当前位置:文档之家› 单壁碳纳米管与新型储氢材料

单壁碳纳米管与新型储氢材料

单壁碳纳米管与新型储氢材料
单壁碳纳米管与新型储氢材料

20世纪90年代单壁碳纳米管(SWCNs ),由于

其特有的机械学、电学及化学性质,从一出现就吸引了众多的纳米材料科学家的目光。在结构上,它可看作是由单层的石墨片卷成的具有纳米尺度直径的微小圆管。在力学上,它具有100倍的钢铁的比强度。因而已被设想未来作为去太空旅游使用的提升缆绳[1]。在电学上,它具有金属或半导体那样的电导特性。由此可衍生出大量的微电子学器件。在化学上,能以其外表面作为化学合成的基质,催化合成许多的超分子化合物;也能以其管腔为基础合成多种单晶纳米线[1]。然而,近几年SWCNs 在储氢材料方面的应用研究已是异军突起,独树一帜。氢能源是各国未来能源战略的重点。最近,Nikitin 和

Li 等[2]的研究,已经将SWCNs 的重量比储氢容量提高到超过7%。这一成果已经为氢燃料汽车走向实

用而打下了坚实的理论研究的基础。本文简介了单壁碳纳米管储氢材料的研究进展。

1单壁碳纳米管的合成

SWCNs 的合成可追溯至20世纪90年代初期[3]。

1998年,Kong 和Soh 等[4]在刻有催化材料组成的具

有微米尺度的小岛状图案的硅晶片上制得了直径在1-3nm ,长度达几十微米的高质量SWCNs 。这些钠米管从小岛上长出来,由扫描电子显微镜和原子力显微镜很容易进行定位、描述和操作。

2单壁碳纳米管的纯化

进入本世纪后,碳纳米管的纯化也取得了较大

的进展。金属性和半导性碳纳米管通常在正在生长

着的材料中共存。Zhang 和Qi 等[5]提出了一种气相等离子体碳氢化反应来选择性地蚀刻(破裂)并气化金属性纳米管,而以几乎纯的形式保留半导性的纳米管。用此法,他们获得了平行排列的100%的纯半导性纳米管。

3单壁碳纳米管储氢的结构基础

2003年,Li 和Furuta 等[6]从理论上评价了碳纳

米管的储氢容量。它可通过物理和化学两种吸附方式储氢。物理吸附虽然在液氮温度下较为明显,但在室温下无多大意义。他们从理论上计算的化学吸附的贡献最高能达到7.7%的质量比储氢容量。从结构理论上分析[7],构成SWCNs 的每个碳原子采用

sp 2杂化,与相邻的三个碳原子分别形成三个σ型C-C 共价键,许多碳原子相互结合成二维的网状圆

筒形结构。每个碳原子的第三个未参加杂化的2p 轨道贡献于一个超级大π键的形成。SWCNs 的成键模式非常类似于石墨的片层,因此具有金属的导电特性。但两者也有不同之处,后者是平面的二维结构,形成的超级大π键比较稳定;前者是圆筒状的二维结构,由于弯曲使其超级大π键趋于不稳定,并且也会影响到sp 2杂化。这些弯曲的几何效应导致sp 2杂化型的C-C 键产生张力,弯曲张力使碳原子出现从sp 2向sp 3杂化转化的趋势[7]。构成

SWCNs 的碳原子都有与曲面外的其它原子成键的

化学活泼性。在一定条件下,刚好能与一个氢原子形成一个C-H 键。因此,当忽略边缘影响时每个碳

单壁碳纳米管与新型储氢材料

王孝恩,孙玉泉

(潍坊教育学院,山东青州262500)

摘要:本文介绍了新能源战略下储氢材料的发展,其中单壁碳纳米管具有特别好的应用前景。最近的研究表明纳米管的最大氢化度依赖于其直径,对于直径约为2.0nm 的单壁碳纳米管-氢复合物具有几乎

100%的氢化度和通过可逆碳-氢键的形成而达7%以上的重量比储氢容量,并且室温下是稳定的。

关键词:单壁碳纳米管;储氢材料;重量比储氢容量;化学吸附中图分类号:TQ127.1+1文献标志码:A

文章编号:1008-1267(2009)01-0034-04

收稿日期:2008-08-05

第23卷第1期2009年1月

Vol.23No.1Jan.2009

天津化工

TianjinChemicalIndustry

原子都结合(化学吸附)一个氢原子就成了推算SWCNs最大储氢容量的理论依据。也就是说,具有碳-氢物质的量之比为1∶1的最大氢储量。每克SWCNs(载氢)的理论质量储氢容量为

H CH =1.0

12+1

×100%=7.7%

4单壁碳纳米管用于储氢的实验研究2005年,Nikitin和Ogasawara等[8]使用核能级(core-level)光电子谱和X-射线吸收光谱法研究了用原子氢进行的SWCNs的氢化。他们发现那样的氢化是可逆的,在管壁上碳原子与氢原子形成C-H 键。当加热到600℃时,此C-H键完全断裂。其碳原子的氢化度达到65±15%,相当于5.1±1.2%的质量比氢化容量。

2006年,Zhang和Qi等[9]系统地研究了在不同温度下氢等离子体与SWCNs之间的反应。他们使用显微镜、红外、拉曼光谱及电子转运测量法研究了氢化后SWCNs的性质。他们观察到在侧壁氢化下SWCNs结构变形、电导剧烈减小及半导性增加,并且在热退火到500℃下经脱氢时这些变化是可逆的。苛刻的等离子体或者高温反应也能导致碳纳米管的碳氢化而发生蚀刻。他们发现在对抗碳氢化时直径越小的SWCNs越不稳定。

纳米管的直径是影响储氢量的一个重要因素。理论上[7],二维平面网状有利于C原子的sp2杂化轨道及超级大π键的形成和稳定,而管状的二维曲面结构产生的C-C键张力却降低了sp2杂化轨道及超级大π键的稳定性从而增加碳原子的氢化活性。SWCNs的半径越小,似乎氢化活性越高,单位质量的储氢容量越大。但随着SWCNs半径的减小,氢化后的杂化轨道的稳定性增强,由C-H键离解产生可逆释氢的难度增大,从而影响SWCNs可逆储氢的品质。因此,并不是碳纳米管的半径越小越好。

2008年,Niktin和Li等[2]已经将SWCNs的重量比储氢容量提高到超过7%。他们使用纳米管膜的原位氢原子处理,与来自氢分子离解过程的氢化分开,使用原子力显微镜(AFM)研究了纳米管的大小分布,用X射线光电子显微镜(XPS)来测定氢化度。后者提供了关于C-H键通过C的ls核能级位移存在的信息并且也允许定量化每个碳原子形成的那样的键的数目。实验上,他们发现在氢化的纳米管变得不稳定并解体之前,氢化度依赖于纳米管的直径分布。对于几乎100%的氢化的是那些具有直径约为2.0nm的SWCNs,它们在室温下是稳定的,其氢化度等价于~7%的重量比的氢储存容量。他们还发现在纳米管表面上形成的大多数C-H键在200℃到300℃的温度范围内离解。由于从SWCNs 上吸附的稳定H原子对形成氢分子过程具有大的活化能障,所以氢的解吸主要由反应动力学控制。在研究中他们使用了两种不同的生长着的SWCN 薄膜(1型和3型)样品。它们生长在一种硅晶片上,此硅晶片由不同化学沉积技术原位氧化的薄层复盖。对于1型(T1)薄膜,生长的催化剂由50mg的Degussa Aerosil380硅、4.5mg醋酸钴、3.1mg醋酸铁及0.77mg醋酸钼的混合物在乙醇中反应2h制成,并且在晶片的表面上以3000rpm的转速被旋转复盖。SWCNs被生长在一个含有晶片的1英寸的石英管中,先通10分钟1000sccm的形成气(含3%氢气的氩气)和1000sccm的H2,在1000sccm 的形成气和1000sccm的H2中加热到850℃,再通5分钟1000sccm的形成气和1000sccm的氩气。随后,1000sccm的形成气通过乙醇鼓泡并在850℃通5分钟1000sccm的氩气。此后,在1000sccm 的形成气和1000sccm的H2流中冷却。他们的2型(T2)膜是按照Nikitin和Ogasawara等[8]的程序制备的。他们使用Renishaw微-拉曼(Raman)光谱法,在750nm激发激光波长下,T2膜的Raman光谱中低的D到G带强度比显示了它们的高质量(低的无定形碳和缺陷浓度)。扫描电子显微镜也证明了此纳米管没有完全复盖基质,并且部分地以束的形式被发现。T1膜复盖基质的90%,而T2膜复盖40%。为了确定在T1和T2膜中SWCNs的直径分布,他们使用在刻有催化剂组成的图案的Si基质上专门制备的样品进行了详细的原子力显微镜测量。样品是由Kong和Soh等[4]介绍的具有5×5μm2的催化剂模式的成熟的开发技术制备的,并且以带状模式使用外位纳秒示波器Ⅲa多模式器械进行AEM成像。原子力显微镜研究结果表明SWCNs的直径分布:在T1膜中的纳米管具有平均1.6nm,T2膜平均2.0nm的直径。

Nikitin和Li等[2]在斯坦福同步辐射实验室中对束线5-1进行了XPS研究。其XPS谱的能量分辨率好于0.1eV。氢原子束是在一个W形的毛细管中

第23卷第1期王孝恩等:单壁碳纳米管与新型储氢材料35

通过热裂解氢分子而产生的。在氢处理期间小室中的典型压力为5×10-7Torr,在H源和样品之间的距离为25cm,并且W形毛细管温度在2000℃以上。在原位氢原子处理前,在1×10-9Torr的操作压力下通过小心地褪火至750℃来清洗SWCNs膜。XPS谱表明了在SWCNs膜中没有杂质和残余金属催化剂Fe、Co或Mo。也没有测到XPS谱出的电荷影响。

5单壁碳纳米管吸附氢后的稳定性

对于好的储氢材料,储氢的可逆性和稳定性是至关重要的。若吸附氢后SWCNs的稳定性过低,其结构将遭到破坏。若稳定性过高,将不利于可逆地释放氢。Lu和Scudder等[10]将一端半敞开的SWCNs 称为单壁扶手椅,将氢化时能沿管的一侧开裂的那些,形象地称为“拉链”碳纳米管。他们用从头计算法计算了氢原子在这些纳米管上的化学吸附。计算结果表明,在管的外部氢吸附的结合能远大于管的内部,并且预言,对于小的扶手椅纳米管,在一侧选择性的位点上只要两排吸附的氢原子就能通过C-H键的形成而打破纳米管上的最近的C-C键,导致拉开纳米管壁的拉链。对于大的扶手椅和拉链纳米管在对抗拉链的拉开时是相对稳定的。在管的内部吸附的氢原子不破坏纳米管的C-C键。

这种氢引起的纳米管的破裂或者“拉开拉链”不但被理论上预言,而且实验上也已观察到[5,9]。理论和实验上的研究都表明了,与具有更小直径的SWCNs相比,直径越大的纳米管具有越小的曲率限制而整个具有更低的反应活性,因此对于由氢化引起的蚀刻具有更大的抵抗力。

Nikitin和Li等[2]的研究显示,在样品1中一旦碳纳米管达到30%的氢化度,另外的氢处理就引起SWCNs膜的蚀刻。T2样品的情形是相当不同的,他们的结果表明,在样品2中的SWCNs用适度的H 处理时不破裂。

此外,已经证明具有半导性质的SWCNs在用氢等离子体处理下比具有金属性质的更稳定。Nikitin和Li等[2]的结果表明,T1和T2SWCN样品在氢处理下具有不同的行为:对于T1样品~30%的氢化就能使纳米管具有随后材料蚀刻的不稳定性,而对于T2样品几乎100%氢化的纳米管也是稳定的。他们注意到纳米管的直径分布对于T1样品,其平均直径在1.6nm左右,而对于T2样品是在2.0nm 左右。这种平均直径的差别可能是观察到的T1和T2样品蚀刻情形的差异的理由之一。在他们的实验中,直径为2.0nm左右的SWCNs不但具有最高的质量比储氢容量,并且吸氢是可逆的,吸氢后在室温下是稳定性的。可以说,这些SWCNs已经具备了储氢材料应该有的优越性能。

Nikitin和Li等的研究已经将SWCNs的质量比储氢容量提高到了7%以上,这几乎是目前质量比储氢容量最高的合金储氢材料Mg2NiH4的两倍。随着纳米时代的到来,以SWCNs为储氢材料的氢能发动机汽车代替传统汽车的时代已经离我们越来越近了。

参考文献:

王孝恩,窦建芝.以纳米管为基质的超分子材料合成研

究的进展.[J].天津化工,2004,18(3):16-18.

Nikitin,A.;Li,X.;Zhang,Z,;Ogasawara,H,;Dai,H.;and Nils-

son,A.Hydrogen Storage in Carbon Nanotubes through the Formation of Stable C-H Bonds.[J].Nano Lett.,,2008,8(1), 162-167.

王孝恩,翟江,孙建梅.纳米管合成研究进展.[J].天津化

工,2005,19(4):10~12.

Kong,J.;Soh,H.T.;Cassell,A.;Quate C.F.;Dai.H.Synthesis of Individual Single-walled Carbon Nanotubes on Patterned Silicon Wafers.[J].Nature.1998,395,878-881.

Zhang,G.;Qi,P.;Wang,X.;Lu,Y.;Li,X.;Tu,R.;Bangsaruntip,

S.;Mann,D.;Zhang,L;Dai,H.Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction.[J].Science 2006,314(5801):974-977.

Li,J.;Furuta,T.;Goto,H.;Ohashi,T.;Fujiwara,Y.;Yip,S.

Theoretical Evaluation of Hydrogen Storage Capacity in Pure Carbon Nanostructures.[J].J.Chem.Phys.2003,119(4), 2376-2385.

王孝恩.纳米管的自组装生长及其机理研究[J].天津化

工,2005,19(2):9-11.

Nikitin,A.;Ogasawara,H.;Mann,D.;Denecke,R.;Zhang,Z.;

Dai,H.;Cho,K.;and Nilsson,A.Hydrogenation of Single-walled Carbon Nanotubes.[J].Phys Rev Lett.2005,95(22): 225507.

Lu,G.;Scudder,H.;Kioussis,N.Hydrogen-induced Unzip-

ping of Single-walled Carbon Nanotubes.[J].Phys.Rev.B.

2003,68(20):205416.

Zhang,G.;Qi,P.;Wang,X.;Lu,Y.;Mann,D.;Li,X.;Dai,H.Hy-

drogenation and Hydrocarbonation and Etching of Single-walled Carbon Nanotubes.[J].Journal of the American Chemical Society.2006,128(18):6026-6027.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

2009年1月

天津化工36

EO-TMPTA 紫外光固化研究

牟国光

(天津市化学试剂研究所,天津300240)

摘要:本文对乙氧基化三羟甲基丙烷三丙烯酸酯的紫外光固化行为以及固化膜性能进行了研究。与三羟甲基丙烷三丙烯酸酯相比,其粘度小、光活性高,可赋予固化膜优良的柔韧性。关键词:乙氧基化单体;乙氧基化三羟甲基丙烷三丙烯酸酯;活性稀释剂;紫外光固化中图分类号:TQ225.4

文献标志码:A

文章编号:1008-1267(2009)01-0037-02

收稿日期:2008-08-27

乙氧基化三羟甲基丙烷三丙烯酸酯(EO -TMPTA )是国内外近几年发展起来的第二代活性稀

释剂。在分子中引入柔性链是第二代稀释剂结构上最显著的特点。在性能上,它们在保证高活性、高溶解力的同时,固化膜收缩应力、柔韧性以及对基材和附着力等大大改善。另外,低皮肤刺激性也是第二代活性稀释剂的特点之一。因此研究EO-TMPTA 的紫外光固化行为具有实际意义。本文合成了不同乙氧基化程度的三官能团单体EO-TMPTA (已申请专利,申请号为:20071006128.7),研究了其光固化行为以及固化膜性能。

1

实验部分

1.1

原材料

聚氨酯丙烯酸酯KDUH -1,UV 光引发剂I -

651,增感剂。

1.2仪器

NDJ-2G 型旋转式粘度计,N121UVCure Tester ;

聚焦高压汞灯辐照箱;DL-250A 型电子拉力试验机。1.3

EO-TMPTA 合成

按照文献[1]可合成三官能团EO-TMPTA 。EO-TMPTAT 的合成分两步:第一步,三羟甲基丙烷(TMP )在强碱作用下引发环氧丙烷(EO )开环加成,得到EO-TMP ,控制TMP 与EO 摩尔比,可得到EO2-TMP 、EO3-TMP 、EO6-TMP ;第二步是丙烯酸酯化反应,最终产率为86%~93%。1.4性能测试

1.4.1单体活性测试

按一定配方制成UV 固化体系在N121UVCure Tester 上测定,从谱图上可以计算固化周期。

Single-Walled Carbon Nanotubes and New Materials

for Hydrogen Storage

WANG Xiao-en,SUN Yu-quan

(Weifang College of Education,Qingzhou City,Shandong 262500)

Abstract:This paper introduces the development of materials for hydrogen storage under new energy stratagem.The single-walled carbon nanotubes have excellent application foreground.Recent results show that maximal degree of nanotube hydrogenation depends on the nanotube diameter and that the diameter values around 2.0nm nanotube-hydrogen complexes have almost 100%hydrogenation degree and a hydrogen storage capacity of more than 7wt%through the formation of reversible C-H bonds and are stable at room temperature.

Keywords:single-walled carbon nanotubes;materials for hydrogen storage;hydrogen storage capacity (wt%);chemisorption

·科研与生产·

第23卷第1期2009年1月

Vol.23No.1Jan.2009

天津化工

TianjinChemicalIndustry

储氢材料的储氢原理与研究现状

储氢材料的储氢原理与研究现状 氢能,即氢气中所含有的能量。具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点[2]。目前,能源危机和环境危机日益严重。许多国家都在加紧部署、实施氢能战略,如美国针对运输机械的“Freedom CAR”计划和针对规模制氢的“Future Gen”计划,日本的“New Sunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势[3]。但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。因此,氢能的利用和研究成为是当今科学研究的热点之一。而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。 目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。高压气态液态[4]储氢发展的历史 较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3 %。而且存在很大的安全隐患,成本也很高。 金属氢化物[5-7]储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮[8-9]。金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。具体有NaH-Al-Ti、 Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeO x等物质,

储氢的各种材料

一、前言 随着社会的发展,环境保护问题已经越来越为人们所重视。酸雨、温室效应、城市热岛效应等等 或初露倪端,或已对人类造成巨大的危害,这些环保问题的产生在很大程度上与人类大量使用化石能 源有关。同时,由于能源消耗量的迅猛增加,化石能源将不能满足经济高速发展的需求,需要开发新 的能源。在我国开发清洁的新能源体系更具有重要意义。 氢可以地球上近于无限的水为原料来制备,其燃烧产物也是水,具有零污染的优点,有望在石油中国论文联盟https://www.doczj.com/doc/f215784855.html, 时代末期成为一种主要的二次能源。氢能技术的发展,已在航天技术中得到了成功的应用。 氢是一种危险,易燃易爆的气体,在使用中必须保证安全,因此,一种安全、高能量密度(包括体积能量密度和重量能量密度)、低成本、使用寿命长的氢储、输技术的应用需求已越来越迫切。 二、目前主要的储氢方式 近年来研究较多的储氢方式有:(1)金属氢化物储氢;(2)液化储氢;(3)吸附储氢;(4)压缩储氢。 2.1金属氢化物储氢 氢和氢化金属之间可以进行可逆反应,当外界有热量加给氢化物时,它就分解为氢化金属并释放 出氢气。用来储氢的金属大多是由多种元素构成的合金,目前世界上研究成功的合金大致分为:(1)稀土镧镍,每公斤镧镍合金可储氢153L;(2)铁钛合金,储氢量大,价格低月在常温常压下释放氢;(3)镁系合金,是吸氢量最大的元素,但需要在287℃条件下才能释放氢,而且吸收氢十分缓慢;(4)钒、铌、铅等多元素系,这些金属本身是稀贵金属,因此只适用于某 些特殊场合。 与其它储氢方式相比,金属氢化物储氢具有压力平稳,充氢简单、方便、安全等优点,单位体积贮氢的密度,是相同温度、压力条件下气态氢的1000倍。该储氢方式存在的问题为在大规模应用中如 何提高储氢材料的储氢量和降低材料成本,节约贵重金属。国际能源机构确定的未来新型储素材料的标准为储氢量应大于5Wt%,并且能在温和条件下吸放氢。根据这一标准,目前的储氢合金大多尚不能满足这一性能要求。 2.2液化储氢 将氢气冷却到-253℃时氢气即可液化。液氢储存方式的质量能量密度最大,是一种轻巧紧凑的方式。但氢气液化成本高,能量损失大(氢液化所需能量为液化氢燃烧产热额的30%),且存在蒸发损 失。液氢贮存工艺首先用于宇航中,但需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化, 导致液体贮存箱非常庞大。 2.3吸附储氢 C.CarPetis和W.Peschka是首先提出在低温条件下氢气能够在活性炭中吸附储存的两位学者。他们提出可以考虑将低温吸附刘运用到大型氢气储存中,并研究得到了在温度为-195℃和-208℃,压力为0-4.15MPa时,氢在多种活性炭上的吸附等温线:压力为4.2MPa 时,氢气在活性炭上的吸附容量分别可以达到 6.8wt%和 8.2wt%在果等温膨胀到0.2MPa,则吸附容量为4.2wt%和5.2wt%。 在一个最近的研究中,Hynek在27℃和-83℃条件下测试了一系列吸附剂,如活性炭、碳黑、碳气凝胶 以及碳分子筛等。测试结果为:在0-20MPa压力范围内,随着压力的增大,吸附剂的储氢量只有少 量的增加。 目前吸附储氢材料研究的热点是碳纳米材料。由于碳纳米材料中独特的晶格排列结构,其储氢数量大大的高过了传统的吸附储氢材料。碳纳米管产生一些带有斜口形状的层板,层

纳米储氢电极材料

纳米储氢电极材料主要有碳纳米管、镁镍合金和镁钛合金 Mg2 Ni纳米晶储氢材料 性能:它具有储氢容量高,吸放氢平台好,质量轻,资源丰富等优点,但要能达到实用化的目的就必须解决其在室温下吸放氢动力学性能差,表面容易形成氧化膜等缺点。 目前,在镁基储氢合金的开发研究中,现已有Mg2Ni ,Mg2Cu ,Mg2La系储氢合金,还有 一系列的多元MgNi系储氢合金。 制备方法采用机械合金化方法,即使用高能球磨机进行球磨制备 1. 采用机械合金化方法制备了Mg Ni 合金粉末,其晶 粒度在10nm左右。 2. 在较高的速度下球磨可以使生成Mg Ni 合金的时间提 前,完全合金化的过程缩短,还有利于减轻焊合提高球磨效率。 3. 过程控制剂的加入以及循环变速运转可以缓和焊合 现象的发生。 4. 初步的研究结果表明:Mg Ni 纳米晶粉末在室温下即 可吸氢,贮氢性能较之传统方法制备的材料有显著改善。 传统方法制备的Mg Ni 在温度低于250°C时不产生吸 2 氢现象,在经历一个前期活化过程之后,吸放氢实验在250 8 °C~350°C,氢气压力1.5~2.0MPa下完成。 将机械合金化制备的Mg Ni 纳米晶粉末在金属高压系 2 统进行贮氢性能研究。称取一定量样品放入反应室中,真空加热除气后,冷却到室温,放入一定量的氢气(氢气纯度大于99 %),观察粉末在室温下的吸氢情况。 储氢碳纳米管 碳纳米管CNTs,Carbon Nanotubes 是一种主要由碳六 边形弯曲处为碳五边形和碳七边形组成的单层或多层 纳米管状材料。管的内径在几个纳米到几十个纳米之间, 长度可达微米量级。仅有一层石墨片层结构的单层管被 称为单壁碳纳米管SWNTs, Single - Walled carbon nan tubes ,有多层石墨片alled carbon nan tubes 。单壁碳纳米管 是碳纳米管的一层结构的多层管被称为多壁碳纳米 管MWNTs,Multi - W种极限状态,管径较小,直径一般为1~ 6nm,最小的直径大约为014nm,其结构中的缺陷不易存 在,具有较高的均匀性和一致性。多壁碳纳米管的直径一 般为几纳米到几十纳米,长度为几十纳米到微米,层数从 2~50不等,层间距约为0134nm。 (文献参考:Mg_2Ni纳米晶储氢材料的机械合金化制备工艺研究) 物理吸附

纳米储氢材料原理及示意图

Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts Ki-Joon Jeon 1?,Hoi Ri Moon 2??,Anne M.Ruminski 2,Bin Jiang 3,Christian Kisielowski 4,Rizia Bardhan 2and Jeffrey J.Urban 2* Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142MJ kg ?1;ref.1),great variety of potential sources (for example water,biomass,organic matter),light weight,and low environmental impact (water is the sole combustion product).However,there remains a challenge to produce a material capable of simultaneously op-timizing two con?icting criteria—absorbing hydrogen strongly enough to form a stable thermodynamic state,but weakly enough to release it on-demand with a small temperature rise.Many materials under development,including metal–organic frameworks 2,nanoporous polymers 3,and other carbon-based materials 4,physisorb only a small amount of hydrogen (typ-ically 1–2wt%)at room temperature.Metal hydrides were traditionally thought to be unsuitable materials because of their high bond formation enthalpies (for example MgH 2has a H f ~75kJ mol ?1),thus requiring unacceptably high release temperatures 5resulting in low energy ef?ciency.However,recent theoretical calculations 6,7and metal-catalysed thin-?lm studies 8have shown that microstructuring of these materials can enhance the kinetics by decreasing diffusion path lengths for hydrogen and decreasing the required thickness of the poorly permeable hydride layer that forms during absorption.Here,we report the synthesis of an air-stable composite ma-terial that consists of metallic Mg nanocrystals (NCs)in a gas-barrier polymer matrix that enables both the storage of a high density of hydrogen (up to 6wt%of Mg,4wt%for the composite)and rapid kinetics (loading in <30min at 200?C).Moreover,nanostructuring of the Mg provides rapid storage kinetics without using expensive heavy-metal catalysts. There have been various efforts to synthesize nanosized magnesium,such as ball-milling 9,sonoelectrochemistry 10,gas-phase condensation 11and infiltration of nanoporous carbon with molten magnesium 12.However,these approaches remain limited by inhomogeneous size distributions and high reactivity toward oxygen.Our synthesis for air-stable alkaline earth metal NC/polymer composites consists of a one-pot reduction reaction of an organometallic Mg 2+precursor in the presence of a soluble organic polymer chosen for its hydrogen gas selectivity (Fig.1).The Mg NCs/PMMA nanocomposites were synthesized at room 1Environmental Energy T echnologies Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,2The Molecular Foundry,Material Science Division,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA,3FEI Company,NE Dawson Creek Dr.,Hillsboro,Oregon,97124,USA,4National Center for Electron Microscopy and Helios SERC,Lawrence Berkeley National Laboratory,Berkeley,California 94720,USA.?These authors contributed equally to this work.?Present address:Interdisciplinary School of Green Energy,Ulsan National Institute of Science and T echnology (UNIST),Ulsan 689-798,Korea.*e-mail:jjurban@https://www.doczj.com/doc/f215784855.html,. Mg 2+ + Li Lithium naphthalide Bis(cyclopentadienyl)- magnesium Mg/PMMA nanocomposites b a H 2 Mg nanoparticle Organic polymer with selective gas permeability PMMA THF H 2 H 2O O 2 Formation of MgH 2 Figure 1|Mg NCs in a gas-barrier polymer matrix.a ,Schematic of hydrogen storage composite material:high-capacity Mg NCs are encapsulated by a selectively gas-permeable polymer.b ,Synthetic approach to formation of Mg NCs/PMMA nanocomposites. temperature from a homogeneous tetrahydrofuran (THF)solution containing the following dissolved components:the organometallic precursor bis(cyclopentadienyl)magnesium (Cp 2Mg),the reduc-ing agent lithium naphthalide,and the gas-selective polymer poly(methyl methacrylate)(PMMA).Mg nanocrystals are then nucleated and grown in this solution by means of a burst-nucleation and growth mechanism 13in which lithium naphthalide reduces the organometallic precursor in the presence of a capping ligand (the soluble PMMA (M w =120,000)acts as a capping ligand for the Mg nanocrystals)14.Transmission electron microscopy (TEM)analysis of our reaction mixture before addition of reductant,immediately thereafter,and at later stages of the growth (Supplementary Fig.S1)further support this model.

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

稀土_镁_镍系储氢电极材料的研究进展

稀土-镁-镍系储氢电极材料的研究进展 Ξ 闫慧忠,孔繁清,韩 莉,熊 玮,孙晓华 (包头稀土研究院,内蒙古 包头 014010) 摘 要:介绍了国内外对各种多元及多相稀土-镁-镍系储氢电极材料的研究进展,主要包括材料的组成、制备方法、组织结构以及吸放氢动力学行为和电化学性能方面的研究。 关键词:稀土-镁-镍系;贮氢合金;复合贮氢材料;储氢电极材料 中图分类号:O 614133;T G 139+17 文献标识码:A 文章编号:100420277(2005)0120060207 贮氢合金是20世纪60年代末发现的一类具有高储氢密度的功能材料,从组成上大致可分为四类:稀土系如L aN i 5;镁系如M g 2N i 、M gN i 、L a 2M g 17;钛系如T i N i 、T iFe ;锆系如ZrN i 2。L aN i 5型贮氢合金已实现了产业化,主要用于制作M H N i 电池的负极材料,其理论容量为370mA ?h ?g -1,实际开发的最大容量为320mA ? h ?g -1。由于容量限制,M H N i 电池的应用范围及市场竞争力受到挑战。镁及某些镁基贮氢合金如M g 2N i 、M gN i 、L a 2M g 17等, 由于其储氢量大、重量轻、资源丰富、价格便宜,在开发新型高容量储氢电极材料的过程中引起了广泛的关注,成为该领域的研究热点[1],纯镁及几种镁基贮氢合金与L aN i 5的理论电化学容量如图1所示。 图1 几种贮氢合金理论电化学容量的比较 F ig 11 Co m par ison of idea l electroche m istry capac ities of hydrogen storage a lloys 镁基贮氢合金作为电极材料应用时存在的主要问题是动力学性能较差以及充放电循环中容量衰减快。通过添加改性元素(多元合金体系)、改进制备工艺、表面处理、热处理、机械球磨改性等措施,可在一定程度上解决这些问题。此外,大量的研究表明,通过适当的制备工艺与动力学性能良好的贮氢合金如L aN i 5复合,可明显改善镁基储氢材料的动力学性能,由此获得一类新型稀土-镁-镍系高容量复合储氢电极材料。 1 稀土-镁-镍系多元合金体系 111 三元体系 对三元系合金L a 2M gN i 9,L a 5M g 2N i 23,L a 3M gN i 14储氢特性的研究结果表明,L a 5M g 2N i 23合金负极的放电容量高达410mA ?h ?g -1,比AB 5型合金大113倍。这些三元系合金主要是由超点阵结构中叠层的AB 5和AB 2结构亚单位构成[2]。 速凝M g 2N i 2R E (R E =Y 或富Ce ,富L a 的混合稀土金属M m )合金淬火后呈非晶态或纳米晶 非晶态,即平均尺寸3nm 的纳米晶置于大量非晶相中,M g 76N i 19Y 5和M g 78N i 18Y 4合金与M g 75N i 20M m 5比较,M m 比Y 对储氢容量产生更有利的影响,这些合金的结晶化经过亚稳态的面心立方M g 6N i 相转变成纳米晶材料[3]。T anaka 等[4]测定了速凝法制备的非晶态和纳米晶结构的晶态M g 2N i 2R E (R E = 第26卷第1期2005年2月 稀 土Ch inese R are Earth s V o l .26,N o.1 Feb ruary 2005 Ξ收稿日期:2004204208 基金项目:国家自然科学基金资助项目(20363001);内蒙古自然科学基金资助项目(200308020215) 作者简介:闫慧忠(19622),男,内蒙古乌拉特前旗人,在读博士,高级工程师,研究方向为储氢材料的制备和研究。

储氢碳纳米管

碳纳米管储氢性能的研究 学院:材料学院班级:1109102 学号:1110910209 姓名:袁皓 摘要:综述了近年来研究人员在碳纳米管制备以及在各种不同条件下获得的储氢性能,分析了碳纳米管的储氢机理。从实验、理论研究两个方面总结了前人在碳纳米管储氢上的研究成果,并对碳纳米管储氢吸附方式,吸附量影响因素等方面做出分析。最后指出为实现碳纳米管储氢大规模应用仍需做的一些基础性研究工作。 关键词:碳纳米管;吸附;储氢 氢能以其资源丰富、可再生、热效率高等优点备受关注。氢能的使用包括氢的生产、储存和运输等方面,开发氢能的关键问题是如何对氢进行储存。储氢的主要方法有:金属存储、压缩存储、液化存储和吸附存储等,它们各有优缺点。碳纳米管因其特殊的力学、电学等性质而成为储氢的主要载体。Kroto等发现了C60以后,Iijima意外地发现碳纳米管。由于碳纳米管具有优良的电学、力学性质,世界各国迅速展开了对碳纳米管的制备方法、结构与性能的研究。Dillon等报道了碳纳米管储氢作用,相关报道也比较多。因为碳纳米管具有比较大的比表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。 一碳纳米管的结构和性质 碳纳米管(Carbon Nanotubes, CNTs)首次是在1991年由日本的电子显微镜专家Iijima分析电弧放电产生的阴极沉积物时意外发现的,可以被看成是由石墨面卷曲而成的无逢管状结构,后发现可以通过化学处理使两端开口。根据组成碳纳米管管壁中碳原子层数目,碳纳米管可被分为单壁碳纳米管(Single -Walled Carbon Nanotubes, SWNTs )和多壁碳纳米管(Multi-Walled Carbon Nanotubes,MWNTs)。结构模型如图: 单壁碳纳米管仅由一层碳原子构成,是多壁碳纳管的一种特殊情况。单壁碳纳米管直径一般在1 -3nm,最小直径大约为0. 5nm,当直径大于3nm时会表现出不稳定性。单壁碳纳米管通常因范德华力作用而形成10 -100管束状。多壁碳纳米管可以看成为不同管径的单壁碳纳米管套装而成,少则2层多达几十层,层距约为0.343nm,略大于石墨片层之间的距离0. 335nm。碳纳米管直径在几纳米到几十纳米之间,而长度可达数微米,具有较大的长径比。因此,人们认为碳纳米管是一种典型的准一维纳米材料,并且因其重量轻,六边形完美结构而表现出许多异常的力学、电磁学、化学特性,并在不同领域里得到广泛的应用。其中碳纳米管在吸附氢气上表现出的独特性质,使其最有希望成为高效的储氢材料。 二碳纳米管的制备 目前已有很多种制备碳纳米管的方法,其中电弧放电法和催化裂解法应用得最为广泛。1991年Iijima首先用真空电弧蒸发石墨电极,在阴极沉积物中发现了碳纳米管。该方法是:在一定气压的惰性气氛下,石墨电极之间在强电流下产生电弧,阴极逐渐损耗,部分气态碳离子沉积于阴极形成沉积物。电弧放电法的产物质量较好,管径均匀,管身较直,石墨化程度高,但因

储氢材料概述 (1)

课程论文 储氢材料概述Hydrogen storage material in the paper 作者姓名:关体红 年级专业: 2010 级应用化学 课程名称:化工实用技术 学号: 20105052006 指导教师:许东利 完成日期: 2012-06-15 成绩: 信阳师范学院 Xinyang Normal University

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1 碳基储氢材料 (2) 1.1活性炭储氢 (2) 1.2 碳纤维储氢材料 (3) 1.3 碳纳米管储氢材料 (3) 1.4 碳化物的衍生物作为储氢材料 (4) 2 有机物储氢材料 (4) 3 储氢合金 (5) 3.1 镁系 (5) 3.2 稀土系 (6) 3.3 钛系 (6) 3.4 锆系 (6) 3.5 V基固溶体储氢合金 (6) 4 配位氢化物储氢材料 (7) 结束语 (7) 参考文献 (8)

信阳师范学院化学化工学院学年论文 储氢材料概述 学生姓名:关体红学号:20105052006 化学化工学院2010级应用化学 课程名称化工实用技术 摘要:氢能是21世纪主要的新能源之一。作为一种新型的清洁能源 ,氢的廉价制取、安全高效储存与输送及规模应用是当今研究的重点课题 ,而氢的储存是氢能应用的关键。储氢材料能可逆地大量吸放氢 ,在氢的储存与输送过程中是一种重要载体。本文综述了目前研究最广的四大类储氢材料:碳基储氢材料、有机物储氢材料、储氢合金、配位氢化物储氢材料。 关键词:储氢;碳基;有机液体;储氢合金;配位氢化物 Hydrogen storage material in the paper Abstract:In the 21st century, the hydrogen is one of the major new energy. As a new type of clean energy, the cheap hydrogen production, storage and transportation safety and efficiency and scale of application is the key research subject, and hydrogen storage is the key of hydrogen application. Hydrogen storage material can absorb a large reversibly put hydrogen, in hydrogen storage and transport process is a kind of important carrier. This paper summarized the present study is the most extensive four categories of hydrogen storage material: carbon hydrogen storage material and organic hydrogen storage material, hydrogen storage alloy, coordination hydride hydrogen storage material. Keywords:Hydrogen storage; Carbon; Organic liquid. Hydrogen storage alloy; Coordination hydride 引言 人类进入21世纪,节能环保不再只是一句口号。随着能源紧张与环境污染问题的日益凸显,新能源和清洁能源的开发利用受到人们越来越多的关注。在众多新能源中,氢能被人们寄予了厚望。

纳米储氢材料研究

纳米储氢技术 摘要:氢能是未来最有发展前景的绿色能源之一,致力于发展以氢作为能源载体的清洁可再生能源技术已成为全球的共识,然而氢的安全高效存储一直是制约氢利用的瓶颈。因此,探寻新型的具有高容量储氢性能和良好吸放氢动力学性能的储氢材料是目前国际上高度关注的研究课题。正在研究的储氢技术主要包括高压储氢、金属氢化物材料、配位氢化物材料、化学氢化物材料、金属有机框架材料等,但目前它们均无法完全满足储氢量高、吸放氢速度较快、吸放氢温度适中、循环性能较好、安全和价格经济等储氢材料的要求。因此,研究者的方向转向了具有多孔和高比表面积的纳米储氢材料。研究者发现,将氢原子在吸放氢的过程中所需要运动的活动范围限制到纳米级,储氢材料能够体现出良好的动力学性能。此外,理论计算结果表明,当颗粒尺寸减少到纳米级时,金属氢化物会因为表面能的急剧增加,使其热力学性能大大改善。因此,制备纳米级的储氢材料是提高材料吸放氢性能的重要途径。例如,碳基纳米结构以其具有轻质量和大比表面积的特点受到关注;使用金属原子对纳米结构的表面进行修饰,包括过渡金属元素、碱金属元素或碱土金属元素等都可以显著的提高纳米结构的化学活性,从而提高储氢量。 关键词:多孔、低维纳米材料、碳纳米管、硼纳米管、金属原子修饰

目录 纳米储氢技术 (1) 1.研究背景 (3) 1.1燃料电池汽车的发展概况 (3) 2.研究现状 (3) 2.2.1高压储氢技术 (5) 2.2.2液化储氢技术 (8) 2.2.3金属氢化物储氢技术 (8) 2.2.4有机液体储氢材料 (9) 3纳米储氢技术 (10) 3.1碳复合纳米材料 (11) 3.1.1碳纳米管或纤维 (11) 3.1.2Ti掺杂碳纳米管 (12) 3.2镁基储氢材料的纳米改性 (15) 3.2.1复合材料储氢性能及温度对储氢性能的影响 (17) 3.3硼基纳米材料储氢 (19) 3.3.1硼化锂低维结构 (19) 3.3.2硼氮纳米结构储氢 (20) 3.3.3金属硼烷结构储氢 (22) 4总结与展望 (22)

纳米储氢材料的研究进展

纳米储氢材料的研究进展* 刘战伟? (桂林电子科技大学信息材料科学与工程系,广西 桂林 541004) 摘 要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料 的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米;储氢材料;储氢性能 中图分类号:TB383 文献标识码:A文章编号:1003-7551(2009)01-0033-04 1 引言 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视[1]。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型[4],储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少为5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。 纳米材料是指一类粒度在1~100nm之间的超细材料,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观体系。由于纳米材料的比表面能高,存在大量的表面缺陷,高度的不饱和悬键,较高的化学反应活性以及自身的小尺寸效应、表面效应、量子尺寸效应等,从而使其具有常规尺寸材料所不具备光学、磁、电、热等特性,成为继互联网和基因研究之后科学领域的又一研究热点,引发了世界各国科学工作者在相关理论研究及应用开发的广泛兴趣。纳米尺度的贮氢合金呈现出许多新的热力学和动力学特征,其活化性能明显提高[5,6],具有更高的氢扩散系统[7,8],并具有优良的吸放氢动力学性能[7,9,10]。储氢材料的纳米化为新兴的储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 2 纳米储氢材料储氢性能提高机理 一般认为,储氢合金纳米化提高储氢特性主要表现在以下几个方面原因:(1)量子尺寸效应和宏观量子隧道效应:对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低;(2)纳米材料的表面效应:纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定,金属氢化物能够大量生成。单位体积吸纳的氢的质量明显大于宏观颗粒。(3)比表面积和催化特性:纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子, 有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶 * 基金项目:广西研究生教育创新计划资助项目(2008105950805M438) ? 通讯作者:liuzhanwei@https://www.doczj.com/doc/f215784855.html, 收稿日期:2009-01-13 33

纳米储氢材料

纳米储氢材料的研究应用现状及发展前景 摘要:储氢材料的纳米化为新型储氢材料的研究提供了新的研究方向和思路,本文详细介绍了纳米储氢材料性能提高的机理,综述了纳米碳纳米管储氢材料、镁基纳米储氢材料以及复合纳米储氢材料的最新研究进展,并对储氢材料纳米化的广阔前景进行了展望。 关键词:纳米储氢材料,研究现状,发展前景 1 绪论 当今世界,随着传统能源石油、煤炭日渐枯竭,且石油、煤炭燃烧产物二氧化碳和二氧化硫又分别产生温室效应和酸雨危害,使人类面临能源、资源和环境危机的严峻挑战,寻找新的能源已成为人们的普遍共识。氢作为一种洁净能源,已受到人们的充分重视。近年来,在镍氢二次燃料电池等氢能的应用方面不断取得进展。20世纪60年代末,研究者发现Mg2Ni、LaNi5、FeTi等金属间化合物具有可逆储放氢气的特性,并且储氢密度大,可与液氢和固氢效果相比拟[2,3]。此后随着对于金属氢化物作为能量储存以及能量转换材料进一步深入地研究,到目前为止,已开发的贮氢合金主要有AB、AB5、AB2、A2B和镁基五大类型,储氢合金主要由可与氢形成稳定氢化物的放热型金属A(La、Ti、Zr、Mg、V等)和难与氢形成氢化物但具有氢催化活性的金属B(Ni、Fe、Co、Mn等)按一定比例组成。传统的AB、AB2和A2B型储氢合金储氢量不超过2wt%,这对储氢合金的某些应用领域(如燃料电池)是远远不够的。国际能源协会(IEA)要求储氢量至少5wt%,并且放氢温度低于423K,循环寿命超过1000次。而传统镁基储氢量高,但有放氢温度高和吸放氢动力学慢的缺点。如何获得容量大,充放氢速度快,放氢温度低的新型储氢材料,成为储氢材料与储氢技术研究和开发中至关重要的内容和亟待解决的问题。

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

新能源材料——储氢材料的研究进展

目录 1 储氢合金 (1) 1.1 储氢合金的原理 (1) 1.2 理想的贮氢金属氢化物 (2) 1.3 常用储氢合金 (2) 1.3.1 稀土系储氢合金 (2) 1.3.2 镁系储氢合金 (2) 1.3.3 镁基储氢材料的主要制备方法 (2) 2 碳基和有机物储氢材料 (2) 2.1 碳基储氢材料 (2) 2.1.1 活性炭储氢 (2) 2.1.2 碳纤维储氢材料 (3) 2.1.3 碳纳米管储氢材料 (3) 2.2 有机物储氢材料 (3) 2.2.1 有机液体储氢 (3) 2.2.2 金属有机物储氢 (3) 3 络合物储氢材料 (3) 4 玻璃微球储氢材料 (4) 5 总结 (4) 6 参考文献 (5)

新能源材料——储氢材料的研究进展 摘要综述了近年来储氢材料的研究进展, 简要介绍了合金、碳基和有机物、络合物和玻璃微球等几种主要储氢材料的储氢材料应用并指出储氢材料发展趋势。 关键词储氢材料,应用,进展 能源是国民经济的基础, 是人类赖以生产、生活和生存的重要源泉。随着科学技术的进步, 人类社会经历了薪柴、煤炭和石油三个能源阶段。从未来社会能源结构看, 人类一方面要面对煤、石油等矿物能源的日益枯竭, 另一方面又要正视矿物能源所造成的环境污染问题。如酸雨、温室效应等已给人类带来了相当大的危害, 而汽车尾气也成为大气污染的一个主要来源之一。因此寻找一种可替代传统碳氢化合物能源的新能源已成为世界各国科学家毕生奋斗的目标。 氢在宇宙间含量丰富, 具有许多特殊的性质, 是理想的二次能源。氢是一种高能量密度、清洁的绿色新能源, 它在燃料电池以及高能可充放电电池等方面展现了很好的应用前景。在利用氢能的过程中, 氢气的储存和运输是关键问题。 传统的高压气瓶或以液态、固态储氢都不经济也不安全。而使用储氢材料储氢能很好地解决这些问题。目前所用的储氢材料主要有合金、碳基和有机物、某些络合物和玻璃微球储氢材料。本文讨论了几种主要储氢材料的储氢功能特点, 综述了它们的近期研究进展。 1 储氢合金 储氢合金是一种能储存氢气的合金,它所储存的氢的密度大于液态氢,因而被称为氢海绵。而且氢储入合金中时不仅不需要消耗能量,反而能放出热量。储氢合金释放氢时所需的能量也不高,加上具有安全可靠、储氢能耗低、单位体积储氢密度高等优点,因此是最有前途的储氢介质。 1.1 储氢合金的原理 合金可逆地与氢形成金属氢化物,或者说是氢与合金形成了化合物,即气态氢分子被分解成氢原子而进入了金属之中。由于氢本身会使材料变质。而且,储氧合金在反复吸收和释放氢的过程中,会不断发生膨胀和收缩,使合金发生破坏,因此,良好的储

相关主题
文本预览
相关文档 最新文档