘 要: 针对国际电工委员会1996年制定的IEC610002229和美国国防部1999年修定的MI L 2ST D 2461E 标 准提出的高空核爆电磁脉冲波形,研制了一台新型纳秒高压脉冲源。其产生的双指数波脉冲前沿小于3ns ,脉 宽58ns ,幅度可达4kV ,此外还可产生前沿小于2ns 、幅度最高为4kV 的脉冲方波;两种脉冲均可实现单次和间 歇可调输出。介绍了脉冲源的电路设计和调试结果,通过实验对比了MI L 2ST D 2461E 与MI L 2ST D 2461D 两种双指 数波形条件下某测控系统模块的干扰耦合效应。 关键词: 核爆电磁脉冲; 高压脉冲发生器; 辐射干扰; 电磁兼容 中图分类号: TH752.5 文献标识码: A 高空核爆电磁脉冲(HE MP )的典型波形分为早期、中期和晚期三种不同表述形式。就早期波形来说,其波形参数的定义,在1996年国际电工委员会(IEC )制定的IEC610002229[1]和1999年美国国防部(DOD )修订的MI L 2ST D 2461E [2]中均采用图1所示的波形,上升时间t r (10%~90%)为2.5ns ,下降时间t f (90%~10%)为55ns ;峰值电场强度为50kV/m 。该波形参数与较早颁布的MI L 2ST D 2461D [3]有较大差别。文献[4]对已颁布的各种高空核爆电磁脉冲波形标准进行了对比,而文献[5]则通过理论计算,讨论了MI L 2ST D 2461D 规定的和IEC 1996年推荐的HE MP 对长电缆的不同耦合效应。 Fig.1 Early 2time HE MP defined by IEC610002229and MI L 2ST D 2461E 图1 新标准定义的HE MP 早期波形 以往大量的HE MP 效应试验是针对MI L 2ST D 2461D 标准波 形进行的,为适应新的电磁脉冲环境模拟试验的需要,有必要研 制符合MI L 2ST D 2461E 标准的高压脉冲源发生器。本文介绍的 纳秒高压脉冲源波形上升时间和下降时间符合新的HE MP 波形 参数要求,脉冲最高幅值在4kV 下连续可调,脉冲重复频率从 1H z 至数H z 利用这一设备提供的测试波形,在TE M 室中 实验对比了该脉冲源与基于旧标准的脉冲源产生的辐射环境对 电子线路的干扰效应。1 高压脉冲源的组成 脉冲源包括直流高压、脉冲形成和触发电路三部分。图2为其结构示意图。直流高压部分采用240V/10kV 变压器升压,经限流电阻和半波整流后,送至高压储能单元,它具有结构简单、可靠性高的特点。高压储能单元主要由3个30kV 的电容组成,能在脉冲重复频率较高的情况下及时给放电电容C 1或方波成形线充电 。 Fig.2 Diagram of the high v oltage pulse generator 图2  脉冲源结构示意图Fig.3 Schematic of the discharging circuit 图3 放电回路原理图 Ξ收稿日期:2004203225; 修订日期:2004207212基金项目:国家自然科学基金资助课题(编号:60172002;50237040) 作者简介:谭坚文(1980— ),男,硕士研究生,现从事电磁脉冲防护方面的研究工作;E 2mail :artan @https://www.doczj.com/doc/fb17230747.html, 。

高压脉冲发生器

FS系列直流高压发生器 一、产品概述: 高压脉冲发生器广泛用于电表、家用电器、低压电器、机电等相关行业进行绝缘性能试验。高压脉冲发生器主要包括充电电路、脉冲成形电路两大部分。此外,脉冲变压器是高压大功率脉冲发生器中的关键部件,其功率转换效率高并对减小脉冲发生器的体积和重量起到决定作用。 FS系列直流高压发生器是我公司根据中国行业标准BF24003-90《便携式直流高压发生器通用技术条件》的要求,重新设计制造的新一代便携式直流高压发生器。它适用于电力部门、企业动力部门对氧化锌避雷器、电力电缆、发电机、变压器、开关等设备进行直流高压试验和泄漏电流试验。 二、高压脉冲发生器设计的要点 1、充电电路 目前比较常见的高压脉冲发生器充电电路包括电阻充电电路和电感充电电路。电阻充电电路结构简单、技术成熟,但其充电效率低,一般适用于中小功率、脉宽窄或工作比很低的场合;电感充电电路,由于其效率较高,故在大功率、高频场合下经常使用。另外,还有回扫充电电路、阶梯充电电路等。实际应用中需根据具体要求选择合适的充电电路。

2、高压脉冲成形 高压脉冲成形是高压脉冲发生器的主要部分。对于一般的指数型脉冲,可以通过控制调制开关的导通,使储能电容通过调制开关对负载放电,从而在负载上得到输出脉冲。该方法简单、技术成熟,但其杀菌效率明显低于方波脉冲。目前高压方波脉冲的产生一般采用全桥逆变加脉冲变压器升压。这种脉冲成形电路的优点是降低了初级电路的设计难度,但也存在很大的缺陷,如初级的震荡会传递到次级,从而使输出波形变差,其占空比的调节也比较困难,在频率较低时脉冲变压器体积较大且难设计。随着高压大电流开关的发展,使用高压直流电源、高压调制开关,可以通过控制开关的导通和关断在负载上得到脉冲输出。 该开关通过简单的电路,将功率MOSFET或者IGBT串并联,通过选用低感元件及合理的布局,从而实现脉宽和频率宽范围可调的高压脉冲发生器,且寿命长易于维修,但串并联开关器件导通和关断的控制电路设计比较复杂,需考虑均压均流同步等问题。另外,还有一种线型脉冲调制器,其以人工线(脉冲形成网络)做储能元件,用氢闸流管或晶闸管SCR 做开关,实现全部放电的脉冲调制器。其中人工线由电容和电感组成,随着其级数的增加,输出脉冲的波形越趋于方波。但人工线参数一旦确定,其输出脉宽就基本确定,所以该方法不适用于要求输出脉宽大范围可调的场合。实际应用中根据实际输出脉冲的指标要求来选取合适的脉冲成形电路。 3、高压脉冲变压器的设计 高压脉冲发生器中为了解决调制开关器件的电压等级以及阻抗匹配等问题,一般采用脉冲变压器。脉冲变压器的使用会使其最大输出脉冲受限于脉冲变压器磁芯的可利用伏秒特性,为了增加输出脉宽,一般增加去磁电路,以使其磁芯复位。利用脉冲变压器升压的高压脉冲发生器,其初级电路电压等级降低、设计难度减小。但这种结构要求脉冲变压器初级必须流过较大的电流,在脉冲变压器升压比较大时初级电流更大。因此在设计中要根据输出电压幅值、功率大小、脉冲调制开关的开关能力和脉冲参数的要求等方面进行权衡以确定合适的脉冲变压器升压比。脉冲变压器的漏感以及回路分布电感会影响输出脉冲的前后沿,因此在对输出脉冲前后沿要求较高或要求输出窄脉冲时,应设法减小脉冲变压器的漏感以及合理布局放电回路。 三、工作原理

ME2000H轨道电路综合测试仪说明书(A4)

目录 1产品介绍 ............................................................................................................................. - 2 - 1.1概述 ..................................................................................................................... - 2 - 1.2功能介绍 ............................................................................................................. - 2 - 1.2.1单载频信号测量功能.................................................................................. - 2 - 1.2.2多载频测量功能 ......................................................................................... - 2 - 1.2.3单频测量功能 ............................................................................................. - 3 - 1.2.4直流测量功能 ............................................................................................. - 3 - 1.2.5补偿电容在线测量功能.............................................................................. - 3 - 1.2.6相敏测量功能 ............................................................................................. - 3 - 1.2.7阻抗在线测量功能...................................................................................... - 3 - 1.2.8示波器功能 ................................................................................................. - 3 - 1.2.9高压脉冲轨道电路测量功能...................................................................... - 3 - 1.2.10高压脉冲和ZPW2000移频信号叠加测量功能 ............................... - 4 - 1.2.11高压脉冲和中国移频信号叠加测量功能.................................................. - 4 - 1.2.12调整表功能 ......................................................................................... - 4 - 1.2.13数据存储功能...................................................................................... - 4 - 2技术指标 ............................................................................................................................. - 4 - 2.1使用条件 ............................................................................................................. - 4 - 2.2直流测项指标 ..................................................................................................... - 4 - 2.3单频测量指标 ..................................................................................................... - 5 - 2.4移频测量指标 ..................................................................................................... - 5 - 2.4.1中国移频制式 ............................................................................................. - 5 - 2.4.2UM71/ZPW-2000制式 ............................................................................... - 5 - 2.5补偿电容测量指标 ............................................................................................. - 6 - 2.6相敏测量指标 ..................................................................................................... - 6 - 2.7阻抗测量指标 ..................................................................................................... - 6 - 2.8高压脉冲轨道电路测量指标.............................................................................. - 6 - 2.9电流钳性能指标 ................................................................................................. - 7 - 3产品使用 ............................................................................................................................. - 7 - 3.1信号输入 ............................................................................................................. - 7 - 3.1.1电压信号输入 ............................................................................................. - 7 - 3.1.2电流信号输入 ............................................................................................. - 7 - 3.2开机与关机 ......................................................................................................... - 7 - 3.3打开背光 ............................................................................................................. - 7 - 3.4系统设定 ............................................................................................................. - 8 - 3.4.1自动关机时间设定...................................................................................... - 8 - 3.4.2背光保持时间设定...................................................................................... - 8 - 3.4.3日期时间 ..................................................................................................... - 8 - 3.5屏幕亮度/对比度设定 ........................................................................................ - 8 - 3.6电压和电流切换 ................................................................................................. - 8 - 3.7数据锁定 ............................................................................................................. - 8 - 3.8电池充电 ............................................................................................................. - 8 - 4出厂配置清单 ..................................................................................................................... - 9 - 5使用小常识 ......................................................................................................................... - 9 - 5.1使用与养护 ......................................................................................................... - 9 -

等离子体应用中高压脉冲电源的研制

华中科技大学 硕士学位论文 等离子体应用中高压脉冲电源的研制 姓名:钟生辉 申请学位级别:硕士 专业:环境工程 指导教师:李胜利 2003.5.6

华中科技大学硕士学位论文 摘要 l脉冲功率电源是低温等离子体技术在环境工程应用中的关键设备,其总体能量转化效率和脉冲功率的容量是影响等离子体技术工业化应用的重要因素十本文首先综述了一系列典型的脉冲电源回路,以及当前国内外脉冲电源研究的最新进展,提供了了几种新的电源结构。结合脉冲功率电源在环境工程应用中的要求和以往的设计经验,提出了新的设计思路。 在研制处理垃圾渗滤液的实用化电源中,分别对高压脉冲放电回路的原理电路进行了数值分析和仿真分析。f根据分析结果,对电路进行了具体的改进措施。在电源控制回路中的设计中,考虑了一般的电路保护项目,加入了零电压启动的闭锁回路,并利用Rogowski线圈实现了放电电压幅值的自动保护功能。最后针对现场运行时复杂的放电环境,提出了绝缘匹配方案。、l 在脉冲高压开关电源的研制中,给出了电源的总体设计方案。在其中的Buck变换器设计中,首先通过数值计算,给出电路元件的参数,然后利用Simulink对电路仿真分析,发现功率晶体管在开关瞬间在集一射极之间有浪涌电压出现,根据结果对电路加入了保护电路。(经电路实验,验证了电路保护设计的成功;在半桥逆变回路设计部分,给出了电路的原理分析,依据电路设计参量选取了相应的电路参数;高频高压变压器作为半桥逆变回路的关键设备,影响着电路工作的可靠性和性能,主要针对它进行了具体的设计和分布参数分析。1 关键词:脉冲功率电源’/Rogowski线圈、/Bllck变换器;半桥逆琴高频变压器

亡的多参数可调高压纳秒脉冲发生器_图文(精)

1llO仪器仪表学报第3l卷 3高压纳秒脉冲发生器的研制 高压纳秒脉冲发生器的原理框图如图3所示,该装置主要由高压直流电源、纳秒脉冲形成系统和脉冲整形及计数系统三大部分组成。 纳秒脉冲形成系统 …………….企……………. 钮刮里h—习■刭一传:感厶畸器ry t 图3高压纳秒脉冲发生器基本原理框图 Fig.3The basic principles of the hish—voltage nanosecond pulse generator

高压纳秒脉冲发生器基本原理:高压直流电源通过限流保护电阻向LC形成线网络充电,在达到自击穿开关阈值电压时,自击穿开关瞬间击穿并在匹配负载(50Q处产生幅值为充电电压一半的高压纳秒方波脉冲。电流传感器在放电回路中采集脉冲电流,经过滤波、脉冲整形处理电路引入脉冲计数器,在脉冲输出重复频率一定时,通过计数器内置继电器控制整个装置的电源输入,从而实现本装置治疗时间窗口可控。 3.1高压直流电源 为减小装置的体积和重量,满足医用设备便携、简单可靠特性,高压直流电源采用高压恒流源(天津东文DW—IX303.1FlD。输出电压:DC O一+30kV;最大输出电流:l mA,电源配有电流、电压显示模块和调节电位器,并具有过压、过流保护模块。通过调节电源输出电流来控制LC形成线网络的充电速度,进而控制自击穿开关的闭合频率,最终实现装置输出脉冲重复频率可调,便于寻找最佳肿瘤细胞治疗剂量。 3.2纳秒脉冲形成系统 纳秒脉冲形成系统主要由LC网络、自击穿开关和负载电阻组成。 高陡度方波脉冲所包含的高频分量将有助于肿瘤细胞内电处理效应,进一步提高肿瘤细胞凋亡率及治疗效果,因此如何提高输出脉冲上升沿陡度是本装置的关键技术之一。根据电路理论¨…,脉冲的上升时间与杂散电感成正比,因此本装置主要从两个方面提高方波前沿的陡度。一方面在设计过程中,选择优质无感电容、电阻;合理布线,尽量减小回路所包含的面积,以减小回路杂散电感。另一方面,设计低导通时延的高性能自击穿开关。 3.2.1LC网络 高压电容选用无感陶瓷电容(西安九元CT8-1。电容值200pF,充分考虑裕度,电容耐压值选40kV。

基于PLD的纳秒级脉冲发生器

基于PLD的纳秒级脉冲发生器 随着电子技术的迅速发展,高速信号触发源已经广泛应用于通讯、雷达等 各种电子系统的测试和精确控制中。这就要求有一个稳定性好、纳秒上升沿、 可控的脉冲发生器。但是,国内至今还没有合乎这些要求的商用脉冲发生器。 即使在国际上普遍使用的加拿大生产的AVI-N 型脉冲发生器也存在着幅度小、 重复率低、易损坏等缺点。针对此现状,设计一款高速脉冲信号发生器是非常 有意义的。可编程逻辑器件(PLD)经历了PAL,GAL,CPLD 和FPGA 几个发 展阶段,技术日趋成熟。采用VHDL 语言对PLD 进行编程设计具有更改灵活、调试方便、操作性强、系统可靠性高等众多优点,并有利于硬件设计的保护, 防止他人对电路的分析、仿照。因此,利用PLD 器件为核心构造高速脉冲信号发生器是一种有效的方法。 1 基本原理 设计采用的XILINX 公司的复杂可编程逻辑器件(CPLD)几乎可适用于所有的 门阵列和各种规模的数字集成电路,他以其编程方便、集成度高、速度快、价 格低等特点越来越受到设计者的欢迎。选用的CPLD 为XILINX 公司的 XC9572XL,属于XC9500 系列,是目前业界速度较快的高集成度可编程逻辑 器件。 CPLD 开发软件用ISE 6.0+ModelSim 5.7SE,该软件是一个完全集成化、易学易用的可编程逻辑设计环境,并且广泛支持各种硬件描述语言。他还具有与 结构无关性、多平台运行、丰富的设计库和模块化的工具等许多功能特点。CPLD 主程序流程图如图1 所示,时针信号是整个程序的关键,通过时钟对 各个模块进行精确控制,实现基本功能。时钟信号的精准度决定了输出脉冲信 号的精准度。时钟源采用了4 脚晶振,可以输出一个稳定的时钟信号。CPLD 内部电路资源分配如图2 所示。

新型高压快脉冲发生器

新型高压快脉冲发生器 相关情况解析方案 https://www.doczj.com/doc/fb17230747.html,/来源:元器件交易网日期:2012年02月03日 1、引言 目前,在大功率、高频率、窄脉冲的应用领域中利用的基本都是真空管,如:二次电子发射管、放电间隙开关、触发管、氢闸管等。主要研究方向是如何提高电真空器件的开关速度,减小其触发晃动,研制与其相配的高速高压驱动电路。但是真空电子管这类器件存在损耗大、驱动电路庞大、冷却麻烦等缺点;同时,为了在速调管打火时对其进行快速保护,还经常需要在调制器中设置复杂的撬棒管及其触发电路,这些问题直接影响调制器的效率和可靠[1]。近年来,由于半导体器件的电压和功率等级不断提升,相关技术也在逐步完善,为解决上述问题创造了条件。基于该项技术发展趋势,本文设计了一种新型高压快脉冲发生器。 2、输出指标和基本结构 高电压、快脉冲和高重复率是脉冲功率装置的发展方向。高频化是减小系统体积的一个有效途径。本设计采用IGBT做为主开关器件,输出脉冲电压峰峰值为±5kV,频率为1kHz~10kHz可调,脉冲前沿200ns。

本高压快脉冲发生器的设计主要分为三部分: (1)可调高压直流发生器:使用工频交流电为电源,在低压部分经过整流、逆变电路产生低压脉冲,经脉冲变压器升压,成为高压脉冲再经不可控整流为高压直流。再将其作为高压直流电源提供给最后的高压脉冲发生部分。可调高压直流发生器结构如图1所示。 图1 可调高压直流发生器结构图 (2)高压脉冲发生部分:将高压直流电源提供的直流高压送入可控开关器件,产生所需要的高压脉冲。 (3)高压逆变控制和驱动部分:控制高压逆变过程中的开关器件的开通与关断。在控制方面采用基于PWM控制方法的芯片SG3525。在驱动电路方面,采用三菱公司的IGBT专用驱动芯片M57962L。

高压脉冲轨道电路测试仪表

07 型脉冲峰值数字表 07 型脉冲峰值电压表是针对高压高压脉冲轨道电路的专业仪表,它在4位微处理器高端数字万用表的基础上,增加了测试脉冲峰值电压挡,为满足测试峰值电压的要求,07 型峰值电压表采用电压量程自动转换功能,测试数据准确,其次,保留原万用表的全部功能,携带方便一表多用。 峰值电压表的工作原理:在连续的高压脉冲电压经二极管向高压电容充电,使高压电容两端逐步接近峰值电压。由于峰值电压表其内部阻抗高,并采用电压自动换挡功能,可稳定显示脉冲峰值电压。 峰值电压表的技术指标: 1、输入幅度:脉冲0~700V 2、直流电压量程:0~1000V 3、输入阻抗:10MΩ 4、准确度:±(1.0%+4D) 5、分辨力:1V 6、最大显示:3999 4(自动极性显示)峰值电压表采用4 位微处理器和双积A/D 转换集成电路,因此它具备数据保持、相对值测试、自动极性显示、自动换挡等功能。具有高分辨力,高精度的数值显示。 为测试峰值电压数据的稳定准确,具备了可靠的技术保证。 峰值电压表的使用方法: 1、将开关置于“ON”位置,检查电池,如果电池电压不足,则需

更换电池。电池正则按以下步骤操作: 2、….测试笔插孔旁边的符号,表示输入电压或电流不应超过指 示值,这是为了保护内部线路免受损伤。 3、….测试脉冲峰值之前,左上角功能开关置于脉冲位置,选择 直流脉冲1000伏的两成。 4、以正表笔为准,测试正极性脉冲,反用表笔测试负极性脉冲 5、恢复左上角功能开关应置于万用表位置,可当数字万用表使用。

ME2000H型轨道电路综合测试仪 1 产品介绍 1.1 概述 ME2000H轨道电路综合测试仪是针对铁路部门而研制的多功能专用仪器,适用于电务工区日常检测和维护使用,本仪器具有体积小、精度高、操作简便等特点。本仪器能完成单载频信号测量、多载频测量、单频测量、直流测量、补偿电容在线测量、阻抗在线测量、25Hz、50HZ相敏轨道电路测量、示波器、高压脉冲轨道电路测量、高压脉冲和移频轨道电路叠加测量、轨道电路调整表和数据存储等功能。 1.2 功能介绍 1.2.1 单载频信号测量功能 ME2000H仪器能够完成中国移频、UM71、ZPW-2000等多种制式的测量,测量显示的内容有: ●信号的上边频频率; ●信号的下边频频率; ●信号的中心频率; ●信号的低频频率; ●信号电压或电流的真有效值; ●与信号相混叠的25Hz、50Hz工频干扰电压或电流份量真有效 值。 对单载频信号测量时,ME2000H仪表具有频率自动识别功能,即在不知道信号频点的情况下也可进行测量。

电快瞬变脉冲群发生器说明书

海林自控 快速群脉冲发生器 操作手册 编制/日期: 审核/日期: 批准/日期:

第一章 面板说明 一、前面板说明 图 3 EMS61000-4B快速群脉冲发生器前面板示意图 1. EUT电源指示灯:当试品电源输入端已上电,并且“EUT ON”按键按下后,此指示灯亮,表明EUT电源输出端已通电,否则此指示灯熄灭。 2. EUT电源输出端口:此端口可连接被试设备的电源端,供受试设备工作。 3. 群脉冲耦合端:通过同轴电缆线或一转三连接器将P.OUT输出端与其中一个或多个耦合端连接,可将群脉冲耦合至相应路径。 4. P.OUT输出端:脉冲群输出口,可与左侧群脉冲耦合端连接。也可用于观察波形或连接电容耦合夹进行信号线试验,观察波形时必须在端口接上高压衰减器和400M以上示波器。 5. 接地端(SG):用于与参考接地板进行连接。 6. “谨防高压”警示灯:当仪器在测试状态时,该警示灯亮。 7. 电压调节旋钮:用于调节试验电压,顺时针旋转时电压增大,逆时针旋转时电压减小。开机和关机之前均要将其逆时针旋转到底。 8. 操作键

脉冲频率选择:在复位状态下,按此键可进行2.5kHz/5kHz/100kHz脉冲重复频率的切换,相应指示灯会点亮;在设定状态下,按此键为光标循环左移; POS/NEG:在复位状态下,按此键切换试验电压正、负极性,相应指示灯会点亮;在设定状态下,按此键为光标循环右移; EUT.ON:此键用于控制受试设备工作电源的接通和断开;在设定状态下,按此键为光标所在位置数循环减1; △:在设定状态下,按此键为光标所在位置数循环加1; 设定/确定:在复位状态下,按此键可进入试验时间的设定;在设定状态下,按此键确认并完成该项设定。 9. 电源开关(POWER):仪器电源开关。 10. 复位键(RESET):按此键可切断脉冲输出,测试结束,相应警示灯会熄灭。 11. 启动键(START):按此键可启动脉冲输出,测试开始,相应警示灯会闪烁。 12. 显示窗口B:时间显示窗口,用于显示试验时间,单位为s。 13. 显示窗口A:试验电压显示窗口,用于显示脉冲峰值电压,单位为kV。

相关主题
文本预览
相关文档 最新文档