当前位置:文档之家› 青海德令哈10MW光伏电站设计可研报告

青海德令哈10MW光伏电站设计可研报告

青海德令哈10MW光伏电站设计可研报告
青海德令哈10MW光伏电站设计可研报告

青海德令哈10MW光伏电站设计

可行性研究报告

目录

一、综合说明

二、太阳能资源

三、工程地质

四、项目的任务和规模

五、太阳能机组选型和布置

六、电气

七、工程消防设计

八、土建工程

九、施工组织设计

十、工程管理设计

十一、环境保护和水土保持设计

十二、劳动安全与工程卫生设计

十三、太阳能电场工程建设项目招标十四、节能减排

十五、项目投资概算

十六、经济与社会效果分析

十七、结论和建议

一、综合说明

1项目概述

1.1地理情况概述

青海简称青,以境内大湖青海湖而得名。首府西宁。青海位于我国西北地区中南部,位于“世界屋脊”—青藏高原的东北部,地大物博。面积72.21万平方公里,仅次于新疆、西藏、内蒙古,居全国第四位。

青海境内地势高亢,群山高耸绵亘;青海省湖泊众多,青海湖是我国最大的咸水湖,是高原上一颗美丽迷人的明珠;青海山高谷深,落差大,水利资源十分丰富;青海矿产资源十分丰富。主要的旅游风景区有:塔尔寺,日月山,文成公主庙,青海湖,鸟岛等。

德令哈市位于青海省西北部,是青海省海西蒙古族藏族自治州的首府,是全州政治、经济、文化科技中心。德令哈市是改革开放中崛起的一座高原新城,是瀚海戈壁升起的一颗璀璨明珠。这座沙漠绿城位于柴达木盆地东北边缘,地跨东经约95°40ˊ─98°10ˊ、北纬约36°65ˊ─39°10ˊ之间。东与天竣、乌兰县相邻.西与大柴旦镇接壤,北与青海省肃北县毗邻,南与都兰县相连。东西最大直线距离约215公里,南北最大间距约240公里,总面积为32,401平方公里,其中市区面积25平方公里。辖有蓄集、宗务隆、怀头他拉、戈壁、郭里木5个乡。辖区还有德令哈、尕海、怀头他拉、巴音河4个州属国有农场。1999年末有人口5.65万人,其中少数民族人口占21%。德令哈市境内地域辽阔,地形复杂,形成山、川、盆、湖兼有的地貌特征、宗务隆山呈东向西,是横贯全境中部的主体山脉,也是一个分水岭,它将全市分为北部祁连山高山区地貌和南部德令哈盆地地貌两大类型。北部又分高山区与哈拉湖盆地两个地理单元。高山区以党河南山、疏勒南山为主体,海拔在4,000米以上,许多地方终年积雪不化。哈拉湖盆地是一个高原高山构造盆地,最低点哈拉湖,湖面海拔为4,O76.8米。整个祁连山高山区除在谷地少量有水草的地方,可供夏季游牧短暂利用外,其余地域,目前尚不能为人类所利用。宗务隆山南部的盆地即德令哈盆地,是柴达木盆地的一部分,属闭流断隔或凹陷型盆地,主要由欧龙布鲁克和牦牛山两个扭曲钳形地块及其间若干湖盆地组成。北高南低,一般坡度为0.02%─0.05%,海拔在2,800米─3,20O米之间,平均海拔为2,981.5米。光伏并网电站建在德令哈市东出口10公里,这里海拔高,气候干燥,降水少,日照时间长,距离城市电网近,是国内太阳能综合开发条件最好的区域之一。

1.2业主介绍及工程任务

1.2.1业主介绍

北京瑞启达新能源科技发展有限公司

1.2.2工程任务

青海省德令哈10MW光伏电站,本期建设规模为10MW。受北京瑞启达新能源科技发展有限公司的委托,吉林省东能电力工程有限公司承担《青海德令哈10MW光伏电站工程可行性研究报告》的编制工作。报告的编制按照国家发展和改革委员会发改办能源【2005】899号文件的要求进行。报告内容包括综合说明、光照资源、工程地质、项目任务与规模、太阳能发电机组选型和布置、电气、工程消防与规模、发电机组的选型与布置、电气、工程消防设计、土建工程、施工组织设计、工程管理设计、环境保护与水土保护设计、劳动安全与工业卫生设计、CDM项目、项目投资概算、财务评价及结论和建议章节。

1.2.3建设必要性

1、可持续发展的需要

能源既是重要的必不可少的经济发展和社会生活的物质提,又是主要的污染来源。解决好我国的能源可持续发展战略问题,是实现我国社会经济可持续发展的重要环节。我国水能资源利用率较低,水电大坝的建设可能存在对流域生态环境的影响;天然气资源不足,不可能大量用来发电,核能的发展在我国又受到铀资源短缺和核安全问题的严重限制。因此,开发和利用清洁的、可再生的能源已成为我国能源可持续发展战略的重要组成部分。太阳能能既是绿色环保的可再生能源,也是国家大力发展的新型能源。

2、社会经济发展的需要

目前,我国已成为世界能源生产和消费大国,但人均能源消费水平还很低。随着经济和社会的不断发展,我国能源需求将持续增长。增加能源供应、保障能源安全、保护生态环境、促进经济和社会的可持续发展,是我国经济和社会发展的一项重大战略任务。

3、保护和改善环境的需要

我国长期以来能源结构以煤为主,是造成能源效率低下、环境污染严重的重要原因。《中国应对气候变化国家方案》指出,减排的主要难度在于煤炭消费比重较大,能源结构的转换将成为减排主要措施之一。目前我国电力以火电为主,2008年全国发电用原煤13.4亿吨,发电供热用煤占全国煤炭生产总量的54%左右,大约90%的S02排放由煤电产生,80%的C02排放量由煤电排放。这说明电力工业结构不合理、增长方式粗放的问题比较突出,特别是能耗高、污染重的小火电机组比重偏大,不利于提高能源利用效率和保护生态环境。

2007年9月中华人民共和国国家发展和改革委员会公布了《可再生能源中长期发展规划》,指出:开发利用可再生能源是保护环境、应对气候变化的重要措施。目前,我国环境污染问题突出,生态系统脆弱,大量开采和使用化石能源对环境影响很大,特别是我国能源消费结构中煤炭比例偏高,二氧化碳排放增长较快,对气候变化影响较大。可再生能源清洁环保,开发利用过程不增加温室气体排放。开发利用可再生能源,对优化能源结构、保护环境、减排温室气体、应对气候变化具有十分重要的作用。

太阳能是绿色环保的可再生能源,是一种不消耗矿物燃料的可再生能源,太阳能的使用,相当于节省相同数量电能所需的矿物燃料,减少因开发一次能源如煤、石油、天然气,所造成的环境问题。

根据《青海省太阳能综合利用总体发展规划》和《青海省柴达木盆地千万千瓦级光伏发电基地规划》,青海省紧紧抓住国家实施新能源战略的政策机遇,依托优势资源,规模化发展太阳能产业,以加快建设全国太阳能基地来推动生态立省,谋求绿色发展,截至2011年7月,青海省已有5家光伏发电企业实现并网发电,并网容量达到56兆瓦,目前,青海省内已获得省发改委许可开展前期工作的光伏发电项目达到33个。青海正在成为我国重要的光伏产业基地。

1.3太阳能资源

德令哈地区,地域面积辽阔,气候干燥,降水少,日照时间长,太阳能资源十分丰富,是全国日照辐射量最为丰富的地区之一,太阳能光伏发电开发潜力巨大,是国内太阳能综合开发条件最好的区域之一。

1.4项目任务和规模

德令哈具有可利用的太阳能资源,德令哈电场的建设不仅可以有效地开发当地的太阳能资源、降低一次能源消耗,而且可以优化资源的合理配置,在一定程度上可改善德令哈地区大气和水环境质量。青海德令哈光伏发电项目总体规划装机30MW,拟分三期建设。本期工程拟装机容量10MW;采用35KV电压等级接入青海电网,整体工程占地约43.55万平方米,总投资约48042.4万元,项目建设工期1年。

1.5太阳能发电机组选型

德令哈10MWp的太阳能光伏并网发电系统,推荐采用61360块多晶硅太阳能光伏组件;根

据性价比本方案推荐采用165WP太阳能光伏组件,全部为国内封装组件;

11.6工程消防

太阳能消防设计贯彻“预防为主,防消结合”的消防方针,提出“以水灭火为主,化学灭火为辅及其他方式灭火相结合”的原则,针对工程的具体情况,采用先进合理的防火技术,以保障安全。消除大火隐患,创造良好的消防环境。

1.6电气

本工程拟采用分块发电、集中并网方案,将系统分成10个1MWp的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案。

1.7土建工程

10MWp光电场总占地面积为441400平方米,光伏阵列占地约316000㎡,电站房屋建筑面积约3600平方米。其中:办公室、展厅、食宿楼、机房、控制室、工作间、库房及其它。光电场周围需安装防护围栏;方阵支架基础用钢筋混凝土现浇,预埋安装地脚螺栓。

1.8主体工程施工情况

主体工程为光伏阵列基础施工,地基开挖深度为70cm。开挖出地基底面后先洒少量水、夯实、找平,垫3:7灰土20cm夯实。在其上进行混凝土施工,施工需架设模板、绑扎钢筋并浇筑混凝土,混凝土在施工中经常测量,以保证整体阵列的水平、间距精度。施工结束后混凝土表面必须立即遮盖并洒水养护,防止表面出现开裂。回填土要求压实,填至与地面水平。一般情况尽量避免冬季施工。确需冬季施工时,一定要采取严格保温措。施工过程中,待混凝土强度达到28天龄期以上方可进行安装。

1.10工程管理

在项目建成后,推荐采用场内太阳能发电机组和电气设备与35kV变电站统一管理,接受专门的运营机构集中管辖。太阳能电场发电机组采用远动方式进行监控,变电站按照有人值守进行设计。由于目前尚无可遵照执行的太阳能电场运行人员编制规程,本太阳能电场机构设置和人员编制推荐如下方案:全厂定员标准20人。

1.11环境保护和水土保持

太阳能电场建成后不仅为当地提供清洁能源,同时还为当地新增添了旅游景点。太阳能一期建成后每年可为电网提供电205万千瓦时,可节约标准煤5483吨;在全球能源形势紧张、全球气候变暖严重威胁经济发展和人们生活健康的今天,世界各国都在寻求新的能源替代战略,以求得可持续发展和在日后的发展中获取优势地位。环境状况已经警示我国所能拥有的排放空间已经十分有限了,再不加大清洁能源和可再生能源的份额,我国的经济和社会发展就将被迫减速。提高可再生能源利用率,尤其发展太阳能发电是改善生态、保护环境的有效途径。太阳能光伏发电以其清洁、源源不断、安全等显著优势,成为关注重点,在太阳能产业的发展中占有重要地位。环境保护措施具体包括:施工中使用尾气达标排放的施工机械减少大气污染物排放,避开雨季或雨天,防止施工废水漫流,生活垃圾集中后及时清运,对运营可能产生电磁辐射的设备及场所加设了屏蔽。水土保持措施:建设过程中为防止水土流失将采取平衡施工、缩小施工场地范围、建设过程中被破坏和松动的植被与地表应在回填后及时采取植被恢复措施。

1.12劳动安全与工业卫生

为适应我国太阳能发电事业建设发展的需要,为安全生产和文明生产创造条件,在太阳能发电项目设计中必须贯彻国家颁布的有关劳动安全和工业卫生法令、政策,提高劳动安全和工业卫生的设计水平。在太阳能发电场的设计中,应贯彻“安全生产,预防为主”的方针,加强劳动保护,改善劳动条件,减少事故和人身损害的发生。以保障太阳能电场建设过程中劳动人员和太阳能电场职工生产过程中的安全和健康要求。本太阳能电场施工期劳动安全问

题为高处坠落、提升及车辆伤害、触电、物体打击、坍塌、机械损伤等。本阶段安全设计从工程施工管理、安全生产制度、安全管理等方面提出了预防措施。只要业主、工程监理、工程承包商各自严格按照管理办法运作,可有效预防危害事故的发生,最大限度保证工作人员。太阳能电场在建成投产后,主要预防灾害为自然灾害和工业灾害,包括防火防爆、防触电、防静电和机械伤害等事故。本工程设计中各个专业均遵循国家有关安全生产的规定,对可能采取的事故拟定了预防性措施,在自然灾害事故发生时可以将损失降到最低,并对工业灾害进行有效预防,最大限度保证工作人员和财产安全。

1.13太阳能电场工程建设项目招标

本工程招标范围为以下设备太阳能光伏组件,太阳能光伏组件支架,单元直流接线箱,直流配电柜,并网逆变器,交流配电柜,升压变压器,电流互感器,断路器,隔离开关,计量装置,防雷及接地装置等;鉴于太阳能发电机组的复杂性和多样性以及太阳能电场建设的特殊性和重要性,必须根据太阳能电场的光照资源状况选择与之相匹配的、综合指标最佳的太阳能发电机组。在技术先进适用、运行可靠的前提下,应选择经济上较优、运输和安装方面切实可行的太阳能发电机组。因此,建议本期工程太阳能发电机组招标采用邀请招标方式。1.14项目投资概算

本投资估算包括太阳能光伏组件支架,单元直流接线箱,直流配电柜,并网逆变器,交流配电柜,升压变压器,电流互感器,断路器,隔离开关,计量装置,防雷及接地装置等;厂区内道路等。

根据工程投资概算,工程固定资产静态投资为46852万元,建设期利息为1110.4万元。单位千瓦静态投资为4.63万元,单位千瓦动态投资为4.745万元,固定资产投资见概算部分。1.15财务评价按照青海省可批复电价水平测算,该项目资本金内部收益率高于行业基准收益率水平。说明该项目具有一定的投资价值,建议业主尽快实施。

1.16结论

青海德令哈10MW光伏发电电站厂址太阳能资源丰富,可用

于并网型太阳能发电,具有规模开发的良好前景。厂址地势平坦、开阔,区域内的地质结构稳定。对当地环境不会造成污染,电气并网方案经济、可行。施工建设条件及交通运输条件齐全、便利。经过项目投资估算和初步财务分析,该项目可以取得一定的经济利益。适合建设太阳能发电厂。

二、太阳能资源

我国属世界上太阳能资源丰富的国家之一,全年辐射总量在91.7~2,333kWh/m2.年之间。全国总面积2/3以上地区年日照时数大于2,000小时。我国西藏、青海、新疆、青海、宁夏、内蒙古高原的总辐射量和日照时数均为全国最高,属世界太阳能资源丰富地区之一

图1我国太阳辐射年总量分布

我国太阳能理论总储量为147×108GWh/年。我国有荒漠面积108万平方公里,主要分布在光照资源丰富的西北地区。如果利用十分之一的荒漠安装并网光伏发电系统,装机容量就达大约1.08×1010kWp。折算装机功率为1,928GW,相当于128座三峡电站。可以提供我国2002年16,540亿kWh的耗电量的3.26倍。

2.1太阳能电场所在地气候情况

青海德令哈地区它位于举世闻名的柴达木盆地东北边缘,地理位置处于东经96°15′——98°15′,北纬36°55′——38°22′之间,平均海拔2981.5米,德令哈地势坦荡辽阔,气候比较温和,水源丰富,年太阳能辐射量在6600~7200MJ/㎡,年日照时数8.7小时,年均日照时间3,300小时~3,400小时,明显高于我国东部同纬度地区,按照总辐射量的全国太阳能分区标准为太阳能资源丰富区域(一类区),(二类区位于辐射量5400~6700MJ/㎡,三类区辐射量4200~5400MJ/㎡,四类区辐射量小于4200MJ/㎡);发展光伏电项目具有得天独厚的优势。距离城市电网近,是国内太阳能综合开发条件最好的区域之一。德令哈地区是非常适合安装光伏组件。

2.2评估资料收集情况

为了对太阳能电场的太阳能资源状况和气候背景进行分析,本报告采用了如下基本气象资料进行分析和评估。

1)德令哈气象站1981年~2010年共计30年的气温、气压等资料。

2)德令哈气象站气温、气压、降雨、降雪等一些极端天气资料。

3)德令哈气象站风向、风速及其它天气资料。

4)德令哈气象站2010年月平均气温,日照时数,辐射量等天气资料。

2.3气象站资料分析

2.3.1德令哈1981年~2010气象站主要气象要素特征值

表1:德令哈气象站1981年~2010年平均值

最大冻土深度:169cm

冻结日期:10月左右

解冻日期:4月左右

风向:ENE

年日照小时数:3049.5小时

年蒸发量:1947mm

2.3.2德令哈2010年气象资料信息表表2德令哈地区气象资料信息表

表3德令哈地区太阳辐射数据表

图2德令哈市日均辐射量和最高、最低温度

2.3.3、2010年其他气象数据

表4德令哈地区其他气象数据表

青海省以夏季太阳总辐射6600—7200MJ/m2,明显高于我国东部同纬度地区,按照总辐射量的全国太阳能资源分区标准为大阳能资源丰富区(一类区)。空间分布由西向东逐渐递减,高值区在芒崖、冷湖,低值区在盆地东北部的天俊。柴达木盆地晴天日数多,利用佳期长(一年中日平均气温稳定通过0℃的天数),按照每日日照百分率大于60%的晴天标准,平均年晴天日数在280天以上,冷湖高达311天,最长连续阴天只有3~5天。年日照时数在3000~3400h,其中冷湖多达3442.6h,4~8月日平均日照时数可达9.1~10.8h,每日平均日照时数为8.7h.海西是青海省年日照百分率最大的地区,除德令哈,乌兰日照百分率小于70%外,其余地区均在70%以上,冷湖最高达78%。

本工程建在太阳能资源丰富地区戈壁荒地上,地势平坦开阔,可作为“大漠光电工程”实施的重点和理想地区。搞光伏发电,利用我国的荒漠资源,是变废为宝,保障我国能源供应战略安全、大幅减小排放、和可持续发展的重大战略举措。

青海省十分重视可再生能源的开发和利用,根据《青海省“十一五”能源工业发展规划》,到2010年全省可再生能源开发用量达到138万吨标煤,其中电力装机容量200万千瓦(含小水电、风电),发电量60亿千瓦时;新增节约和开发农村能源150万吨标煤,人均年生活用能达到435公斤标煤,综合热效率达到20%以上。为实现“十一五”能源工业发展规划目标,促进青海可再生能源资源优势转化为经济优势,提高可再生能源开发利用水平,加快能源结构调整,减少煤炭等化石能源消耗对环境产生的污染,青海省将利用各种途径来发展可再生能源。其中,选择在德令哈建设太阳能发电项目,就是一种有益的尝试。目前的太阳能发电技术主要有太阳能光伏发电和太阳能热发电技术,其中太阳能热发电技术尚处于试验开发阶段,而太阳能光伏发电技术已经成熟、可靠、实用,其使用寿命已经达到25—30年。要使光伏发电成为战略替代能源电力技术,必须搞大型并网光伏发电系统,而这个技术已经实践证明是切实可行的。

(一)太阳能电池阵列设计

1、太阳能光伏组件选型

(1)单晶硅光伏组件与多晶硅光伏组件的比较

单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元。多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元。两种组件使用寿命均能达到25年,其功率衰减均小于15%。

(2)根据性价比本方案推荐采用165WP太阳能光伏组件,全部为国内封装组件,其主要技术参数见下表:

表12太阳能电池组件性能参数表

2、并网光伏系统效率计算

并网光伏发电系统的总效率由光伏阵列的效率、逆变器效

率、交流并网等三部分组成。

(1)光伏阵列效率η1:光伏阵列在1000W/m2太阳辐射强度下,

实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程

中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用

的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路

损失等,取效率85%计算。

(2)逆变器转换效率η2:逆变器输出的交流电功率与直流输入功

率之比,取逆变器效率95%计算。

(3)交流并网效率η3:从逆变器输出至高压电网的传输效率,

其中主要是升压变压器的效率,取变压器效率95%计算。

(4)系统总效率为:η总=η1×η2×η3=85%×95%×95%=77%

3、倾斜面光伏阵列表面的太阳能辐射量计算

从气象站得到的资料,均为水平面上的太阳能辐射量,需要

换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。

对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与

倾角有关,较简便的辐射量计算经验公式为:

Rβ=S×[sin(α+β)/sinα]+D

式中:Rβ——倾斜光伏阵列面上的太阳能总辐射量

S——水平面上太阳直接辐射量

D——散射辐射量

α——中午时分的太阳高度角

β——光伏阵列倾角

根据当地气象局提供的太阳能辐射数据,按上述公式计算德

令哈市不同倾斜面的太阳辐射量,具体数据见下表:

表10德令哈市不同倾斜面各月的太阳辐射量(KWH/m2)

从上表的计算可以看出,德令哈纬度40.6°,倾角等于40°时全年接受到的太阳能辐射能量最大,比水平面的数值高约18.9%。确定太阳能光伏阵列安装倾角为40°。

4、太阳能光伏组件串并联方案

250KW并网逆变器的直流工作电压范围为:450Vdc~880Vdc,最佳直流电压工作点为:

560Vdc。太阳能光伏组件串联的组件数量Ns=560/23.5±0.5=24(块),这里考虑温度变化系数,取太阳能电池组件18块串联,单列串联功率P=18×165Wp=2970Wp;单台250KW逆变器需要配置太阳能电池组件串联的数量Np=250000÷2970≈85列,1MWP太阳能光伏电伏阵列单元设计为340列支路并联,共计6120块太阳能电池组件,实际功率达到1009.8KWp。

整个10MWp系统所需165Wp电池组件的数量M1=106120=61200(块),实际功率达到

10.098MWp。该工程光伏并网发电系统需要165Wp的多晶硅太阳能电池组件61200块,18块串联,3400列支路并联的阵列。

5、太阳能光伏阵列的布置

(1)光伏电池组件阵列间距设计

为了避免阵列之间遮阴,光伏电池组件阵列间距应不小于D:

D=0.707H/tan〔arcsin(0.648cosΦ-0.399sinΦ)〕式中Φ为当地地理纬度(在北半球为正,南半球为负),H为阵列前排最高点与后排组件最低位置的高度差)。

根据上式计算,求得:D=5025㎜。

取光伏电池组件前后排阵列间距5.5米。

(2)太阳能光伏组件阵列单列排列面布置见下图:

(3)10MWP太阳能光伏组件阵列布置见下图:

4)总占地面积计算:10MWp太阳能光发电场由1700个单列太阳能光伏阵列构成,前后排阵列间距5.5米。占地面积=935×472=44.14万平方米。

6、土建设计

(1)10MWp光电场总占地面积=935米×472米=441400平方米

(2)光伏阵列占地约316000㎡,电站房屋建筑面积约3600平方

米。其中:

办公室、展厅、食宿楼:40m×20m×2=1600㎡;

机房、控制室:80m×20m×10=1600㎡;

工作间、库房及其它:20m×20m=400㎡;

(3)光电场周围需安装高度2.5米防护围栏,围栏总长度:

(935+472)×2=2814m;

(4)方阵支架基础用钢筋混凝土现浇,预埋安装地脚螺栓。总

计5100个基础,单体基础0.256m3。

(二)太阳能光伏方阵直流防雷汇流箱设计

如上图所示,光伏阵列防雷汇流箱具有以下特点:

(1)满足室外安装的使用要求;

(2)同时可接入6路太阳电池串列,每路电流最大可达10A;

(3)接入最大光伏串列的开路电压值可达DC900V;

(4)熔断器的耐压值不小于DC1000V;

(5)每路光伏串列具有二极管防反保护功能;

(6)配有光伏专用高压防雷器,正极负极都具备防雷功能;

(7)采用正负极分别串联的四极断路器提高直流耐压值,可

承受的直流电压值不小于DC1000V。

按照每6个太阳电池串列单元需要配置1台光伏方阵防雷汇流箱,250KW并网逆变器需配置10个汇流箱,本工程10MWp光伏并网发电系统共需配置400台光伏方阵防雷汇流箱。(三)直流配电柜设计

每台直流配电柜按照250KWp的直流配电单元进行设计,1MWp光伏并网单元需要4台直流配电柜。每个直流配电单元可接入10路光伏方阵防雷汇流箱,10MWp光伏并网系统共需配置40台直流配电柜。每台直流配电柜分别接入1台250KW逆变器,

如下图所示:

直流配电柜每个1MW并网单元可另配备一套群控器(选配件),其功能

如下:

(1)群控功能的解释:这种网络拓朴结构和控制方式适合大功率光伏阵列在多台逆变器公用可分断直流母线时使用,可以有效增加系统的总发电效率。

(2)当太阳升起时,群控器控制所有的群控用直流接触器KM1~KM3闭合,并指定一台逆变器INV1首先工作,而其他逆变器处于待机状态。随着光伏阵列输出能量的不断增大,当INV1的功率达到80%以上时,控制直流接触器KM2断开,同时控制INV3进行工作。随着日照继续增大,将按上述顺序依次投入逆变器运行;太阳落山时,则按相反顺序依次断开逆变器。从而最大限度地减少每台逆变器在低负载、低效率状态下的运行时间,提高系统的整体发电效率。

(3)群控器可以通过RS485总线获取各个逆变器的运行参数、故障状态和发电参数,以作出运行方式判断。

(4)群控器同时提供友好的人机界面。用户可以直接通过LCD和按键实现运行参数察看、运行模式设定等功能。

(5)用户可以通过手动方式解除群控运行模式。

(6)群控器支持至少20台逆变器按照群控模式并联运行。

(四)太阳能光伏并网逆变器的选择

此太阳能光伏并网发电系统设计为10个1MWp的光伏并网发电单元,每个并网发电单元需要4台功率为250KW的逆变器,整个系统配置40台此种型号的光伏并网逆变器,组成10MWp并网发电系统。选用性能可靠、效率高、可进行多机并联的逆变设备,本方案选用额定容量为250KW的逆变器,主要技术参数列于下表:

表13250KW并网逆变器性能参数表

1、性能特点

选用光伏并网逆变器采用美国TI公司32位专用DSP(LF2407A)控制芯片,主电路采用日本最先进的智能功率IPM模块组装,运用电流控制型PWM有源逆变技术和优质进口高效隔离变压器,可靠性高,保护功能齐全,且具有电网侧高功率因数正弦波电流、无谐波污染供电等特点。该并网逆变器的主要技术

性能特点如下:

(1)采用美国TI公司32位DSP芯片进行控制;

(2)采用日本三菱公司第五代智能功率模块(IPM);

(3)太阳电池组件最大功率跟踪技术(MPPT);

(4)50Hz工频隔离变压器,实现光伏阵列和电网之间的相互隔离;

(5)具有直流输入手动分断开关,交流电网手动分断开关,紧

急停机操作开关。

(6)有先进的孤岛效应检测方案;

(7)有过载、短路、电网异常等故障保护及告警功能;

(8)直流输入电压范围(450V~880V),整机效率高达94%;

(9)人性化的LCD液晶界面,通过按键操作,液晶显示屏(LCD)可清晰显示实时各项运行数

据,实时故障数据,历史故障数据(大于50条),总发电量数据,历史发电量(按月、按年查询)据。

(10)逆变器支持按照群控模式运行,并具有完善的监控功能;

(11)可提供包括RS485或Ethernet(以太网)远程通讯接口。其中RS485遵循Modbus通讯协议;Ethernet(以太网)接口支持TCP/IP协议,支持动态(DHCP)或静态获取IP地址;(12)逆变器具有CE认证资质部门出具的CE安全证书。

2、电路结构

250KW并网逆变器主电路的拓扑结构如上图所示,并网逆变电源通过三相半桥变换器,将光伏阵列的直流电压变换为高频的三相斩波电压,并通过滤波器滤波变成正弦波电压接着通过三相变压器隔离升压后并入电网发电。为了使光伏阵列以最大功率发电,在直流侧加入了先进的MPPT算法。

(五)交流防雷配电柜设计

按照2个250KWp的并网单元配置1台交流防雷配电柜进行设计,即每台交流配电柜可接入2台250KW逆变器的交流防雷配电及计量装置,系统共需配置20台交流防雷配电柜。每台逆变器的交流输出接入交流配电柜,经交流断路器接入升压变压器的0.4KV侧,并配有逆变器的发电计量表。每台交流配电柜装有交流电网电压表和输出电流表,可以直观地显示电网侧电压及发电电流。

(六)交流升压变压器

并网逆变器输出为三相0.4KV电压,考虑到当地电网情况,需要采用35KV电压并网。由于低压侧电流大,考虑线路的综合排部,选用5台S9系列(0.4)KV/(35-38.5)KV,额定容2500KVA升压变压器分支路升压,变压器技术参数如下:

表14变压器技术参数表

接至升压变压器三相空开低压侧交流配电单元

(七)系统组成方案原理框图

(八)系统接入电网设计

本系统由10个1MWP的光伏单元组成,总装机10MWp,太阳能光伏并网发电系统接入35KV/50Hz的中压交流电网,按照2MWp并网单元配置1套35KV/0.4KV的变压及配电系统进行设计,即系统需要配置5套35KV/0.4KV的变压及配电系统。每套35KV中压交流电网接入方案描述如下:

1、系统概述

35KV中压交流电网接入方案图如下:

35KV中压交流电网接入方案图

2、重要单元的选择

(1)35KV/0.4KV配电变压器的保护

35KV/0.4KV配电变压器的保护配置采用负荷开关加高遮断量后备式限流熔断器组合的保护配置,既可提供额定负荷电流,可断开短路电流,并具备开合空载变压器的性能,能有效保护配变压器。系统中采用的负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。这是一种简单、可靠而又经济的配电方式。

(2)高遮断容量后备式限流熔断器的选择

由于光伏并网发电系统的造价昂贵,在发生线路故障时,要求线路切断时间短,以保护设备。熔断器的特性要求具有精确的时间-电流特性(可提供精确的始熔曲线和熔断曲线);有良好的抗老化能力;达到熔断值时能够快速熔断;要有良好的切断故障电流能力,可有效切断故障电流。

根据以上特性,可以把该熔断器作为线路保护,和并网逆变器以及整个光伏并网系统的保护使用,并通过选择合适的熔丝曲线和配合,实现上级熔断器与下级熔断器及熔断器与变电站保护之间的配合。

对于35kV线路保护,《3-110kV电网继电保护装置运行整定规程》要求:除极少数有稳定问题的线路外,线路保护动作时间以保护电力设备的安全和满足规程要求的选择性为主要依据,不必要求速动保护快速切除故障。通过选用性能优良的熔断器能够大大提高线路在故障时的反应速度,降低事故跳闸率,更好地保护整个光伏并网发电系统。

(3)中压防雷保护单元

该中压防雷保护单元选用复合式过电压保护器,可有效限制大气过电压及各种真空断路器引起的操作过电压,对相间和相对地的过电压均能起到可靠的限制作用。该复合式过电压保护器不但能保护截流过电压、多次重燃过电压及三相同时开断过电压,而且能保护雷电

过电压。过电压保护器采用硅橡胶复合外套整体模压一次成形,外形美观,引出线采用硅橡胶高压电缆,除四个线鼻子为裸导体外,其他部分被绝缘体封闭,故用户在安装时,无需考虑它的相间距离和对地距离。该产品可直接安装在高压开关柜的底盘或互感器室内。安装时,只需将标有接地符号单元的电缆接地外,其余分别接A、B、C三相即可。设置自控接入装置对消除谐振过电压也具有一定作用。当谐振过电压幅值高至危害电气设备时,该防雷模块接入电网,电容器增大主回路电容,有利于破坏谐振条件,电阻阻尼震荡,有利于降低谐振过电压幅值。所以可以在高次谐波含量较高的电网中工作,适应的电网运行环境更广。

另外,该防雷单元可增设自动控制设备,如放电记录器,清晰掌控工作动作状况。可以配置自动脱离装置,当设备过压或处于故障时,脱离开电网,确保正常运行。

(4)中压电能计量表

中压电能计量表是真正反应整个光伏并网发电系统发电量的计量装置,其准确度和稳定性十分重要。采用性能优良的高精度电能计量表至关重要。为保证发电数据的安全,建议在高压计量回路同时装一块机械式计量表,作为IC式电能表的备用或参考。

该电表不仅要有优越的测量技术,还要有非常高的抗干扰能力和可靠性。同时,该电表还可以提供灵活的功能:显示电表数据、显示费率、显示损耗(ZV)、状态信息、警报、参数等。此外,显示的内容、功能和参数可通过光电通讯口用维护软件来修改。通过光电通讯口,还可以处理报警信号,读取电表数据和参数。

3、监控装置

系统采用高性能工业控制PC机作为系统的监控主机,可以每天24小时不间断对所有的并网逆变器进行运行数据的监测。监控主机的照片和系统特点如下:

3.5”嵌入式低功耗Intel ULV赛扬400MHz CPU卡,

带LCD/CRT VGA,

双网络,

USB2.0,

数字输入/输出和音频

256M内存(可升级)

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

光伏发电项目可行性研究报告

20MW分布式光伏发电项目可行性研究报告 20MW分布式光伏发电项目可行性研究报告

目录 1.项目概况 (11) 1.1项目概况及编制依据 (11) 1.2自然地理概况 (11) 2.项目建设必要性 (12) 2.1缓解能源、电力压力 (12) 2.2太阳能光伏发电将是未来重要能源 (13) 2.3缓解环境压力 (14) 2.4符合国家和当地宏观政策 (14) 2.5充分利用当地资源 (15) 2.6促进我国光伏发电产业的发展 (15) 2.7促进当地经济的可持续发展 (17)

3.项目规模和任务 (17) 4.光伏电站地址的选择及布置 (18) 4.1选址原则 (18) 4.2场址描述 (18) 4.3场址选择综合评价 (18) 5.太阳能资源分析 (19) 5.1我国太阳能资源条件 (19) 5.2聊城市太阳能资源条件及综合评价 (20) 6.并网光伏发电系统设计与发电量估算 (20) 6.1发电主设备选型 (20) 6.1.1太阳能组件选型 (20) 6.1.2并网逆变器选型 (22) 6.2光伏方阵安装设计 (24) 6.2.1发电系统电气设计 (24) 6.2.2光伏农业大棚的设计 (25) 6.3系统年发电量预测 (26) 6.3.1系统发电效率分析 (27)

6.3.2光伏发电系统的发电量预估 (28) 7 电气部分 (28) 7.1电气一次 (28) 7.1.1接入电力系统方式 (28) 7.1.2 电气主接线 (28) 7.1.2.1 电气主接线方案 (28) 7.1.2.2 光伏电站站用电 (29) 7.1.2.3主要电气设备选择 (29) 7.1.2.4过电压保护及接地 (29) 7.1.2.5全所照明 (30) 7.1.2.6电气设备布置 (30) 7.2电气二次 (31) 7.2.1电站运行方式 (31) 7.2.2 调度自动系统 (32) 7.2.2.1 调度关系 (32) 7.2.2.2 远动信息内容 (32) 7.2.3电站继电保护 (32)

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

荒山光伏电站项目可行性研究报告申请报告

荒山光伏电站项目可行性研究报告 中咨国联出品

目录 第一章总论 (9) 1.1项目概要 (9) 1.1.1项目名称 (9) 1.1.2项目建设单位 (9) 1.1.3项目建设性质 (9) 1.1.4项目建设地点 (9) 1.1.5项目负责人 (9) 1.1.6项目投资规模 (10) 1.1.7项目建设规模 (10) 1.1.8项目资金来源 (12) 1.1.9项目建设期限 (12) 1.2项目建设单位介绍 (12) 1.3编制依据 (12) 1.4编制原则 (13) 1.5研究范围 (14) 1.6主要经济技术指标 (14) 1.7综合评价 (16) 第二章项目背景及必要性可行性分析 (17) 2.1项目提出背景 (17) 2.2本次建设项目发起缘由 (19) 2.3项目建设必要性分析 (19) 2.3.1促进我国荒山光伏电站产业快速发展的需要 (20) 2.3.2加快当地高新技术产业发展的重要举措 (20) 2.3.3满足我国的工业发展需求的需要 (21) 2.3.4符合现行产业政策及清洁生产要求 (21) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (21) 2.3.6增加就业带动相关产业链发展的需要 (22) 2.3.7促进项目建设地经济发展进程的的需要 (22) 2.4项目可行性分析 (23) 2.4.1政策可行性 (23) 2.4.2市场可行性 (23) 2.4.3技术可行性 (23) 2.4.4管理可行性 (24) 2.4.5财务可行性 (24) 2.5荒山光伏电站项目发展概况 (24) 2.5.1已进行的调查研究项目及其成果 (25) 2.5.2试验试制工作情况 (25) 2.5.3厂址初勘和初步测量工作情况 (25)

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

敦煌10MW大型光伏电站项目发电量模拟计算书

敦煌10MW大型光伏电站项目发电量模拟计算书 1、场址地理位置: 场址位于敦煌市七里镇西南,距市区13km。东经92°30′,北纬40°04′。平均海拔1200m,距国道215线1 km。距110KV、容量为51500KVA的杨家桥变电站11 km。日照辐射量为6882.1MJ/㎡,日照小时数3362h,最大阵风风速14m/s,沙尘天数7d/y。平均气温9.3℃,场地开阔、平坦,周围无高大建筑和遮挡物,土质为砂砾戈壁滩,地下水水位35m。

2、项目当地光照条件及温度:

3、模型计算条件: (1)本模型计算的气象资料根据招标资料中敦煌项目当地的气象资料; (2)跟踪支架建模、排布采用ECOTECT Ver.5.5软件实现,模型中的地理数据由采用U.S.Department of Energy 中敦煌当地的数据。 (3)倾斜面上的太阳辐照强度的计算模型采用Bird and Hulstrom's model (模 型参见文献:Bird and Hulstrom's model from the publication "A Simplified Clear Sky model for Direct and Diffuse Insolation on Horizontal Surfaces" by R.E. Bird and R.L Hulstrom, SERI Technical Report SERI/TR-642-761, Feb 1991. Solar Energy Research Institute, Golden, CO.)(4)跟踪支架系统采用南北方向固定38度倾斜,东西方向±45°跟踪。 (5)本模型分段计算各个部分的功率输出,太阳能电池板输出,逆变器输出,变压器输出,最后计算并网的输出到电网的电量。 (6)系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、旁路二极管压降的功率损耗、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、其它设备耗电(跟踪电机等)。

水面光伏电站的设计方案与成本

一、某地区大型水库项目概况(参考) 本项目选址,水域开阔,面积约为3000亩,项目现场照片情况如下: 水库的深度约3~4米,采用漂浮式光伏水面电站形式。组件和汇流箱漂浮在水面上,逆变器及后端设备设置在岸基上。 二、水面漂浮式光伏电站解决方案 第一方案:传统浮筒 + 光伏支架方案 1)结构方案 传统浮筒尺寸为500*500*400mm,方阵主要采用单排浮筒,即可提供足够支撑。 另外一方面,考虑到系统维护通道的情况,需要每个浮筒阵列间隔使用双排浮筒。 组件子阵为2*11,采用255W组件,大方阵为6*16个子阵。大方阵单排浮筒和双排浮筒间隔使用。目的是综合考虑成本及电站维护通道的要求。 阵列面积—6327.75㎡ 光伏组件----2112块,538.56KW 浮筒----4191个 锚----预估60组 支架-----96组

2)方阵抛锚固定方案 锚固系统采用水下抛锚方式。先将组装好的浮码头拖移到合适的位置,与岸边通道对齐后,进行初步定位,待整个码头位置基本就位后开始进行锚固作业。 3)系统容量 本方案组件阵列面积6327.75㎡,功率容量为538.56KW。本项目3000亩水域,水域利用率通常60%-80%。保守情况下按照60%水域利用率计算,可以放置190个模块化组件阵列,约合102.3MW。 4)电气方案 电气系统与结构方案配套,22块组件全部串联形成子阵。每16个子阵并联入一个汇流箱。阵列为6*16个子阵组成,即每个阵列有6个汇流箱。 每2个阵列,即4224块组件(1077.12KW)接入到一台1MW的集中逆变站升压到35KV,送往站区再升压并网。汇流箱放置在光伏支架背面,漂浮于水面上,逆变器及后端设备安置于岸基上。 本项目共401280块255W多晶硅组件, 95组1MW的集中光伏逆变站,1140个16路入口的汇流箱,合计容量102.3MW。 5)方案概算表 水面电站电气设备及并网部分成本与地面电站基本无异,在此不再阐述。

光伏电站项目可行性研究报告

光伏电站可行性研究报告

光伏电站可行性报告 目录 第一章综合说明 1.1项目概括 1.2编制依据 1.3研究内容 1.4场地概括 第二章太阳能资源和当地气象资料 2.1太阳能资源条件 2.2乐山市气象条件 2.3项目所在地地理条件 2.4乐山市交通条件 2.5光伏电站场址建设条件 第三章其他必要背景资料 3.1国际光伏发电状况 3.2国内光伏发电状况 3.3四川省光伏发展现状及发展规划 3.4 乐山市光伏发展现状及发展规划 第四章项目任务及规划 4.1项目建设必要性 4.2项目任务及规模 第五章总体设计方案

5.1光伏组件及其阵列设计 5.2工程消防及防护措施 5.3 组件抗压设计 5.4施工组织设计 5.5 劳动安全与工业卫生 5.6 工程设计概算 第六章消防 6.1范围 6.2设计主要原理 6.3建筑物与构筑物要求 6.4灭火器的配制 6.5消防给水和电厂各系统的消防措施第七章施工组织设计 7.1 指导思想及实施目标 7.2 工程概括及编制依据 第八章太阳能光伏电站建设注意事项第九章太阳能光伏电站调试

第一章综合说明 1.1 项目概括 (1)项目名称:XXX并网和离网光伏发电项目 (2)建设单位:乐山职业技术学院新能源工程系 (3)建设规模:建设总容量 (4)主要发电设备:多晶硅光伏组件,单晶硅光伏组件,非晶硅光伏组件 (5)关键电气设备:光伏发电专用逆变器 (6)光伏组件支撑系统:固定倾角式铝合金支架 (7)选址:四川省乐山市乐山职业技术学院新能源工程系,建设光伏电站及办学教育设施,建设工程总面积。站区坐标范围:东经102°55`---104°00′,北纬28°25′—29°55′ 1.2编制依据 本可行性研究报告主要根据下列文件和资料进行编制的 (1)《中华人民共和国可再生资源》,2006年1月1日 (2)《可再生资源发电有关管理规定》,国家发改委2006年1月5日 (3)《可再生资源发电价格和费用分摊管理试行方法》,国家发改委2006年1月4日 (4)《可再生资源电价附加收入调配暂行办法》,国家发改委2007年1月11日 (5)《可再生资源发展专项资金管理暂行办法》,财政部2006年5

光伏发电站设计规范(GB 50797-2012)

光伏发电站设计规范(GB 50797-2012) 1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个 1 兆瓦的光伏并网发电单元,分别经过35KV变压配电装置并入电网,最终实现将整个光伏并 网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个 太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜, 然后经光伏并网逆变器和交流防雷配电柜并入35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40 元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在 13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36 元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 ⑵根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率n 1:光伏阵列在1000W/ rf太阳辐射强度下,实际的直流输出功率与 标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损

失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率n 2 :逆变器输出的交流电功率与直流输入功率之比, 取逆变器效率95%计算。 (3)交流并网效率n 3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 ⑷系统总效率为:n 总=n 1 Xn 2 Xq 3=85% x 95% x 95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐 射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量 计算经验公式为: R 3 =S X [sin( a + 3 )/sin a ]+D 式中: R 3 --倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 a --中午时分的太阳高度角 3 --光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表: 不同倾斜面各月的太阳辐射量(KWH/m2)

光伏电站设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长 的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个 2.88kWp的小型系统,平均每天发电 5.5kWh,可供一个1kW的负载工作 5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度 2.5℃;最热月7月份,平均温度27.6℃。

光伏发电项目可行性研究报告

光伏发电项目可行性研究报告 光伏发电项目可行性研究报告 目录 1.项目概况 (7) 1.1项目概况及编制依据 (7) 1.2自然地理概况 (7) 2.项目建设必要性 (8) 2.1缓解能源、电力压力 (8) 2.2太阳能光伏发电将是未来重要能源 (9) 2.3缓解环境压力 (9) 2.4符合国家和当地宏观政策 (10) 2.5充分利用当地资源 (10) 2.6促进我国光伏发电产业的发展 (11) 2.7促进当地经济的可持续发展 (12) 3.项目规模和任务 (12) 4.光伏电站地址的选择及布置 (12) 4.1选址原则 (12) 4.2场址描述 (13) 4.3场址选择综合评价 (13) 5.太阳能资源分析 (13) 5.1我国太阳能资源条件 (13) 5.2聊城市太阳能资源条件及综合评价 (14)

6.并网光伏发电系统设计与发电量估算 (14) 6.1发电主设备选型 (14) 6.1.1太阳能组件选型 (14) 6.1.2并网逆变器选型 (16) 6.2光伏方阵安装设计 (18) 6.2.1发电系统电气设计 (18) 6.2.2光伏农业大棚的设计 (18) 6.3系统年发电量预测 (19) 6.3.1系统发电效率分析 (19) 6.3.2光伏发电系统的发电量预估 (20) 7 电气部分 (20) 7.1电气一次 (21) 7.1.1接入电力系统方式 (21) 7.1.2 电气主接线 (21) 7.1.2.1 电气主接线方案 (21) 7.1.2.2 光伏电站站用电 (21) 7.1.2.3主要电气设备选择 (21) 7.1.2.4过电压保护及接地 (22) 7.1.2.5全所照明 (22) 7.1.2.6电气设备布置 (22) 7.2电气二次 (23) 7.2.1电站运行方式 (23) 7.2.2 调度自动系统 (23) 7.2.2.1 调度关系 (23) 7.2.2.2 远动信息内容 (23)

分布式光伏电站设计方案参考

北京市XX厂房 分布式并网光伏发电设计方案 设计单位:北京钇恒创新科技有限公司设计人:屈玉秀日10年4月2017设计日期:

1 / 14 一、项目基本情况 北京延庆县XX工厂厂房,占地15000平方米,其中水泥屋顶可利用面积约7000平方米。年用电约25万度,其中,白天用电约15万度(白天综合电价1元/度);夜间用电10万度(夜间综合电价0.4元/度);全年缴纳电费约19万元。 1、项目建设的可行性 1.1 北京市具备建设分布式并网光伏发电系统的条件 北京地区太阳辐射量全年平均4600~5700MJ/m2。多年平均的年总辐射量为1371kwh/m2 北京地区年平均日照时数在2000~2800h之间,多年平均日照时数为2778.7h(从北京气象局获悉)。通过测算,北京市如果按照最佳倾角36°敷设光伏电池板,峰值小时数为1628h(通过专业软件计算获得),首年满发小时数=1628h*80%(系统效率)=1302.4h 首年发电量=450KW*1302.4h=586080kWh≈58.6万kwh 1.2 北京市分布式光伏发电奖励资金管理办法 为进一步加快本市分布式光伏发电产业发展,优化能源结构,根据《中华人民共和国可再生能源法》、《中华人民共和国预算法》、《国务院关于促进光伏产业健康发展的若干意见》和《北京市分布式光伏发电项目管理暂行办法》等有关规定,适用范围。本办法适用于在北京市行政区域范围内建设的分布式光伏发电项目,具体是指在用户所在场地或附近建设运行,以用户侧自发自用为主,多余电量上网,且在配电网系统平衡调节为特征的光伏发电设施。 奖励对象和标准。对于2015年1月1日至2019年12月31日期间并网发电的分

彩钢瓦屋顶光伏电站设计方案及投资资料

湘潭彩钢瓦屋顶光伏并网发电项目初步设计方案 湖南科比特新能源科技股份有限公司 2015年7月

一、设计说明 1、项目概况 本项目初步设计装机容量为642.6K Wp,属并网型分布式光伏发电系统(自发自用,余电上网)。光伏组件安装在楼顶屋面彩钢瓦上。光伏组件采用与彩钢瓦平行的安装方式。本项目共安装2520块255Wp太阳能电池组件,8台15路光伏直流防雷汇流箱,1台8进1出光伏直流配电柜,1台630K Wp逆变器(无隔离变压器),1台630KV A带隔离升压变压器及1台并网计量柜。 项目于合同签订后15个工作日内即可开始建设,预计6周后可并网发电并投入运行。 光伏组件阵列发出的直流电分120串先经8台15路光伏直流防雷汇流箱汇流,再经1台8进1出光伏直流配电柜进行二次汇流,再连接到630K Wp逆变器,再经逆变器转换为315V交流,再经升压变将电压升至400V,最后经并网计量柜后接至低压电网,所发电量优先供工厂自身负载(机器、照明、动力和空调等)使用,余电送入电网。 太阳电池方阵通过电缆接入逆变器,逆变器输入端含有防雷保护装置,经过防雷装置可有效地避免雷击导致设备的损坏。 按《电力设备接地设计规程》,围绕建筑物敷设闭合回路的接地装置。电站内接地电阻小于4欧。 光伏系统直流侧的正负电源均悬空不接地。太阳电池方阵支架和机箱外壳通过楼顶避雷网接地,与主接地网通过钢绞线可靠连接。 屋顶设备,含电池板,支架,汇流箱等设备总质量约为50吨,单位面积载荷约为50吨÷(160m×60m)=10.2kg/m2 。 2、设计依据 本工程在设计及施工中执行国家或部门及工程所在地颁发的环保、劳保、卫生、安全、消防等有关规定。以下未包含的以国家和有关部门制订、颁发的有关规定、标准为准。如国家有关部门颁发了更新的规范、标准,则以新的规范、标准为准。 参考标准: GB 2297-89太阳能光伏能源系统术语

(最新版)分布式光伏发电项目可行性研究报告

(此文档为word格式,下载后您可任意编辑修改!) 沈阳工程学院分布式光伏发电 项目可行性研究报告 辽宁太阳能研究应用有限公司 二0一二年十二月二十七日

目录 1 概述 (6) 1.1 项目概况 (6) 1.2 编制依据 (6) 1.3 地理位置 (6) 1.4 投资主体 (7) 2 工程建设的必要性 (7) 2.1 国家可再生能源政策 (7) 2.2 地区能源结构、电力系统现状及发展规划 (8) 2.3 地区环境保护 (8) 3 项目任务与规模 (8) 4 太阳能资源 (9) 4.1 太阳能资源分析 (10) 4.2 太阳能资源初步评价 (10) 5 网架结构和电力负荷 (11) 5.1 电力负荷现状 (11) 5.2.电站厂址选择 (12) 6 太阳能光伏发电系统设计 (13) 6.1 光伏组件选择 (13) 6.1.1 标准和规范 (13) 6.1.2 主要性能、参数及配置 (14) 6.2 光伏阵列的运行方式设计 (15) 6.2.1 光伏电站的运行方式选择 (15) 6.2.2 倾角的确定 (16) 6.3 逆变器选型 (16) 6.4 光伏阵列设计及布置方案 (20) 6.4.1 光伏方阵容量 (20) 6.4.2 光伏子方阵设计 (22) 6.4.3 汇流箱布置方案 (23) 6.5 年上网电量估算 (23) 6.5.1 光伏发电系统效率分析 (23) 6.5.2 年上网电量估算 (24) 7 电气 (25) 7.1 电气一次 (25) 7.1.1 设计依据 (25) 7.1.2 接入电网方案 (26) 7.1.3 直流防雷配电柜 (27) 7.1.4 防雷及接地 (28) 7.1.5继电保护、绝缘配合及过电压保护 (28) 7.1.6 电气设备布置 (29) 7.2 电气二次 (29) 7.2.1 电站调度管理与运行方式 (29) 7.2.2 电站自动控制 (29)

2MW光伏电站设计方案

宁夏塞尚乳业2MW光伏电站 设计方案 宁夏银新能源光伏发电设备制造有限公司 2012-5-15

一、综合说明 (4) 1、概述 (4) 2、发电单元设计及发电量预测 (6) 2.1楼顶安装 (6) 2.2车间彩钢板安装 (6) 2.3系统损耗计算 (8) 2.4光伏发电量预测 (9) 二、光伏电站设计: (10) 1、光伏组件的选型及参数 (10) 2、逆变器设计: (12) 3、逆变器的选型 (13) 4.防逆流设计 (15) 三、太阳能电池阵列设计 (16) 1并网光伏发电系统分层结构 (16) 2.系统方案概述 (17) 3.太阳能电池阵列子方阵设计 (17) 4.电池组件串联数量计算 (18) 5.太阳能电池组串单元的排列方式 (20) 6.太阳能电池阵列行间距的计算 (20) 7.逆变器室布置 (21) 8.太阳能电池阵列汇流箱设计 (21) 9.太阳能电池阵列设计 (22) 10.光伏阵列支架设计 (22) 四.电气 (22) 1电气一次 (22) 2电气二次 (22)

一、综合说明 1、概述 宁夏是我国太阳能资源最丰富的地区之一,也是我国太阳能辐射的高能区之一(太阳辐射量年均在4950MJ/m2~6100MJ/m2之间,年均日照小时数在2250h-3100h之间),在开发利用太阳能方面有着得天独厚的优越条件一地势海拔高、阴雨天气少、日照时间长、辐射强度高、大气透明度好。区域内太阳辐射分布年际变化较稳定,因地域不同具有一定的差异,其特点是北部多于南部,尤以灵武、同心地区最高,可达6100MJ/m2,辐射量南北相差约1000MJ/m2。灵武、同心附近是宁夏太阳辐射最丰富的地区。

26兆瓦光伏发电工程融资投资立项项目可行性研究报告(中撰咨询)

26兆瓦光伏发电工程立项投资融资项目可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司 地址:中国〃广州

目录 第一章26兆瓦光伏发电工程项目概论 (1) 一、26兆瓦光伏发电工程项目名称及承办单位 (1) 二、26兆瓦光伏发电工程项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、26兆瓦光伏发电工程产品方案及建设规模 (6) 七、26兆瓦光伏发电工程项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (6) 十一、26兆瓦光伏发电工程项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章26兆瓦光伏发电工程产品说明 (15) 第三章26兆瓦光伏发电工程项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (16) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (20) 一、原辅材料供应条件 (20) (一)主要原辅材料供应 (20) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (22) 第七章工程技术方案 (23) 一、工艺技术方案的选用原则 (23) 二、工艺技术方案 (24) (一)工艺技术来源及特点 (24) (二)技术保障措施 (24) (三)产品生产工艺流程 (25) 26兆瓦光伏发电工程生产工艺流程示意简图 (25) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (27) 第八章环境保护 (28) 一、环境保护设计依据 (28) 二、污染物的来源 (29) (一)26兆瓦光伏发电工程项目建设期污染源 (30) (二)26兆瓦光伏发电工程项目运营期污染源 (30)

屋顶分布式光伏发电站可研报告

XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目 可 行 性 研 究 报 告

XXXX新能源有限公司 二零一六年十月XX 目录 一、项目名称 (1) 二、地理位置 (1) 三、太阳能资源 (1) 四、工程地质 (2) 五、区域经济发展概况 (2) 六、工程规模及发电量 (2) 七、光伏系统设计方案 (3) 八、光伏阵列设计及布置方案 (3) 九、电力接入系统方案 (3) 十、监控及保护系统 (3) 十一、消防设计 (4)

十二、土建工程 (4) 十三、工程管理设计 (4) 十四、环境保护与水土保持设计 (4) 十五、劳动安全与工业卫生 (5) 十六、节能降耗分析 (5) 十七、工程设计概算 (6) 十八、财务评价与社会效果分析 (6) 十九、结论 (7) 二十、建议 (8) 二十一、工程任务 (8) 二十二、工程建设必要性 (8)

一、项目名称 工程名称:XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目,以下简称本项目。 二、地理位置 XX市,为XX省地级市,位于江西省东部偏北,信江中下游。地处北纬27°35ˊ~28°41ˊ、东经116°41ˊ~117°30ˊ,面向珠江、长江、闽南三个“三角洲”,珠三角经济区和海西经济区在中部的最大最近的共同腹地,是X东北承接东南沿海产业转移第一城。是内地连接东南沿海的重要通道之一。全市总面积3556.7平方千米,辖区总人口113.4万人(2011),其中城镇常住人口56.1万人。是国家铜冶炼基地、全国商品粮基地、江西省重点产材基地、长江防护林基地、国家贮备粮基地。 本项目站址位于XX省XX市高新技术开发区XX产业园,东经116.87°,北纬28.19°。拟利用园区内厂房屋面架设支架建设光伏电站。业主提供可利用屋面面积约为35hm2,规划容量为30MWp。项目由XXXX新能源有限公司投资建设,项目资本金20%,银行贷款80%。 三、太阳能资源 XX市属中亚热带湿润季风温和气候,其特点是四季分明,气温偏高,光照充足,雨量丰沛,无霜期长。多年平均气温18.4℃,1月平均气温5.8℃,极端最低气温-10.4℃(1991年12月29日);7月平均气温29.7℃,极端最高气温41.0℃(1991年7月23日)。最低月均气温3.3℃,最高月均气温34.9℃。平均气温年较差23.3℃,最大日较差29.7℃(2007年3月21日)。生长期年平均317天,无霜期年平均267天,最长达317天,最短为240天。年平均日照时数1749.9小时,年总辐射108.5千卡/平方厘米。年平均降水量1881.8毫米,年平均降雨日数为187.7天,最多达215天(1985年),最少为135天(1978年)。极端年最大雨量2768.2毫米(1998年),极端年最少雨量1255.0毫米(1978年)。降雨集中在每年4月至6月,6月最多。由于XX市气象站暂无太阳能辐射数据,因此本次以XX站为参证站,利用收集到的气象数据推算XX站的辐射

光伏发电站设计规范GB 50797-2012

光伏发电站设计规范(GB 50797-2012)1总则 1.0.1为了进一步贯彻落实国家有关法律、法规和政策,充分利用太阳能资源,优化国家能源结构,建立安全的能源供应体系,推广光伏发电技术的应用,规范光伏发电站设计行为,促进光伏发电站建设健康、有序发展,制定本规范。 1.0.2本规范适用于新建、扩建或改建的并网光伏发电站和l00kWp及以上的独立光伏发电站。 1.0.3并网光伏发电站建设应进行接入电网技术方案的可行性研究。 1.0.4光伏发电站设计除符合本规范外,尚应符合国家现行有关标准的规定。 2术语和符号 2.1术语 2.1.1光伏组件 PV module 具有封装及内部联结的、能单独提供直流电输出的、最小不可分割的太阳电池组合装置。又称太阳电池组件(solar cell module) 2.1.2光伏组件串 photovoltaic modules string 在光伏发电系统中,将若干个光伏组件串联后,形成具有一定直流电输出的电路单元。 2.1.3光伏发电单元 photovoltaic(PV)power unit 光伏发电站中,以一定数量的光伏组件串,通过直流汇流箱汇集,经逆变器逆变与隔离升压变压器升压成符合电网频率和电压要求的电源。又称单元发电模块。 2.1.4光伏方阵 PV array 将若干个光伏组件在机械和电气上按一定方式组装在一起并且有固定的支

撑结构而构成的直流发电单元。又称光伏阵列。 2.1.5 光伏发电系统 photovoltaic(PV)power generation system 利用太阳电池的光生伏特效应,将太阳辐射能直接转换成电能的发电系统。 2.1.6 光伏发电站 photovoltaic(PV)power station 以光伏发电系统为主,包含各类建(构)筑物及检修、维护、生活等辅助设施在内的发电站。 2.1.7辐射式连接 radial connection 各个光伏发电单元分别用断路器与发电站母线连接。 2.1.8 “T”接式连接 tapped connection 若干个光伏发电单元并联后通过一台断路器与光伏发电站母线连接。 2.1.9跟踪系统 tracking system 通过支架系统的旋转对太阳入射方向进行实时跟踪,从而使光伏方阵受光面接收尽量多的太阳辐照量,以增加发电量的系统。 2.1.10单轴跟踪系统 single-axis tracking system 绕一维轴旋转,使得光伏组件受光面在一维方向尽可能垂直于太阳光的入射角的跟踪系统。 2.1.11双轴跟踪系统 double-axis tracking system 绕二维轴旋转,使得光伏组件受光面始终垂直于太阳光的入射角的跟踪系统。 2.1.12集电线路 collector line 在分散逆变、集中并网的光伏发电系统中,将各个光伏组件串输出的电能,经汇流箱汇流至逆变器,并通过逆变器输出端汇集到发电母线的直流和交流输电线路。

关于编制太阳能光伏发电项目可行性研究报告编制说明

太阳能光伏发电项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/fa16026963.html, 高级工程师:高建

关于编制太阳能光伏发电项目可行性研究 报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国太阳能光伏发电产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5太阳能光伏发电项目发展概况 (12)

相关主题
文本预览
相关文档 最新文档