当前位置:文档之家› 岩体裂隙扩展过程的有限元仿真

岩体裂隙扩展过程的有限元仿真

岩体裂隙扩展过程的有限元仿真
岩体裂隙扩展过程的有限元仿真

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元分析方法和材料断裂准则

一、有限元模拟方法 金属切削数值模拟常用到两种方法,欧拉方法和拉格朗日方法。欧拉方法适合在一个可以控制的体积内描述流体变形,这种方法的有限元网格描述的是空间域的,覆盖了可以控制的体积。在金属切削过程中,切屑形状的形成过程不是固定的,采用欧拉方法要不断的调整网格来修改边界条件,因此用欧拉方法进行动态的切削过程模拟比较困难。欧拉方法适用于切削过程的稳态分析(即“Euler方法的模拟是在切削达到稳定状态后进行的”[2]),仿真分析之前要通过实验的方法给定切屑的几何形状和剪切角[1]。 而拉格朗日方法是描述固体的方法,有限元网格由材料单元组成,这些网格依附在材料上并且准确的描述了分析物体的几何形状,它们随着加工过程的变化而变化。这种方法在描述材料的无约束流动时是很方便的,有限元网格精确的描述了材料的变形情况。实际金属切削加工仿真中广泛采用的拉格朗日方法,它可以模拟从初始切削一直到稳态的过程,能够预测切屑的形状和工件的残余应力等参数[2]。但是用这种方法预定义分离准则和切屑分离线来实现切屑和工件的分离,当物质发生大变形时常常使网格纠缠,轻则严重影响了单元近似精度,重则使计算中止或者引起严重的局部变形[1]。 为了克服欧拉描述和拉格朗日描述各自的缺点,Noh和Hirt在研究有限差分法时提出了ALE(Arbitrary Lagrange-Euler)描述,后来又被Hughes,liu和Belytschko等人引入到有限元中来。其基本思想是:计算网格不再固定,也不依附于流体质点,而是可以相对于坐标系做任意运动。由于这种描述既包含Lagrange的观点,可应用于带自由液面的流动,也包括了Euler观点,克服了纯Lagrange 方法常见的网格畸变不如意之处。自20世纪80年代中期以来,ALE描述己被广泛用来研究带自由液面的流体晃动问题、固体材料的大变形问题、流固祸合问题等等。金属的高速切削过程是一个大变形、高应变率的热力祸合过程,正适合采用ALE方法。 采用ALE方法进行高速切削仿真克服了拉格朗日方法和欧拉方法需要预先定义分离线、切屑和工件分离准则,假定切屑形状等缺点,避免了网格畸变以及网格再划分等问题,使切屑和工件保持良好的接触,使计算易于收敛[1][4]。 二、材料断裂准则 在金属切削成形有限元模拟中提出了多种切屑分离准则,这些准则可以分为两种类型:物理准则和几何准则。 优点: 几何分离准则需要预定义加工路径,在加工路径上判断刀尖与刀尖前单元节点的距离变化来判断分离与否。当两点的距离小于某个临界值时,刀尖前单元的节点被分成两个,其中一个节点沿前刀面向上移动形成切屑,另一个保留在加工表面上形成己加工表面[1][2]。。 物理分离准则是基于刀尖前单元节点的应力、应变及应变能等物理量定义分离条件,当单元中的该物理量的值超过给定材料的对应值时,单元节点就会分离[2]。(物理标准主要是基于制定的一些物理量的值是否达到临界值而进行判断的,主要有基于等效塑性应变准则、基于应变能密度准则、断裂应力准则等[5])。 Carroll和Strenkowski使用了等效塑性应变作为物理分离准则的标准,在一些有限元软件中该标准的演化得到了应用,ABAQUS/Explicit中的剪切失效准则(shear failure)就是这样一种物理准则,它根据单元积分点处的等效塑性应变值是否到达预设值来判断材料是否失效[1]。 缺点:

精讲solidworks有限元分析步骤

2013-08-29 17:31 by:有限元来源:广州有道有限元 1. 软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2. 使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。 ▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

金属切削过程韧性断裂的有限元仿真现状

金属切削过程韧性断裂的有限元仿真现状 工件材料的断裂准则是金属切削加工有限元仿真的关键技术。分析了国内外金属切削加工有限元仿真的研究现状,并进一步对不同工件材料的断裂仿真技术的特点、适用条件进行了比较分析,指出了现阶段工件材料断裂准则仿真技术尚存在的问题,探讨了切削过程有限元仿真技术的发展趋势,为切削过程有限元建模发展提供一定的参考。 标签:金属切削:韧性断裂;有限元模型 引言 金属切削加工在21世纪依然是机械制造业的主要加工方法。它在保证高效率和低成本的基础上,通过刀具和工件的相互作用,去除工件表面的多余材料,来获得所需工件形状、加工精度和表面质量要求。而在在金属切削加工工艺中,不可避免地出现材料断裂现象,所以必须合理地利用材料产生的断裂,才能实现切削工艺过程[1]。 现代工业研究方法主要包括三种:理论分析、试验研究和有限元仿真,这三种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。基于有限元仿真技术强大的数值分析能力,它已成为定量研究金属切削加工过程的有效手段,该技术对减少制造成本,缩短产品制造周期和提高产品质量具有重要意义。 1 应用背景 19世纪中期,人们开始对金属切削过程的研究,到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理,对其研究一直是国内外研究的重点和难点。过去通常采用实验法,它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。 传统的切削过程研究中,试验法是最主要的研究方法,即根据试验结果得出经验公式,从而预报切削力。日益增长的时间设备材料和人力成本的消耗促使人们寻找更通用、更有效的研究方法。而有限元法在分析弹塑性大变形问题,包括分析需要考虑与温度相关的材料性能参数和具有很大的应变速率的问题方面有着杰出的表现。 在金属断裂行为的预测方面,有限元技术可以对其进行模拟仿真,仿真过程能否顺利进行,对断裂行为的预测准确与否,取决于很多因素,其中断裂准则的准确获得以及有限元仿真过程断裂行为网格的调整和重新划分技术,成为工艺顺利进行和结果准确的关键。应用表明,合理利用有限元模拟仿真技术对金属断裂行为进行分析,可以准确预测金属成形缺陷,优化工艺路线和工艺参数[2]。

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

复合材料中的尺寸效应

复合材料中的尺寸效应 复合材料本身就是一种广义的结构,这种结构的破坏问题与结构的尺寸效应有 着必然的联系,复合材料中很多都属于准脆性材料,因此尺寸效应显得尤其重要, 从尺度律和尺寸效应角度研究强度问题是个重要的观点,比如一个长细杠件它的稳定性能一定较差,这也是一种较常见的尺寸效应问题。强度随机性引起的尺寸效应,能量释放的尺寸效应和微裂纹和断裂的分形特性产生的尺寸效应都对复合材料结构的强度的影响有着重要意义。 目前,固体力学中有三种有关尺寸效应的基本理论 : (1)随机强度统计理论 ; (2)长裂纹引起的应力重新分布和断裂能量释放理论 (3)裂纹分形理论,它可分为两大类 : (a) 裂纹表面的侵入式分形特性理论(即表面粗糙度的分形属性) (b) 间隙分形特性理论(代表着微裂纹的分形分布)

这些基本理论概括表现为材料的四种尺寸效应: (l)边界层效应:它是由材料的非均匀性和泊松效应造成的.前者可以混凝土之类的材料为例,由于各种骨料不能穿透表面而使表面层具有不同的成分;而泊松效应指的是,在试样内部可能存在平面应变的状态,它们发生在与试件表面平行的平面上 ,但不是发生在试样的表面,而是发生在试件的中心部位 . (2)表面与裂纹边缘连接处存在三维应力的奇异性: 这也是由于泊松效应引起的.这就造成了断裂扩展区域靠近表面的那一部分的力学行为不同于试样内部 的力学行为 . (3)由扩散现象引起的时间相关的尺寸效应, 所谓扩散可以是多孔介质中热的输运或湿气和化学物质的输运,这一点已在收缩和干燥蠕变现象的尺寸效应中显示出来,原因是半干燥期依赖于尺寸,以及这种尺寸效应对收缩致裂的影响。 (4)材料本构关系的时间相关性 ,特别是材料应变软化的粘性特征

有限元模拟分析

天津理工大学 材料成型过程模拟 题目:关于紫铜管正挤压成型过程模拟姓名:余玉洋 学号: 20090771 组长: 陈磊 其他成员:焦智、张雪平、周桐、吴天昊、 张艳艳、张秋婕、刘学力

目录 1、题目描述 2、题目分析 3、解题模拟、思路 4、模拟过程 5、模拟结果分析 6、结论 7、参考文献 一、题目描述: 如图1.1所示为金属紫铜坯料和挤压模具结构示意图,紫铜的应力应变关系如图1.2所示,坯料与模具之间的摩擦系数为0.15。求挤压过程中坯料内部的应力场变化、应变场变化。 ①坯料紫铜的材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 ②模具材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 二、题目分析: 三、解题模拟、思路: 1、定义工作文件名和工作标题: 1.1、定义工作文件名执行Utility Menu-File→Chang Jobname-20090771,

单击OK按钮。 1.2、定义工作标题执行Utility Menu-File→Change Tile-yuyuyang20090771,单击OK按钮。 1.3、更改目录执行Utility Menu-File→change the working directory –D/ansys。 2、定义单元类型和材料属性: 2.1、设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK,如图2.1. 图2.1 2.2、选择单元类型 执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2.2所示,选择OK接受单元类型并关闭对话框。 图2.2定义单元类型对话框 2.3、定义材料属性

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

基于有限元计算的金属断裂准则的应用与分析

第32卷第3期Vo l 32 No 3 锻 压 技 术 FORGING &STAMPING TECHNOLOGY 2007年6月 Jun.2007 基于有限元计算的金属断裂准则的应用与分析 * 胡建军1**,许洪斌1,金 艳2,陈元芳1 (1 重庆工学院材料学院,重庆 400050;2 重庆工学院计算机学院,重庆 400050) 摘要:为获得金属各种断裂行为的有限元分析与实际情况的符合度,论述了金属材料在有限元分析中常见断裂的判断方法。介绍了断裂行为有限元分析关键技术和常见延性断裂准则,并提出一种获得金属断裂准则的方法,以及此方法在断裂行为有限元分析中的成功应用。介绍了断裂行为有限元分析过程中有限元网格的调整和重划分,有限元技术在挤压、金属切削、切断和精冲工艺中断裂行为的成功分析,得出断裂行为有限元分析中的关键因素。关键词:断裂行为;有限元;断裂准则 中图分类号:TG111 91;TG301 文献标识码:A 文章编号:1000 3940(2007)03 0100 04 Application and analysis of metal fracture behavior based on FEM calculation HU Jian jun 1,XU Hong bin 1,JIN Yan 2,CHEN Yuan fang 1 (1 Depar tment o f M ater ial Science and Eng ineering ,Cho ng qing Institute of T echno lo gy ,Cho ng qing 400050,China;2 Depart ment o f Co mputer Science and Eng ineering ,Chongqing Institute of T echnolog y,Cho ng qing 400050,China)Abstract:In or der to o btain the confor mity betw een F EM analysis and the r eal conditio n of the metal fr actur e behav io r,the general judgement met ho d of metal fracture FEM analy sis w as discussed T he key technolog y of FEM used fo r metal fracture behavio r w as introduced in detail T he g ener al ductility fr act ur e criterion w as discussed and a fracture cr iter ion method was put fo rw ard T he adjustment and re meshing of f inite element gr id fo r met al fracture behavio r and t he successful applicat ion of FEM t echnolog y to metal fracture behavio r during ex trusion,cutt ing and stamping w ere int roduced T he key facto r of F EM used for metal fr act ur e behavior w as acquired Keywords:fracture behav io r;f inite element metho d;fracture cr iterion *重庆科委自然科学基金资助项目(CSTC2006BB3407,CSTC2005BB3080) **男,32岁,硕士,讲师 收稿日期:2006 06 13;修订日期:2006 08 25 1 引言 制造业是现代工业的基础,其中金属材料成形占有相当大的比重。在金属成形和加工工艺中,不可避免地出现材料断裂现象。对于拉深、挤压、拉 拔、轧制和锻造等工艺,是通过材料的塑性变形来获得工件最终的形状,材料的断裂是成形过程中需要避免的主要缺陷之一,在设计这些工艺时必须避免。对于通过塑性变形和断裂过程结合来实现工件的成形,例如冲裁、切料、剪切以及切削工艺,断裂往往是不可避免的,必须合理地利用材料产生的断裂,才能实现这些工艺过程 [1] 。现代工业研究方 法主要包括3种:理论分析、试验研究和有限元仿真,这3种方法可以综合利用。有限元技术以其周期短、结果准确、成本低等诸多优点,获得了广大工程技术和研究人员的青睐。本文利用有限元技术 研究材料断裂行为,准确分析金属加工和成形过程的裂纹产生和材料断裂,预测出给定加工工艺最终的产品质量,为设计工艺给出准确评判并为进一步改进工艺指明方向。 2 有限元分析技术中的断裂判断 有限元法分析在预测断裂问题上提供了强有力的工具,在实际应用中,必须针对具体情况来选择适用的断裂判据,主要用到的断裂判据如下。2 1 FLD (变形界限图) 这种判据在以平面应变为主的板料成形分析中应用广泛,不同变形模式下的板厚应变极限不同。在冲压成形中,有各种各样的变形模式,FLD 的实质就是断裂和没有断裂的变形模式的界限,判断某点是否产生断裂,就是判断该点的变形模式是落在哪个区域中。通过软件分析材料的应变,将其放在FLD 中考察,若有点落在断裂区域,则表示该点处产生断裂,反之则未产生断裂。这种方式可以判断材料的断裂,但不能直观显示断裂后材料的具体形貌特征 [2] 。

纳米材料的小尺寸效应

纳米材料的小尺寸效应 吴顺康四川大学生命科学学院 2016 级生命科学拔尖班 小尺寸现象产生的原因: 纳米粒子的特性当粒子的尺寸进入纳米量级时,微粒内包含的原子数仅为 100?10000 个,其中有 50 %左右为界原子,纳米微粒的微小尺寸和高比例的表面原子数导致了它的量子尺寸效应和其他一些特殊的物理性质。 小尺寸效应导致的性质(以及部分应用) 由于纳米微粒的尺寸比可见光的波长还小,光在纳米材料中传播的周期性被破坏,其光学性质就会呈现与普通材料不同的情形。例如,金属由于光反射显现各种颜色,而金属纳米微粒都呈黑色,说明它们对光的均匀吸收性、吸收峰的位置和峰的半高宽都与粒子半径的倒数有关。⑵利用这一性质,可以通过控制颗粒尺寸制造出具有一定频宽的微波吸收纳米材 料,可用于磁波屏蔽、隐形飞机等。⑴此外,金属超微颗粒的光反射率极低,可低于1%, 大约几毫米就可以完全消光。可以利用此特性,高效持续的将太阳能转化为热能和电能。 在物质超细微化之后,纳米材料的熔点显著降低,犹在颗粒直径为 10 纳米时较为明显,例如金(Au)常规熔点在1064度;然而在颗粒尺寸减少到 2纳米时仅为327度;由此,超细银粉制成的导电浆料可以进行低温烧结,此时的基片可以仅仅使用塑胶而不是高温陶瓷。使用超细银粉,可以使膜厚均匀,覆盖面积大,省料而质量高。 纳米小尺寸效应的应用: 纳米材料作为功能材料与产业技术的结合,具有很多潜在的应用价值。小尺寸超微颗粒的磁性与大尺寸材料显著不同,在颗粒尺寸下降到 0.02 微米以下之后,其矫顽力可增加 1000 倍,若进一步

减小尺寸,其矫顽力反而可以降到0,呈现出超顺磁性。利用超顺磁性颗粒的

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

COMSOLMultiphysics有限元方法模拟次声波传播

COMSOL Multiphysics有限元方法模拟次声波传播 对一组自然或人为产生的声源进行远距离监控,引起了军队和其他政府机构的关注。其中一种技术是利用次声波,或者说次声频的声波,这是因为它的声源强度在传播成千上万公里的距离后,没有损失信号特征。接下来的讨论着重分析模拟次声波传播的可行性方法。 一般次声波的频率范围从0.05到20Hz之间,不能被人们听到,但是能被专业的亚声频的麦克风探测到,其原理是能够感受到振动压力场激发的可录电子脉冲。传统的次声波监测着眼于声源和接收器距离超过250公里,不过最近的次声监测研究集中于距离靠近150公里,缩短了远程声波和真实的次声监测间的关系。 历史上,抛物型方程(PE)方法已经被发展成在一个分层的大气条件下远程(> 500 km)次声传播的数值求解方法。由于其简单的数值实现和有限的计算资源,这种技术可以有效地处理远程传播问题。PE技术与观测数据中频率——波数相类似,预测在到达时间以及观测振幅衰减时,捕获能量和球形波前现象如何进行相互作用。PE方法通过假定能量沿着预设方向上锥形范围内传播来近似波方程。这种近似方法在远程传播中有一定的合理性。然而,对于短程传播(< 50 km),PE方法使用的数学公式失效,不能提供实际测量和预测所需要的足够精度。 图1.对流层中线性趋势的理想化的大气结构 为创造高保真耦合复杂声源函数的传播模型,作者将AltaSim科技的Dr. Kyle Koppenhoefer和Dr. Jeffrey Crompton的工作结合起来,提升基于声学的有限元方法(FEM),通过COMSOL Multiphysics 来实现的这种耦合,无需PE方法的近似条件,准确地表达出声波的传播。这些结果可以用来提高PE法不适用的短距离传播的精度。不过,FEM方法需要较大的计算资源(即,内存和CPU时间)来求解远程传播的问题,这样增大了得到准确结果的难度。因此,FEM和PE法可以实现在分层大气条件下次声传播的互补:短程范围内,FEM解提供足够精度;远程范围时,使用FE法来准确模拟。为了验证COMSOL Multiphysics 的FEM声学模块的使用性,我们展示两个案例来评估FEM和PE法。 图2. 哥伦比亚号航天飞机起飞过程。照片由NASA提供。 次声传播次声传播依赖于其通过大气层的有效声速(Ceff),因此尽可能正确地描述随时间和传播路径位置变化的大气条件是很重要的。传播路径由有效声速剖面决定:Ceff = Ct + n?v,其中Ct ~ 20.07(T)1/2,T是开氏温度,n?v是传播方向上的风速分量。在计算有效声速时,温度是决定性的因素;风速和方向仅是次要因素。为了在地表观测到上升的次声能量,它必须达到比声源更高的能量区域。如果发生这种情况,能量反转,然后返回地球表面。图1显示了在示踪大气区域样本的等效声速截面。 怎样量化为数据分析和模拟大气,取决于次声传播通过的特殊区域。对于源——接收器距离小于200km,当地的气象条件对于准确描述传播媒介是很重要的。地面测量对于准确描述整个次声传播的大气截面高度是不够的。使用无线电探空仪,气象气球或等效测量来对于温度和风速剖面测定,得到模拟需要的Ceff是很有必要的。 对于源和接收器距离大于200km,信号可能会通过高变能量路径来传输,基本上是通过大气层的上层区域,热电离层,通过几个月都不会发生什么变化的媒介传播很大的距离。这些源中的大部分,要么很大(比如1883年喀拉喀托火山喷发的能量,它消失前在周围的空间中反弹震荡八次),从地震中的实质性垂直位移中产生,要么产生于大气层上层,比如陨石。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

相关主题
相关文档 最新文档