当前位置:文档之家› 一种基于人工神经网络的不同类型的热电偶的高精度温度测量系统的设计

一种基于人工神经网络的不同类型的热电偶的高精度温度测量系统的设计

一种基于人工神经网络的不同类型的热电偶的高精度温度测量系统的设计
一种基于人工神经网络的不同类型的热电偶的高精度温度测量系统的设计

一种基于人工神经网络的不同类型的热电偶的高精度温度

测量系统的设计

K. Danisman a,*, I. Dalkiran a, F.V. Celebi b

土耳其Erciyes大学电气电子工程系

摘要:

许多类型的传感器在本质上是非线性的,需要一个输出是线性的。如果线性近似是可以接受的,对于一个给定的精度水平,噪声和测量误差总是存在的。因此,曲线拟合技术通常需要平均这些影响。该传感器的输入输出特性–估计问题不断解决使用软件技术。本文介绍了一种非线性估计的实验方法,测试和基于人工神经网络的不同类型的热电偶校准(ANN)算法集成在一个虚拟仪器(VI)。人工神经网络和数据采集板设计的信号调理单元进行数据优化和收集实验数据,分别。在训练和ANN的试验阶段,Wavetek 9100校准装置是用来获取实验数据。人工神经网络的训练成功完成后,它将被作为一个从热电偶的输出电压计算温度神经器。

关键词:人工神经网络;温度测量;热电偶;线性化

1.背景简介

传感器作为许多仪器电路的基本要素。他们被应用在各种工业场所,如航空、汽车和更多的地方。传感器,在一般情况下,采取一定输入

的形式(温度、压力、高度等)和转换,通过读出电路,转换成可以解释的读数。然而,许多类型的传感器是非线性的,输出要求是线性理想的。有许多不同的传感器可以进行温度测量—其中热电偶是最常用的。由于他们的低成本成为工业应用的首选,运行范围宽、响应时间快,热电偶也有与温度有关的输出,这些让其脱颖而出,传感器建模和线性化技术是必要的。为解决线性传感器的问题,一般有两种方法;第一个需要非线性模拟电路,采用数值计算方法,计算机的微处理器或计算机。模拟电路经常用于改善线路AR度传感器的特性,这意味着额外的模拟硬件和典型问题,特别是模拟电路,如温度漂移、增益和O?设置错误。使用二次相遇传感器的非线性方法,可以通过算术运算补偿,如果一个精确的传感器模型是有效的(多项式的直接计算),或与多辛娜的使用查表。多项式的直接计算方法更准确,但需要较长的时间进行计算,而查找表的方法,虽然速度更快,但不是很准确。近年来,人工神经网络中的应用已经出现在仪器仪表和测量领域,这是一个有前途的研究领域。它提供了一个神经网络方法用来解决复杂的问题,特别是非线性系统建模问题,网络本身是一个复杂的非线性系统。这是非常有用的当感兴趣的区域是完全非线性的包括用于训练的实验数据。一个人工神经网络最强大的用途是函数逼近(曲线拟合)。与常规数值插值现象相比,基于人工神经网络插值研究提供较低的插值误差。

我们在这里提出一个基于高精度的温度测量系统的上的人工神经网络方法的建议。虽然基于人工神经网络的传感器线性化模型已经提

出,一个单一的人工神经网络模型具有不同的经营特点二热电偶。此外,校准数据是由该9100标获得神经网络的训练和测试阶段所必需的离子单元。系统的硬件和软件部分被集成在一个虚拟仪器系统运行和校准。人工神经网络是匹配的校准数据提供所需的最终误差。校准和人工神经网络模型的数据之间的均方误差最小化的结构,层数和数量的神经元的结构,数量。

2.系统硬件

热电偶产生的电压正比于结点温度而冷端温度恒定。为了能准确测量寒冷结温必须知道。图1(a)显示的是温度测量系统在运行阶段通过人工神经网络设计框图。它由三个不同的热电偶(E型、J型和K 型)放置在理想的温度,包括信号调理电路采用16位模数转换器(ADC)和输入/输出接口与计算机的接口。这个设计了信号调理电路的可编程增益仪表放大器(PGA204BP)以1、10的增益,100和1000,一个16位的ADC(AD976A),一个AD595单片热电偶放大器R冷结补偿,可作为独立的摄氏温度计和一四通道模拟多路复用器(ADG529A),选择所需的热电偶或摄氏温度T输出。该AD976A是高速、低功耗16位A/D转换器,采用5 V单电源供电。这一部分包含一个逐次逼近,开关电容ADC、一个内部2.5伏和一个高速并行接口。该系统的精度直接取决于步长的ADC。一个±10 V输入,一个是305 LSB的AD976A LV。当AD595作为摄氏温计,热电偶被省略,和微分输入并联在一起共同作用。在这种模式下,AD595产生电压为10 mV / LC和它的输出是用于冷比例因子交界处的温度数据,所编写

的软件。AD595的一些重要特性工作温度范围55到125 LC;温度稳定度:±0.05 LC / LC和敏感效率:10毫伏/ LC。PGA204BP输出信号数字化的AD976A,其输出连接到I/O接口卡和转移到个人电脑中,进行数据处理与优化实施。

图1.测量系统框图:(一)操作阶段,(二)校准阶段

建立人工神经网络的权值和偏差,在校准阶段(ANN训练阶段),Wavetek 9100校准装置,具有精度±0.006% + 4.16 LV在0–320MV 范围内,连接到一个模拟多路复用器终端产生嵌合热电偶电压如图1(b)。在操作阶段(图1(1)),为了使冷端补偿,采用了从摄氏温度计输出的数据。人工神经网络的输出值被转移的环境温度由摄氏温度计得出。然后这个值显示为热电偶温度。

所开发的虚拟仪器是用来获取神经网络训练阶段的数据,并显示操作阶段的计算温度。图2显示的VI前面板的主要特点以及本仪器的主要工作是:灵活地选择热偶的类型,显示温度和相应的输出电压,

从状态采集电路的数据收集在校准阶段和实际操作中的相变温度的冷端补偿。软件控制该系统的操作和校准阶段。

图2. 虚拟仪器前面板

3.人工神经网络

人工神经网络是受生物启发设而计的程序,模拟人类的大脑处理信息的方式。他们通过经验而不是编程来进行训练和学习,。一个人工神经网络简单处理元素Y互连,或神经元可调重量,构成了神经结构和组织的层次。每个神经元有输入加权,求和激活函数和输出。人工神经网络的整体性能取决于人工神经元的操作,学习规则和网络体系结构。杜环训练(学习),神经元之间的权重调整,根据一些标准(平均平方误差之间的目标输出和测量值的所有训练集落低于预定的阈值)或允许的最大数量的时代达到。训练是一个费时的过程,经过训练的神经网络采用以往看不到的训练中的数据测试。

总纲发展蓝图是最简单和最常用的神经网络结构。他们包括输入,输

出和一个或多个隐藏层与预定数量的神经元。在输入神经元T层仅作为卜?ERS分配输入信号xi隐藏层中的神经元。隐藏层中的每个神经元都总结出了其输入信号,在对其进行加权后进行加权各连接wji从输入层和输出YJ计算作为一个函数f和,即

X

YJ?F wjixi;e1T

在人工神经网络体系结构中使用的激活函数之一。

训练一个神经网络由调整网络权值的学习算法不同。学习算法提供了dwji(T)在神经元i和j之间的连接的权重,提姆根据以下公式计算权重:

wjieTt1T?wjieTTtdwjieTt1T:e2T

在文献中有许多可用的学习算法。该算法用于训练人工神经网络研究–Levenberg Marquardt(LM),–Goldfarb Shanno–Broyden–弗莱彻(BFGS),贝叶斯正则化(BR),共轭梯度(CGS),和韧性的反向传播算法(RP)。下面简要说明这些算法。

采用–马夸特(LM)方法:LM算法设计方法二阶训练速度不计算他

西安矩阵。该方法结合了高斯–最好的特点牛顿技术和最速下降法,但避免了许多的局限性。

Goldfarb Shanno–Broydon -弗莱彻(BFGS)方法:该方法利用来自黑森的拟牛顿更新更新公式。它需要的近似Hessian矩阵的存储和钼每一次迭代中的再计算比共轭梯度算法,但通常收敛于迭代少。

贝叶斯正则化(BR)法:这种方法是将损坏–修改—quardt训练算法产生一个良好的广义网络。它最大限度地减少了线性组合的平方误差和权重。该算法可以训练任何网络,只要它的重量,输入,一个二、激活函数具有派生函数。

共轭梯度法(CGS):该算法是一个二阶方法,制约着每一步的方向是共轭方向所有以前的步骤。这一限制简化计算中大是因为它不再需要存储或计算Hessian矩阵及其逆。有多个版本的CGS(波拉克里比埃––,弗莱彻李维斯,和鲍威尔–Beale)。弗莱彻–稀土它的版本的CGS是本文中使用。

弹性BP(RP)方法:该方法的目的是消除有害E?方面的偏导数的大小。唯一的衍生工具是用来确定重量更新的方向;导数的大小有无?等。的重量变化的大小是由一个单独的更新值确定。

3.1.神经化

在本文中,多层感知器(MLP)神经网络结构作为神经元。该技术包括人工神经网络相对热电偶温度,当热电偶式和热电偶的输出电压作为输入。

图3. 用于温度计算的神经网络模型

用于计算温度如图3所示的神经电路模型。实验数据来自热电偶数据表进行调查。这些数据表重新为特定的结温制备(通常为0个信用证)。人工神经网络是以两个不同套240热电偶温度为每个热电偶是200和1000的LC是在校准之间获得均匀分布的训练相。然而,随着训练集的最终网络的性能不是一个无偏估计的性能可能输入的宇宙,和一个独立的测试集所需的T评估培训后的网络性能。因此,60热电偶温度为每个热电偶,均匀分布200和1000 LC之间的其他数据

集,使用在测试过程中。

输入和输出数据的元组规范1和1之间的训练前。后二?不同学习算法的多次试验和二?不同的网络配置,发现T他最合适的网络配置是2 8 9 1···与LM算法。这意味着神经元的数量是八的第一隐层和九第二隐层,分别为伊利。输入和输出层的线性激活函数和隐层具有双曲正切Sigmoid函数。培训的时代数是1000。这是我重要的要注意,太小,太大的隐层神经元数目取决于大量因素的标准,如网络的类型、特点和类型的训练集的应用。这个T在今天仍然是美国人工智能研究者特别关注的。

4.结果与讨论

训练和?五地不同的学习算法,LM,BR,CFG桩的使用测试所开发

的人工神经网络模型,RP和高炉煤气与简单的结构,获得更好的性能和更快的收敛速度。表1显示了用于分析的网络配置上述完整的学习算法的误差。当神经网络模型的性能进行比较对方,从模型的训练与LM算法得到了训练和测试的最佳结果。训练均方误差(MSE)网络的LM算法是1.2·10 9。试验误差(MSE)为E型,J和K型热电偶2.5·10 4 3.2 10 4 7.7 10··4的LM算法,分别。因为它清楚地看到从表1,下一个解决方案,这是氯奥瑟LM是BR算法得到的。这里提出的神经模型,

表1

平均平方误差(MSE)的人工神经网络模型与二?组温度计算的学习算法训练得到的

ANN models MSE in MSE in test (L C)

trained with training

E J K

(L C)

LM 1.2 · 10 9 2.5 · 10 4 3.2 · 10 4 7.7 · 10 4 BR 1.4 · 10 9 2.8 · 10 4 3.9 · 10 4 8.6 · 10 4 BFG 1.3 · 10 7 1.1 · 10 2 1.9 · 10 2 0.1

CGF 4.6 · 10 6 6.7 2.3 1.2

RP 1.5 · 10 5 6.6 2.9 6.5

最坏的结果,得到了这个特定的应用程序的反相方法。

图4.人工神经网络的训练与两种不同类型的热电偶LM算法的百分比测量误差

图4代表网络的训练与LM三种热电偶类型比例试验误差。因为它清楚地看到从图4,最大百分比误差变低了05%。平均百分比误差大于200和200 LC之间的温度0.1%,原因是在这个范围内都有很强的非线性thermocou。然而,这是显而易见的最佳配合范围为200至200个信用证,训练数据集的数量必须增加。归一化误差收敛曲线在学习算法用于分析1000期图5所示。对于模拟的神经网络模型,人工神经网络的训练,以减少误差。随着学习的进行,平均平方误差逐步减小,最终达到一个稳定状态的最小值如图5所示。

图5.学习(收敛)的人工神经网络的特点

5.结论

在本文中,基于神经网络模型的温度测量提出了高精度透射电子显微镜技术。MLP神经网络的训练过程在这项研究中成功地进行了使用LM算法,给出了最好的结果其他学习算法。使用人工神经网络技术,增益和偏移误差信号调理电路自动被取消。所描述的方法不同与热电偶,考虑的主要因素是具有大面积的应用基于传感器的测量系统的非线性。该技术对未来现场仪表和测量研究具有潜在的意义。

基于A2TPMI的高精度红外测温系统设计

基于A2TPMI的高精度红外测温系统设计 温度测量主要有两种方式:一种是传统的接触式测量,另一种是以红外测温为代表的非接触式测量。传统的温度测量不仅反应速度慢,而且必须与被测物体接触。红外测温以红外传感器为核心进行非接触式测量,特别适用于高温和危险场合的非接触测温,得到了广泛的应用。本文将详细介绍如何设计基于SOC级微处理器的高精度红外测温系统,及其在电力温度检测、设备故障诊断方面的应用。 1.红外测温仪的工作原理 自然界一切温度高于绝对零度的物体,都在不停地向外发出红外线。物体发出的红外线能量大小及其波长分布同它的表面温度有密切关系,物体的辐射能量与温度的 4 次方成正比,其辐射能量密度与物体本身的温度关系符合普朗克定律。因此我们通过测量物体辐射出的红外能量的大小就能测定物体的表面温度。微小的温度变化会引起明显的辐射能量变化,因此利用红外辐射测量温度的灵敏度很高。实际物体的辐射度除了依赖于温度和波长外,还与构成该物体的材料性质及表面状态等因素有关。只要引入一个随材料性质及表面状态变化的辐射系数,则就可把黑体的基本定律应用于实际物体。这个辐射系数,就是发射率ε,或称之为比辐射率,其定义为实际物体与同温度黑体辐射性能之比,该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0和1的数值之间。 红外测温仪的工作原理 (原文件名:图1红外测温仪的工作原理.jpg) 引用图片 红外测温仪的工作原理如图 1所示:被测物体辐射出的红外能量通过空气传送到红外测 温仪的物镜,物镜把红外线汇聚到红外探测器上,探测器将辐射能转换成电信号,又通过前置放大器、主放大器将信号放大、整形、滤波后,经过A/D转换电路处理后输入微处理器。微处理器进行环境温度补偿,并对温度值进行校正后驱动显示电路显示温度值。同时,微处理器还发出相应的报警信号,并且接受

热电偶测温的使用原理

热电偶是工业上最常用的温度检测元件之一。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线

热电偶测温系统实验报告材料书

热电偶测温系统 实验报告书 班级:铁道自动化091班 小组成员:何俊峰、严云钧、王鹏远、倪森 瑜、康宁

目录 一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 2热电偶的补偿方法 3热电偶的实际应用 二热电偶测温系统的相关介绍 1线路原理图 2主要原件及其作用 3调试方法及其注意事项 三实验收尾及总结报告 1处理实验数据 2 实验总结

一热电偶的工作原理,补偿方法及其应用1热电偶的工作原理 (1)概况:热电偶是一种感温元件,热电偶的工作原理这就要从热电偶测温原理说起。一次仪表,直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在Seebeck电动势—热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到不同的热电偶具有不同的分度表。热电偶回路中接入第三种金属资料时,只要该资料两个接点的温度相同,热电偶所产生的热电势将坚持不变,即不受第三种金属接入回路中的影响。因此,热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。 B热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,回路中就会发生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度丈量的其中,直接用作丈量介质温度的一端叫做工作端(也称为丈量端)另一端叫做冷端(也称为弥补端)冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,将热能转换为电能,用所产生的热电势测量温度 (2)分类:(S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

高精度红外线人体测温仪DT-8816H华盛昌 人体温度计

高精度红外线人体测温仪DT-8816H华盛昌(CEM)DT8816H无线传输 (上海同倍检测科技有限公司https://www.doczj.com/doc/fb15189583.html,) CEM DT-8816H是一款专业测量人体额头温度的非接触式红外线测温仪,根据吸收人体发出的红外线进行测量,对人体无辐射作用。 DT-8816H同时配对数据记录器,通过无线RF进行传输存储,最多可存6000组数据(含日期时间、温度值),特别适合幼儿园、海关机场、医疗卫生站等场所的群体型人体温度测量。该数据记录器自带LCD屏,可进行相关数据读取,也可与PC连接,通过配套软件把数据下载到电脑进行分析和报表生成。 DT-8816H特色 1.非接触式测量,有效减少病菌交叉感染 2.设有体内和体表两种测量模式: 体内:专门测量人体温度 体表:可以用来测环境、物体表面温度 3.快速测量,响应时间仅为0.5秒 4.具有记忆功能,可存储32个测量值 5.可设置报警功能,高于报警值时,蜂鸣报警 6.不可见红外光测量 7.RF无线传输功能 8.配原厂数据记录器,可存储6000组数据,带USB接口

测温仪结构和显示屏 1.LED指示灯 2.LCD显示屏 3.体内/体表模式 4.红外感应探头 5.向下键 6.向上键 7.MODE模式键 8.测量扳机 9.表面温度提示 10.人体温度提示 11.温度数值显示 12.存储位置 13.蜂鸣符号 14.℃/℉单位 15.低电提示 16.存储的温度值 记录器结构和显示屏 1.LCD显示屏 2.MAX/MIN最大最小值键 3.LED指示灯 4.Time/Date时间/日期键 https://www.doczj.com/doc/fb15189583.html,B接口 6.表面温度模式 7.最大最小值 8.低电提示 9.内存容量指示 10.人体温度模式 11.时间/日期显示 12.℃/℉单位 13.温度数值显示 14.FULL内存存满提示

热电阻的单片机测温系统

摘要 电子温度计是日常生活中最普遍的电子产品之一,常用的转换元件有热电阻、热敏电阻、热电偶等,通常我们将这些转换元件通过非电量转化电量的检测方法,结合电量和温度之间的关系,我们可以计算出其温度值。在本课题中将介绍一种利用电阻电桥失衡输出的电压转换温度的设计。在设计中,利用AT89S系列单片机作为控制器,计算铂电阻(PT100)电量与温度的转换,并在LED显示温度。 关键词:AT89S52 ADC0832 Abstract Electronic thermometer isin daily lifethe mostcommon oneof electronicproducts, and thecommoninterface element havehe at resistance,thermal resistance, thermocouple,etc., usually we will these interface element through the non-electricity into electricity d etection methods, combined with power and the relationshipbetween the temperature, we can calculate the temperature value. In this topicwill introducea kind of makeuse of the resistance br idgeunbalanced output voltage transition temperature design. In the design,the use of AT89S seriesmicrocontrolleras the controller, calculationof platinum resistance(PT100) powe rand temperatureconversion, and intheLEDdisplay temperature. ?Keyword:AT89S52 ADC0832

热电偶测温仪课程设计论文

微机化仪表课程设计说明书

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于单片机测温系统意义

摘要 目前,在自动控制领域用温度作为一种控制量对系统进行自动控制已经越来越普遍。针对这种实际情况本文设计了一种简单实用的温度报警系统。本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。并且在到达报警温度后,系统会自动报警。 关键词:自动控制温度单片机报警

Abstract Now it is very common to use temperature as a control volume to achieve automatic control. This paper designed a simple and practical auto temperature alarm system to meet the actual condition. This design uses a microcontroller AT89S52 and temperature sensor DS18B20 automatic temperature control system formed can be arbitrarily set the temperature according to the actual value and for automatic control. In this design using the AT89S52 microcontroller as the main control device, DS18B20 as an LCD digital temperature sensor tube through the serial transmission of data, to achieve temperature display. DS18B20 measured by direct reading temperature values, data conversion, to set the temperature to set the alarm on the lower temperature. And the temperature reaching the alarm, the system will automatically alarm. Keywords: achieve automatic control temperature AT89S52 alarm

实验二十一__热电偶的原理及现象实验

热电偶的原理及现象 一、实验目的:了解热电偶测温原理。 二、基本原理:1821年德国物理学家赛贝克(T?J?Seebeck)发现和证明了两种不同材料的导体A和B组成的闭合回路,当两个结点温度不相同时,回路中将产生电动势。这种物理现象称为热电效应(塞贝克效应)。 热电偶测温原理是利用热电效应。如图21—1所示,热电偶就是将A和B二种不同金属材料的一端焊接而成。A和B称为热电极,焊接 的一端是接触热场的T端称为工作端或测量端, 也称热端;未焊接的一端处在温度T0称为自由端 或参考端,也称冷端(接引线用来连接测量仪表的图21—1热电偶 两根导线C是同样的材料,可以与A和B不同种材料)。T与T0的温差愈大,热电偶的输出电动势愈大;温差为0时,热电偶的输出电动势为0;因此,可以用测热电动势大小衡量温度的大小。国际上,将热电偶的A、B热电极材料不同分成若干分度号,并且有相应的分度表即参考端温度为0℃时的测量端温度与热电动势的对应关系表;可以通过测量热电偶输出的热电动势值再查分度表得到相应的温度值。热电偶一般用来测量较高的温度,应用在冶金、化工和炼油行业,用于测量、控制较高的温度。 本实验只是定性了解热电偶的热电势现象,实验仪所配的热电偶是由铜—康铜组成的简易热电偶,分度号为T。实验仪有二个热电偶,它们封装在悬臂双平行梁上、下梁的上、下表面中,二个热电偶串联在一起,产生热电势为二者之和。 三、需用器件与单元:机头平行梁中的热电偶、加热器;显示面板中的F/V表(或电压表)、-15V电源;调理电路面板中传感器输出单元中的热电偶、加热器;调理电路单元中的差动放大器;室温温度计(自备)。 四、实验步骤: 1、热电偶无温差时差动放大器调零:将电压表量程切换到2V档,按图21—2示意接线,检查接线无误后合上主、副电源开关。将差动放大器的增益电位器顺时针方向缓慢转到底(增益为101倍),再逆时针回转一点点(防电位器的可调触点在极限端点位置接触不良);再调节差动放大器的调零旋钮,使电压表显示0V左右,再将电压表量程切换到200mV档继续调零,使电压表显示0V。并记录下自备温度计所测的室温tn。

基于单片机的热电偶测温系统的设计

技术创新 《微计算机信息》 (嵌入式与SOC )2009年第25卷8-2期360元/年邮局订阅号:82-946 《现场总线技术应用200例》 单片机开发与应用 基于单片机的热电偶测温系统的设计 The Design of Thermocouple Temperature Measurement System Based on SCM (西安外事学院) 荆海霞周琳勃王仁道廖娜 JING Hai-xia ZHOU Lin-bo WANG Ren-dao LIAO Na 摘要:在现代化的工业现场,常用热电偶测试高温,测试结果送至主控机。由于热电偶的热电势与温度呈非线性关系,所以必 须对热电偶进行线性化处理以保持测试精度。该系统通过高精度模/数转换器AD7705对热电偶电动势进行采样、放大,并在单片机内采用一定算法实现对热电偶的线性化处理,再通过数/模转换器AD421进行数/模转换产生4mA~20mA 电流,送主控中心。 关键词:热电偶;线性化;AD 转换;DA 转换;单片机中图分类号:TP273文献标识码:A Abstract:Thermocouple is used frequently in high-temperature test in the modernized industry scene,then the test results are deliv -ered to master control machine.As the non -linear relationship between thermoelectric potential and temperature,it must be carried out on the thermocouple linear processing in order to maintain accuracy of test.This article is for the linearization of thermocouple.The general idea is to study high-precision A/D converter AD7705,which samples and enlarges the thermoelectric potential from the thermocouple,to use a certain algorithm for the linearization processing in the microcontroller,and to convert the data to produce the 4mA-20mA current through high precision A/D converter AD421. Key words:Thermocouple;Linearization;AD conversion;DA conversion;Single-chip-micro-computer 文章编号:1008-0570(2009)08-2-0088-02 1引言 热电偶是工程上应用最广泛的温度传感器之一,它具有构造简单、使用方便、准确度、热惯性小、稳定性及复现性好、温度 测量范围宽等优点,适用于信号的远传、 自动纪录和集中控制,在温度测量中占有重要地位。但由于热电偶的热电势与温度呈 非线性关系,增加了显示与处理的复杂性;且随着工业发展、 自动化的不断加强,对温度精度要求越来越高。为了提高热电偶测量温度的精度,必须从硬件和软件两方面同时入手:硬件设计必须使用高精度A/D 和D/A 器件,软件设计必须设计出合理的满足工业要求的线性化算法,从这两方面解决热电偶测试高温的精度问题。 本文提出的系统以单片机为核心,硬件设计使用高精度模/数转换器AD7705和高精度数/模转换器AD421,分别实现对热电偶电动势的采样、放大、AD 转换和对线性化处理的数据转换,软件设计提出一种“最佳非等距离分段算法”,并在程序中 采用修正后的数据,实现热电偶的线性化处理。 试验结果表明,该系统能很好的解决热电偶测试高温的精度问题,使仪器仪表精度达到1/1000,满足工业设计要求。 2硬件电路设计 本设计是基于STC89C52单片机的硬件设计。系统总原理 框图如图1所示。 控制电路以单片机为中心,控制其他部分完成各自的功能。其中模/数转换部分采用16位高精度AD 转化器AD7705,采用自校准,提高其抗干扰能力和精度;数/模转换部分采用高 精度DA 转换器AD421,在电路设计上,采用光隔离,控制 AD421完成其功能,AD421为16位高精度数/模转换器,它将来自单片机线性化处理后的数据进行DA 转化,产生4mA-20mA 电流,送控制中心。 图1系统框图 2.1模/数转换电路 图2AD 转化电路 模/数转换电路部分,采用16位、双通道、低成本、高精度模/数转换功能的AD7705。AD7705是AD 公司推出的16位∑-Δ(电荷平衡式)A/D 转换器,包括由缓冲器和增益可编程放大器(PGA )组成的前端模拟调节电路、∑-Δ调制器及可编程数字滤波器等,能直接对来自传感器的微弱信号进行A/D 转换。此外他还具有高分辨率、宽动态范围、自校准,低功耗及优良的抗噪声性能,因此非常适用于仪表测量和工业控制等领域。使用时通过单片机控制其单双极性、增益倍数、选择通道的输入和 荆海霞:教师讲师硕士 88--

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统

毕业论文 基于单片机的热电偶测温系统 摘要 热电偶传感器是目前接触式测温中应用最广的热电式传感器,在工业用温度传感器中占有及其重要的地位。本文设计了基于单片机的热电偶测温系统,该测温系统由温度测量电路、运算放大电路、A/D转换电路及显示电路组成,以AT89C51单片机为主控单元。文中首先介绍了热电偶的测温原理,热电偶冷端补偿方法,结构形式,及其特点等,另外简答介绍了硬件平台中相关模块的功能及用法。另外对硬件电路包括温度转换芯片MAX6675、K型热电偶、89C51单片机、数码管等元器件及温度采集电路、温度转换电路、数码管显示电路做了详细的介绍及说明。 关键词温度传感器热电偶热时间常数冷端补偿

The thermocouple temperature measurement system based on single chip microcomputer ABSTRACT Thermocouple sensor is currently the most widely used in non-contact temperature measurement of thermoelectric sensors, in the industry with a temperature sensor and its important status. This paper designed the thermocouple temperature measurement system based on single chip microcomputer, the temperature measurement system composed of temperature measuring circuit, operational amplifier circuit, A/D conversion circuit and display circuit, AT89C51 single chip processor as the main control unit. This paper first introduces the principle of thermocouple temperature measurement, the thermocouple cold junction compensation method, structure form, and its characteristics, etc., in the hardware platform are introduced another short answer function and usage of related modules. In addition to hardware circuit including temperature conversion chip MAX6675, K type thermocouple, 89 c51, digital tube and other components and temperature acquisition circuit, temperature conversion circuit, digital tube display circuit made detailed introduction and description. KEY WORDS Temperature sensor Thermocouple Thermal time constant Cold junction compensation

一种基于PT1000的高精度温度测量系统设计

一种基于PT1000的高精度温度测量系统设计 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。采用铂电阻测量温度是一种有效的高精度温度测量方法,但具有以下难点:引线电阻、自热效应、元器件漂移和铂电阻传感器精度。其中,减小引线电阻的影响是高精度测量的关键点。对于自热效应,根据元件发热公式P=I2R,必须使流过元件的电流足够小才能使其发热量小,传感器才能检测出正确的温度。但是过小的电流又会使信噪比下降,精度更是难以保证。此外,一些元器件和仪器很难满足元器件漂移和铂电阻传感器精度的要求。 易先军等提出了以铂电阻为测温元件的高精度温度测量方案,解决了高精度测量对硬件电路的一些苛刻要求问题,但是精度不佳(±0.4℃);杨彦伟提出了以MAX1402、AT89C51 和Pt500 铂电阻设计的精密温度测量系统方案解决了基本的高精度问题,但是系统功耗大,精度仍然不佳;李波等提出采用以负温度系数热敏电阻为核心的高精度测量方案,较好解决了高精度的问题,但是性价比不高,实施效果不佳,测温分辨率能达到0.01℃,测温准确度只达到O.1℃。这里提出采用三线制恒流源驱动方案克服引线电阻、自热效应,利用单片机系统校正控制方案实现元器件漂移和铂电阻传感器精度校准,最后在上位机中采用MLS 数值算法实现噪声抵消,大大提高了温度测量精度和稳定度。 1 高精度测量方案及原理 铂电阻传感器是利用金属铂(Pt)的电阻值随温度变化而变化的物理特性而制成的温度传感器。以铂电阻作为测温元件进行温度测量的关键是要能准确地测量出铂电阻传感器的电阻值。按照IEC751 国际标准,现在常用的

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

基于单片机的热电偶测温系统

基于单片机的热电偶测温系统 一设计简述 本文设计了基于单片机的热电偶测温系统,介绍了热电偶的测温原理,热电偶冷端补偿方法,简单设计了硬件电路,信号放大电路采用放大器LTC2053将热电偶的输出mv型号放大,再经过ICL7109转换器转换为12位的数字信号,输入给单片机,驱动数码管显示电路显示4位温度值。扩展部分有键盘电路和报警电路。软件部分设计了转换器和键盘及显示电路。 关键字:热电偶;LTC2053放大器;ICL7109转换器;数码管 二设计内容 随着人们生活水平的提高,人们对家用电子产品的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种家用电子产品领域中的应用越来越广泛。 把以单片机为核心,开发出来的各种测量及控制系统作为家用电子产品的一个组成部分嵌入其中,使其更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是家用电子产品的发展方向和趋势所在。有的家用电器领域要求增加显示、报警和自动诊断等功能。这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。 2热电偶测温原理 1.1热电效应 将两种不同成分的导体组成一闭合回路,如图1所示。

图1 当闭合回路的两个接点分别置于不同的温度场中时,回路中将产生一个电势,该电势的方向和大小与导体的材料及两接点的温度有关,这种现象称为“热电效应”。 1.2接触电势 A和B两种不同材料的导体接触时,由于电子的扩散运动,A与B两导体的接触处产生了电位差,称为接触电势。接触电势的大小与导体材料、接点的温度有关,与导体的直径、长度及几何形状无关。 对于温度分别为t和t0的两接点,可得下列接触电势公式:(温度为t时的接触电势,温度为t0时的接触电势) e AB(T0)=U At0 - U Bt0 1.3温差电动势 将某一导体两端分别置于不同的温度场t、t0中,在导体内部,热端自由电子具有较大的动能,向冷端移动,这样,导体两端便产生了电势,这个电势称为温差电势。 导体A、B在两端温度分别为t和t0时形成的电势 e A(t,t0)=U At–U At0 e B(t,t0)=U Bt–U Bt0 1.4热电偶的电势 将由A和B组成的热电偶的两接点分别放在t和t0中,热电耦的电势为: E AB(t,t0)=e AB(t)-e AB(t0)-e A(t,t0)- e B(t,t0) 由于接触电势比温差电势大的多,可将温差电势忽略掉,则热电偶的电势为 E AB(t,t0)= e AB(T)- e AB(T0) (AB的顺序表示电势的方向;当改变脚注的顺序时,电势前面的符号(正、负号)也应随之改变) 综上所述,可以得出以下结论: 热电偶热电势的大小,只与组成热电偶的材料和两接点的温度有关,而与热电偶的形状尺寸无关,当热电偶两电极材料固定后,热电势便是两接点电势差。 1.5热电偶的基本定律

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

Pt100的高精度测温方法

一Pt100 的高精度测温方法 1.在工业生产过程中,温度一直都是一个很重要的物理参数,温度的检测和控制直接和安 全生产、产品质量、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各个领域中都受到了人们的普遍重视。温度检测类仪表作为温度测量工具,也因此得到广泛应用。 由于传统的温度测量仪器响应慢、精度低、可靠性差、效率低下,已经不能适应高速发 展的现代化工业。随着传感器技术和电子测量技术的迅猛发展,以单片机为主的嵌入式系统 已广泛应用于工业现场,新型的电子测温仪器不仅操作简单,而且精度比传统仪器有很大提高。目前在工业生产现场使用最广泛的温度传感器主要有热电偶和热电阻,例如铂热电阻 Pt100就是使用最广泛的传感器之一。 2. Pt100 的特性 铂电阻是用很细的铂丝(Ф0.03~0.07mm)绕在云母支架上制成,是国际公认的高精度测 温标准传感器。因为铂电阻在氧化性介质中,甚至高温下其物理、化学性质都非常稳定,因此它具有精度高、稳定性好、性能可靠的特点。因此铂电阻在中温(-200~650℃)范围内得到 广泛应用。目前市场上已有用金属铂制作成的标准测温热电阻,如Pt100、Pt500、Pt1000等。 它的电阻—温度关系的线性度非常好,如图1所示是其电阻—温度关系曲线,在-200~650℃温度范围内线性度已经非常接近直线。 铂电阻阻值与温度的关系可以近似用下式表示: 在0~650℃范围内: Rt =R0 (1+At+Bt2) 在-190~0℃范围内: Rt =R0 (1+At+Bt2+C(t-100)t3) 式中A、B、C 为常数, A=3.96847×10-3; B=-5.847×10-7; C=-4.22×10-12; 图1 Pt100 的电阻—温度关系曲线 Rt 为温度为t 时的电阻值;R0 为温度为0℃时的电阻值,以Pt100 为例,这种型号的铂 热电阻,R0 就等于100Ω,即环境温度等于0 度的时候,Pt100 的阻值就是100Ω。当温度变化的时候,Pt100 的电阻也随之变化,通过以上电阻-温度表达式便可以计算出相对应的 温度。 在实际应用中,一般使用单片机来进行温度的计算,由于该表达式比较复杂,用单片机处理

相关主题
文本预览
相关文档 最新文档