当前位置:文档之家› 散热效率与面积的关系

散热效率与面积的关系

散热效率与面积的关系
散热效率与面积的关系

散热面积对散热速率影响的实验与探究

[摘要] 影响散热速率的因素很多,包括材料、换热方式、散热面积、温度差、搅拌强制循环等,本文意在通过实验验证散热面积对散热的影响,并通过分析得出它们的函数关系。据此对生活中的散热现象进行理解和指导。通过实验探究学习熟悉控制变量的方法,为以后解决问题积累经验。

[关键词] 散热散热面积控制变量法

一、问题的提出

在学习了比热容等有关知识后,对散热速度的快慢产生了联想,比如我们生活中常见的水杯,水杯的样式多种多样功能各不相同,有冷水杯、保温杯、普通水杯,人们有时需要让水快速冷却有时需要对水进行保温,人们总是想根据自己的意愿来控制散热的快慢,但影响散热速率的因素除比热容外还有哪些呢?通过查阅资料了解到影响散热的因素主要有材料、换热方式、散热面积、温度差等,由于影响因素较多,现对其中的散热面积对散热速率的影响进行探究。

二、理论分析

在不发生相变不与外界进行物质交换不做功的前提下,物体只能通过表面向外散热,因此有理由推断散热速率与散热的面积成正比关系。在保证其它影响因素一致的前提下,只改变散热面积,就能得到散热快慢与散热面积的关系,通过数据的分析可以得到它们的函数关系。通过这种方法也可以研究其它因素与散热快慢的关系,从而得到最终结论。

三、实验与探究

1.实验用品:大小形状完全相同的水杯三只(编号a,b,c),

开水,温度计(量程为-20℃至110℃,分度值为1℃),秒表,记录纸,保温泡沫,胶带。

2.如图将b,c水杯用保温泡沫包裹好,用胶带粘牢。

3.在三个水杯中倒入等量的开水200ml,开水温度为100℃,用塑料盖板盖上杯口,插入温度计,记录每隔5℃记录一次温度和时间。记录数据如下:

4.数据整理

假设水杯a,b,c从100℃降到40℃所用的时间分别为ta,tb,tc散热面积分别为Fa,Fb,Fc则有:

ta=481(s)

tb=1053(s)

tc=2126(s)

tc≈2tb

tb≈2ta

Fa≈2Fb

Fb≈2Fc

因此,可以得到1

∝F

t

由于三个水杯中的水是等量的,所处环境等其它条件相同,从100℃降到40℃所释放的热量Q也相等,Q为定值,可以得到:

散热速率Q

∝F

t

四、结论

通过以上实验探究,我们可以得出下列结论:

散热速率与散热面积成正比例关系。

增大散热面积可以增加散热速率,散热面积增加的倍数与散热速率增加的倍数相等。

五、总结

通过数据分析得出了散热速率与散热面积成正比的结论,此结论可以解释生活中的许多现象。为了加速散热效果,在其他客观条件不便控制的情况下,增大散热面积无疑是最有效果的,比如暖气片之所以做成如此形状就是为了增加表面积加快散热,电脑CPU散热器之所以做成多片状、冷水杯底面积那么大也是如此。为了不让LED的温度过高,必须精确计算散热面积的大小,散热面积过大既造成不必要的浪费又影响使用效果等等,现实生活中的此类事例枚不胜举。

如果以后采取类似的方法探究温差、材料、搅拌循环等对散热速率的影响,并将几个结论综合起来,相信会得到更完善的结论,更能理解和指导我们的生活应用。

(精选文档)散热器的表面积计算

散热器的表面积计算: S = 0.86W/(△T*a)) (平方米) 式中 △T——散热器温度与周围环境温度(T a)之差(℃); a——传导系数,是由空气的物理性质及空气流速决定的。 a的值可以表示为: A = Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器海拔高度(); Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见表1)。

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

经济效益分析报告

财务预测 一、经济分析 1、生产规模预测 根据公司的发展规划,从2012年1月开始实施,项目总投资720万元(其中研发费用260万元),达产后实现年产4万平方米原竹马赛克的规模。项目建设期1年,从2009年10月开始投产,随着项目的技术及生产工艺的成熟,预计在2011年达到设计生产能力。项目产品生产年份的达产系数分别为30%、80%、100%。产品生产方案具体详见下图。 2、销售价格预测 项目产品的销售价格均按不含税价格计取,经营期鲜奶的平均销售价格为4050元/吨计算。预计可实现销售收入1200万元。 二、项目成本、经济效益预测分析 1、成本预测分析(2011年) 1.1 原辅材料采购费 本项目主要原辅材料采购费按消耗定额和预测市场价格确定,到达产年生产能力为4万平方米,预计达产年原辅材料采购费用为550万元。 1.2 燃动消耗费

本项目主要燃料动力为水、电消耗。燃动费根据消耗定额及现行价格计算,预计达产年燃料动力采购费用为65万元。 1.3 人工及福利费 人员配置主要为生产人员、管理人员和销售人员,年福利费用按工资总额的14%计取。预计员工合计50人,预计工资福利总额为97.5万元。 1.4 各项费用 各项费用参考同行业企业的费用水平进行测算。 制造费用:修理费用(含物料消耗)按折旧额的40%估算,折旧费中建筑物、构筑物折旧期限为20年,机器设备年折旧期限为10年,电子设备年折旧期限为5年,折旧方法采用平均年限法,残值率按5%计算,其它费用按预计发生额进行估算。预计达产年制造费用为93.04万元。 管理费用:工会经费和职工培训费分别按工资总额的2%和1.5%分别估算,项目内研发费按年销售收入的1%估算,无形资产及递延资产摊销费用分年摊销计入管理费用,其他费用按预计发生额进行估算。预计达产年管理费用为92.63万元。 销售费用:销售费用按年销售收入的3%估算,预计达产年销售费用为36万元。 1.5 总成本费用构成分析 本项目批量生产期内成本费用主要为原辅材料采购费、燃料动力费、人工福利费及各项费用等。达产年总成本费用为934.17万元,其中固定成本319.17万元,可变成本615.00万元。(具体成本分析详见下表) 总成本费用分析表

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

经济效益分析报告

K Y N61-40.5交流 金属封闭开关设备的研制经济效益分析报告 山东省冶金科学研究院 山东鲁冶瑞宝电气自动化有限公司 二○○六年十月

一、直接经济效益 1、预计公司年生产能力可达到300台(套),按平均单价13万元计,该产品年产值可达到3900万元,生产成本2370万元,实现利税780万元,利润可达750万元以上。 2、已实现效益:目前交付使用34台,实现销售收入442万元,其中生产成本272万元,利税88.4万元,利润81.6万元。 3、单台销售均价13万元,其中包括材料成本7.6万元,人工成本 0.3万元,利税2.6万元,利润2.5万元。 二、社会效益分析 该产品立足于国产,同时具有进口同类产品相同的电气性能,而市场售价比进口同类产品比低40%左右(ABB的同类产品Unigear-ZS市价约为22万元/台)。交付使用34台,与采用进口产品相比,已为用户节约投资费用约295万元;按年产300台(套)计,同比可为用户节约投资费用2600余万元。 该产品可靠的电气性能,能够保证供配电系统运行的安全可靠性,确保生产安全,减少了事故停产;其断路器等元器件具有灵活的互换性,使系统停电检修的时间大大减少,节约了检修成本,提高了使用效率;为用户创造了间接的经济效益,因此该产品应用后,其产生的社会效益显著。

三、结论 KYN61–40.5交流金属封闭开关设备采用了先进的技术标准和制造工艺;配用新型国产真空断路器或进口断路器;工艺、材料立足于国内;增加了许多新功能;提高了绝缘性等技术指标,使产品无论在生产、外观、性能等各方面都达到了国内领先水平。 综上所述,该KYN61–40.5金属封闭开关设设备具有较高的性能价格比,能产生较高的直接经济效益、间接经济效益和社会效益,市场前景广阔。

暖气散热量计算方法

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持.
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn)
式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差 tp-tn 越大,散热量也越大。如果它们成直线关系变化,则 Ks 就应该是常数。但是,事 实上散热量的增大倍数要高于温差的增长倍数。 Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。准确测量 Fs 是 十分困难的,而 Fs 的取值又影响到 Ks 值的大小。同一组散热器,采用的 Fs 越大,Ks 就越小;Fs 越小, Ks 就越大。由于 Ks 值不能单独用来评价散热器的优劣,可见公式 Qs=KsFs(tp-tn)用来表达散热器的热工 特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出 Ks 值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。 【例】单管系统温降计算及散热器选择: 已知:供水温度为 95℃,回水温度为 70℃,各层热负荷如图 18 59 所示,房间设计温度为 18℃,计算 选择各层散热器。 图 18 59 【解】(1)计算立管的总热负荷
Q=6550kcal/h (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-5 73)℃=89 27℃
1 文档来源为:从网络收集整理.word 版本可编辑.

散热器片数计算方法

散热器片数计算方法(精确计算) 散热器(俗称暖气片),是将热媒(热水或蒸汽)的热量传导到室内的一种末端采暖设备,已成为 冬季采暖不可缺少的重要组成部分。散热器计算是确定供暖房间所需散热器的面积和片数。 一、散热器片数计算公式 (1)已知散热器传热系数K 和单片散热器面积F 散热器片数n 的计算公式如下: [1] 式中,Q 为房间的供暖热负荷,W ;K 为散热器传热系数,W/(㎡·℃);F 为单片散热器面积,㎡/片;Δt 为散热器传热温差,℃;β、β、β、β依次为散热器的安装长度修正系数、支管连接方式修正系数、安装形式修正系数、流量修正系数。 散热器的传热温差计算如下: Δt=t – t 式中,t 为散热器里热媒(热水或蒸汽)的平均温度(热媒为热水时,等于供/回水温度的算术平均值),℃;t 为供暖室内计算温度,一般为18℃。 以95/70℃的热水热媒为例,Δt=64.5℃: 1234pj n pj n

(2)已知单片散热器的散热量计算公式ΔQ 散热器片数n 的计算公式如下: [2] 式中,ΔQ 为单片散热器散热量,W/ 片。 式中,A 、b 为又实验确定的系数,可要求厂家提供。以椭四柱813型为例,ΔQ=0.657Δt 。 二、散热器修正系数β、β、β、β[2]表 安装长度修正系数β 表 支管连接方式修正系数β 表 安装形式修正系数β 1.30612341 2 3

表 进入散热器的流量修正系数β注:1)流量增加倍数 = 25 /(供水温度 - 回水温度);2)当散热器进出口水温为25℃时的流量,亦称标准流量,上表中流量增加倍数为1 。 三、房间层数位置修正 此外,对多层住宅根据多年实践经验,一般多发生上层热下层冷的现象,故在计算散热器片数时,建议在总负荷不变的条件下,将房间热负荷做上层减、下层加的调整,调整百分数一般为5% ~15%,见下表。 表 散热器片数调整百分表(%) 四、散热器片数近似问题 散热器的片数或长度,应按以下原则取舍:(《09 技术措施》2.3.3条)[3] 1)双管系统:热量尾数不超过所需散热量的5%时可舍去,大于或等于5%时应进位; 2)单管系统:上游(1/3)、中间(1/3)及下游(1/3)散热器数量计算尾数分别不超过所需散热量的7.5%、5%及2.5%时可舍去,反之应进位; 3)铸铁散热器的组装片数,不宜超过下列数值: 粗柱型(包括柱翼型):20片 细柱型:25片 长翼型:7片 4

车用散热器散热面积的计算

车用散热器散热面积的计算散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s 式中P s 表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 计算平均温度差厶t m 1. 散热器的进水温度t s1 闭式冷却系可取t si=95-100C (节温器全开温度) 2. 散热器出水温度t s2 t s2= t s1-A t s △ t s是冷却水在散热器中的最大温降,对强制冷却系可取△ t s=6-12C 3?进入散热器的空气温度t ki 一般取t ki=40-45C 4.流出散热器的空气温度t k2 t k2= t kl+A t k △ t k是空气流过散热器时的温升,可按下式计算:△t k=Q/(3600 x A z X C P X V K X P k) 式中A z表示散热器芯部的正迎风面积;C P表示空气的定压比热容C P二kgf C V K表示散热器前的空气流速,车用发动机可取 V K=12-15m/s p k表示空气密度,设定在一个大气压气温50C下查

表得P k=1.09kg/m3 △ t max= t s1- t k1 △ t min= t s2- t k2

5?平均温差修正系数? 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式?与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数? 对平均温度差结果进行计算修正?而?值的大小取决于两个无量纲的参数P及R. P二出气温度-进气温度)/(进水温度-进气温度) R=进水温度-出水温度)/(出气温度-进气温度) P 查上表可得?值 6.平均温差△ t m 根据传热学原理,平均温差△ t m可按下式计算: △t m= ? {(△t max- △t min)/ I n (△t max/ △t min)}

散热面积计算

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc

ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。 散热器热阻曲线 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 三,散热器尺寸设计: 对于散热器,当无法找到热阻曲线或温升曲线时,可以按以下方法确定: 按上述公式求出散热器温升ΔTsa,然后计算散热器的综合换热系数α:α=7.2ψ1ψ2ψ3{√√ [(Tf-Ta)/20]} 式中: ψ1———描写散热器L/b 对α的影响,(L 为散热器的长度,b 为两肋片的间距);ψ2———描写散热器h/b 对α的影响,(h 为散热器肋片的高度);

暖气片如何选型及计算

暖气片报价如何选型及计算 机械循环热水采暖系统,摩擦阻力损失占50%,局部阻力损失占50%; 换热器按0.1-0.15MPa估算; 设计裕量:10-20%。 1MPa=10KGF/CM2=100MH2O 1MMH2O=10Pa 循环水泵如何选择? 应根据计算所得的水量G及总循环阻力H来选择水泵.与外网连接的系统应换算外网在本楼接口处的供回水压差,是否够用(城市热网一般预留压差≥5MH2O)。 金旗舰散热器的工作压力定多少是合适的? 我国暖通空调设计规范规定,采暖系统高度超过50M时就应分区设置.这时系统的静压约为55MH2O。而采暖系统的动压(推动水循环,包括换热器等)约为20M-30M H2O,动压和静压的总和约为70-90MH2O (即0.7-0.9MPa)。所以散热器的工作压力取1.0MPa已够用了。关于个别城市热网直连的情况可作特殊处理。 系统运行前的压力测试如何进行? 在系统或系数的某部分投入运行前,必须对其进行压力测试.首先,所测系统应排出空气并充满处理过的水,然后用泵将压力升到至少为工作压力的1.5倍。这一压力应该至少保持10分钟,压力下降

不超过0.02 Mpa才为合格,在压力测试过程中,应对接头,连接处和设备进行目测检查以确保无泄漏。测试人员应进行记录,该记录应包括时间、地点、观测设备以及测试的初始和终了压力等信息,也应包括注意到的可能渗漏.最后测试人员在测试记录上签字。具体测点位置及系统试压的压力值均应按施工验收规范要求确定。 热水供暖系统设计应强调哪些问题? 应从以下6方面考虑: 1、必须保证满水条件下的闭式循环,最好实现密闭式热水采暖系统; 2、必须强调供暖水质的处理及控制; 3、必须保证有足够的水量,足够的资用压头; 4、必须有良好的排气,保证水循环畅通; 5、必须考虑水力平衡,保证各组散热器均能通水; 6、对较长的直管段,必须考虑热补偿。 三散热器选择与比较 购房要注意有关供暖系统的哪些问题? 可以从7个方面加以考虑: 1、注意散热器的热负荷,即每平方米的散热量.华北地区的砖混结构住宅,一般配置70W/㎡;节能型保温建筑配置50W/㎡;华中及华东地区的独立供暖住宅,一般配置120~130W/㎡。 2、看散热器类型是否安全舒适.面积很大的房间最好选用R021B 1800的散热器,散热均匀又安全舒适;

散热与风量的计算doc资料

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。 上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A

其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5 (T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解 2011-06-02 17:06 轴流风机风量散热器的信息讲解 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单 位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约

资产运用效率分析报告

一、公司概况 北京同仁堂是中药行业著名的老字号,创建于清康熙八年(1669年),自雍正元年(1721年)正式供奉清皇宫御药房用药,历经八代皇帝,长达188年。历代同仁堂人恪守“炮制虽繁必不敢省人工品味虽贵必不敢减物力”的传统古训,树立“修合无人见存心有天知”的自律意识,确保了同仁堂金字招牌的长盛不衰。其产品以“配方独特、选料上乘、工艺精湛、疗效显著”而享誉海内外,产品行销40多个国家和地区。公司主要产品包括:安宫牛黄丸、牛黄清心丸、大活络丸、乌鸡白凤丸、感冒清热冲剂、牛黄解毒片等在市场上有较高的占有率和知名度。截至2008年12月31日,同仁堂合并总资产为45.50亿元。2008年度实现主营业务收入29.39亿元,净利润(归属于母公司所有者的净利润)3.50亿元。公司主要产品增长较为平缓,其中六味地黄丸系列实现销售收入.3.25 亿元,安宫牛黄丸、牛黄解毒片等产品比上年都有较大幅度的增长,成为销售增长的主要来源。 二、同仁堂2008年资产运用效率指标的计算 根据同仁堂公司资料,该公司连续三年的主要资产及主营业务收入、主营业务成本数据如下表: 项目2008年2007年2006年2005年 应收账款330,891,674.76 575,504,370.00 348,731,479.03 335,105,339.95 存货1,780,483,653.92 1,501,477,547.58 1,381,330,720.37 1,409,118,556.67 流动资产3,401,031,369.24 3,007,190,421.08 2,574,163,371.62 2,481,093,657.19 固定资产986,603,644.10 1,072,326,840.50 1,132,405,290.45 1,097,353,514.36 长期投资48,176,699.49 49,571,450.02 23,284,291.53 51,052,826.25 其他资产114,260,773.30 65,587,846.56 92,172,485.96 150,180,134.04

散热片散热面积计算

散热片作为强化传热的重要技术之一,广泛地应用于提高固体壁面的传热速率。比如飞机、空调、电子元件、机动车辆的散热器、船用散热器等[1]。对散热片强化传热的研究引起国 内外众多学者的关注,如对散热片自然对流的研究[2-7],对散热片强制对流的研究[8-12 ]。前人对散热片的研究大致可分为两类:其一,采用实验的手段,在一定范围内改变散热片组的结构尺寸和操作参数,比较其传热性能,从而得出散热片组最优的结构尺寸和最优的操作参数;其二,采用数学方法,对某一具体情况推导出偏微分方程,简化其边界条件,求其数值解。本文深入分析散热片组间流体的流动特性及传热特性,总结各种因素对传热的影响,采用最优化技术及先进的计算机软件技术,对自然对流情况下矩形散热片组的散热过程进行了优化研究,并设计典型实验,检验优化结果。 2 散热片散热过程分析散热片多用于强化发热表面向空气散热的情况,故本文以与空气接触的散热片 为研究对 象。由于散热片表面温度(一般不超过250 C )不高,散热片组对空气的辐射换热量采用式(1) 计算可知,它所占比例小于总散热量的3%。因此,散热片表面与周围环境之间的散热主要 是对流传热。式(1)中的F为辐射角系数,本文散热片组的辐射角系数由G N ELLISON [13] 介绍的方法求得。 (1) 散热片传热是一个比较复杂的物理过程,对此过程,国内外学者进行了深入的实验研究,他们的工作主要着重于传热系数大小、传热系数与流体流速以及流道的几何形状等因素的内在联系。在实验研究中得到了许多适用于具体实验条件的准数关联式。这些结果对传热过程 的了解和散热片的设计有重要的意义。 在自然对流条件下,散热片组的结构参数(散热片的间距、高度、厚度 )是散热片散热的 主要影响因素,散热片组的结构见文献[ 14]。 2.1 间距对散热片散热的影响 描述流体与固体间对流传热的基本方程式为: Q=hA AT (2) 从上式可以看出,通过提高传热系数h,增大传热面积来强化流体与散热片表面间的对 流传热效果。当基面宽度 W给定时,假定传热温差AT,传热系数h不变,这样散热量 Q 的提高就取决于换热面积 A 的大小。增加散热片数量就可以增加换热面积,有利于散热。但散热片数目的增多,减小了散热片间的距离S,传热系数h也随之降低。 2.2 高度对散热片散热的影响 提高散热片的高度 H可以增加换热面积 A,从而达到强化传热的目的。但增加高度会使散热片顶部的局部传热系数降低,导致平均传热系数的降低。此外,高度也影响着从散热片基面到端部的温度降。高度越大,温度降也越大,导致散热片表面与周围大气的平均温度差就随之降低,不利于散热。实际上,散热片的高度还将受到整机外型尺寸的限制。 2.3 厚度对散热片散热的影响 散热片越薄,则单位长度上可装载的散热片的数量就越多,从而增大散热面积,强化散热片的散热;随着散热片厚度的增大,散热片表面与周围大气的平均换热温度差AT就随之 降低,这对于散热是不利的。在实际的应用中,厚度3的大小往往受工艺水平高低所限。一

灯珠结温和散热面积计算理论

灯珠结温和散热面积计算理论 灯珠结温和散热面积计算理论 一、基础理论 大功率LED的散热问题: LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是

150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。 另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。 K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1;TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了;TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。 大功率LED的散热路径. 大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。 大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,所示。这是一种最简单的散热结构。热是从温度高处向温度低5其正反面图形如图 处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜

发动机散热器的设计计算

发动机散热器的设计计算 散热片面积是冷却水箱的基本参数,通常单位功率所需散热面积为0.20~0.28㎡/KW。发动机后置的车辆冷却条件比较差,工程机械行走速度慢没有迎风冷却,因此所配置的水箱散热面积宜选用上限。 水箱所配相关管道不能太小,其中四缸机的管道内径≧37mm,六缸机的管道内径≧42mm。 水箱迎风面积要求尽可能大一点,通常情况下为0.31~0.37㎡/KW,后置车、工程车辆还要大一些,由于道路条件改善,长时间的高速公路上高速行驶,或者容易超载,经常爬坡的车辆也要选得大一点。 对冷却液的要求: 1.冷却作用:有效的带走一定的热量,使发动机得到冷却,防止过热。 2.防冻作用:防止冷却液结冰而导致水箱和柴油机水腔冻裂。 3.防氧化和腐蚀:冷却液可防止金属件的氧化和腐蚀。 为改善发动机的工作条件,进一步提高其冷却性能,发动机后置或者重型车都配置了膨胀水箱。膨胀水箱应高于散热水箱50mm左右,必须具有相当于冷却系统总容积6%的冷却液膨胀空间,储备水量应是冷却系统总容积的11%,有暖风时达到20%,冷却液液面不能淹没加水伸长颈管,加水伸长颈管上部必须设通气孔,通气管不宜小于φ3.2mm,膨胀水箱最低液面以下水深不得低于50mm,以防止空气进入注水管。 由于受到发动机水循环系统进出口口径大小的限制,发动机进水接口外径为34mm(散热器出水接口外径也为34mm),发动机回水接口外径为35mm(散热器回水接口外径为35mm)。 本产品所选用的发动机额定功率为:110kw 在设计或选用冷却部件时应以散入冷却系统的热量Q为原始数据,来计算冷却系统的循环水量和冷却空气量:

用经验式 =???==3600 21.0431*******.03600u e e W h p Ag Q 69.14kJ/s=59450kcal/h 燃料热能传给冷却系的分数,取同类机型的统计量,%,柴油机A=0.23~0.30,取A=0.25 e g -燃料消耗率,kg/kw.h ;柴油机为0.210 e P -发动机有效功率,取最大功率110kw 若水冷式机油散热器,要增加散热量,W Q 增大5%~10%. 在算出发动机所需的散走的热量后,可计算冷却水循环量 187.41000814.69??=?= W W W W W C r t Q V =206.41L/min W t ?-冷却水循环的容许温升(6?-12?),取8? W r -水的密度,(1000kg/3m ) W C -水比热(4.187kJ/kg.C ?) 实际冷却水循环量为:==W a V V 2.1247.69L/min 冷却空气需要量:047.101.12014.69??=?= Pa W W W W C r t Q V =3.27m 3/s a t ?-散热器前后流动空气的温度差,取20C ? a r -空气密度,一般a r 取1.01kg/3m Pa C -空气的定压比热,可取Pa C =1.047kJ/kg.C ? 二.散热器设计 1.散热器的计算所根据的原始参数是散热器散发的热量和散热器的外形尺寸。 散热器散发的热量就等于发动机传给冷却液的热量。 已知散热器散发的热量后,所需散热面积F 可由下式计算:

散热器面积及片数的计算方法

工程一:室内热水供暖工程施工 模块三:散热器施工安装 单元2 散热器的计算 1-3-2-1散热器面积及片数的计算方法 1.计算散热器的散热面积 供暖房间的散热器向房间供应热量以补偿房间的热损失。根据热平衡原理,散热器的散热量应等于房间的供暖设计热负荷。 散热器散热面积的计算公式为 3 21) (βββn pj t t K Q F -= (2-1-2) 式中 F ——散热器的散热面积(m 2 ); Q ——散热器的散热量(W ); K ——散热器的传热系数[W/(m 2 ·℃)]; t pj ——散热器内热媒平均温度(℃); t n ——供暖室内计算温度(℃); β1——散热器组装片数修正系数; β2——散热器连接形式修正系数; β3——散热器安装形式修正系数。 2.确定散热器的传热系数K 散热器的传热系数K 是表示当散热器内热媒平均温度t pj 与室内空气温度t n 的差为1℃时, 每1 m 2 散热面积单位时间放出的热量。选用散热器时希望散热器的传热系数越大越好。 影响散热器传热系数的最主要因素是散热器内热媒平均温度与室内空气温度的差值Δt pj 。另外散热器的材质、几何尺寸、结构形式、表面喷涂、热媒种类、温度、流量、室内空气温度、散热器的安装方式、片数等条件都将影响传热系数的大小。因而无法用理论推导求出各种散热器的传热系数值,只能通过实验方法确定。 国际化规范组织(ISO )规定:确定散热器的传热系数 K 值的实验,应在一个长×宽×高为(4±0.2)m ×(4±0.2)m ×(2.8±0.2)m 的封闭小室内,保证室温恒定下进行,散热器应无遮挡,敞开设置。 通过实验方法可得到散热器传热系数公式 K=a (Δt pj )b =a (t pj -t n )b (2-1-3) 式中 K ——在实验条件下,散热器的传热系数[W/(m 2 ·℃)]; a 、b ——由实验确定的系数,取决于散热器的类型和安装方式; Δt pj ——散热器内热媒与室内空气的平均温差,Δt pj =t pj –t n 。 从上式可以看出散热器内热媒平均温度与室内空气温差Δt pj 越大,散热器的传热系数 K 值就越大,传热量就越多。 附录9给出了各种不同类型铸铁散热器传热系数的公式。应用这些公式时,需要确定散热器内的热媒平均温度t pj 。 3.确定散热器内热媒平均温度 散热器内热媒平均温度t pj 应根据热媒种类(热水或蒸汽)和系统形式确定。 热水供暖系统

冷却系统计算

冷却系统计算 一、 闭式强制冷却系统原始参数 都以散入冷却系统的热量 Q W 为原始数据,计算冷却系统的循环水量、冷却 空气量,以便设计或选用水泵、散热器、风扇 1.冷却系统散走的热量Q W 冷却系统散走的热量Q W ,受很多复杂因素的影响,很难精确计算,初估Q W ,可以用下列经验公式估算: 3600 h N g Q u e e W A (千焦/秒) (1-1) A ---传给冷却系统的热量占燃料热能的百分比,对汽油机A=0.23~0.30, 对柴油机A=0.18~0.25 g e ---内燃机燃料消耗率(千克/千瓦.小时) N e ---内燃机功率(千瓦) h u ---燃料低热值(千焦/千克) 如果内燃机还有机油散热器,而且是水油散热器,则传入冷却系统中的热量,也应将传入机油中的热量计算在冷却系统中,则按上式计算的热量Q W 值应增大5~10% 一般把最大功率(额定工况)作为冷却系统的计算工况,但应该对最大扭矩工况进行验算,因为当转速降低时可能形成蒸汽泡(由于气缸体水套中压力降低)和内燃机过热的现象。 具有一般指标的内燃机,在额定工况时,柴油机g e 可取0.21~0.27千克/千瓦.小时,汽油机g e 可取0.30~0.34千克/千瓦.小时,柴油和汽油的低热值可分别取41870千焦/千克和43100千焦/千克,将此值带入公式即得 汽油机Q W =(0.85~1.10)N e 柴油机Q W =(0.50~0.78)N e

车用柴油机可取Q W=(0.60~0.75)N e,直接喷射柴油机可取较小值,增压的直接喷射式柴油机由于扫气的冷却作用,加之单位功率的冷却面积小,可取Q =(0.50~0.60)N e,精确的Q W应通过样机的热平衡试验确定。 W 取Q W=0.60N e 考虑到机油散热器散走的热量,所以Q W在上式计算的基础上增大10% 额定功率: ∴对于420马力发动机Q W=0.6*309=185.4千焦/秒 增大10%后的Q W=203.94千焦/秒 ∴对于360马力发动机Q W=0.6*266=159.6千焦/秒 增大10%后的Q W=175.56千焦/秒 ∴对于310马力发动机Q W=0.6*225=135千焦/秒 增大10%后的Q W=148.5千焦/秒 最大扭矩: ∴对于420马力发动机Q W=0.6*250=150千焦/秒 增大10%后的Q W=165千焦/秒 ∴对于360马力发动机Q W=0.6*245=147千焦/秒 增大10%后的Q W=161.7千焦/秒 ∴对于310马力发动机Q W=0.6*180=108千焦/秒 增大10%后的Q W=118.8千焦/秒 2.冷却水的循环量 根据散入冷却系统中的热量,可以算出冷却水的循环量V W

投资估算和经济效益分析报告

第十一章投资估算 一、估算编制范围 本估算为某某山生态农业观光旅游项目可行性研究报告投资估算.估算主要包括:六区一村一廊的建设费、土地租用费.基础设施费及市政配套费。但不包括以下各项费用。 (1)业主开业流动资金。 (2)建造期价格可能发生的变动而需要增加的费。 二、估算编制依据 本项目建设投资根据建筑设计方案.相关图纸及市建筑工程预算相关定额及取费标准进行估算。 (1)相似工程合同造价资料及地区材料价格。 (2)假定由本市内的单位承担设计.施工及项目管理。 三、投资估算 本项目预计总投资为12200万元.其中.民俗文化新村1000万元.优质林果花卉区200万元.现代农业区(大棚蔬菜)220万元.特色作物区240万元.特种养殖区1050万元.农产品加工区1200万元.生态林休闲区3600万元.基础设施建设2000万元。项目投资估算表项目名称:某某山生态农业观光旅游项目单位:万元序号项目名称 1优质林果花卉区 1.1水果经济林 1.2苗木园 2现代农业区 2.1有机大棚蔬菜

2.2无公害蔬菜 3特色作物区 3.1麻竹种植 3.2楠竹种植 .计算基础 500亩×0.2万元/亩200亩×0.5万元/亩100亩×2万元/亩100亩×0.2万元/亩500亩×0.2万元/亩200亩×0.2万元/亩.金额万元)200.00 100.00 100.00 220.00 200.00 20.00 240.00 100.00

40.00备注规划占地700亩每亩平衡投资0.2万元每亩平衡投资0.5万元;含部分大棚建设规划占地200亩每亩平衡投资2万元每亩平衡投资0.2万元规划占地面积900亩;其中200亩为林下种苗及人工种苗及人工( 3.3 3蘑菇种植 特种养殖区200亩×0.5万元/亩100.00种菌及人工 1050.00规划占地面积1100亩.其中林下养殖1000亩 3.1梅花鹿养殖园 3.2巴马香猪养殖园 3.3水产养殖园 4农产品加工区 5生态林休闲区 5.1休闲避暑山庄 5.2养老休闲山庄 5.3旅游设施建设 6民俗文化新村 7基础设施建设 8征地费及土地租用费 .梅花鹿舍建设及种鹿 种猪繁衍基地及商品猪舍 人畜饮水及农业生产用水水库建设

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

相关主题
文本预览
相关文档 最新文档