当前位置:文档之家› 高等数学复旦大学出版社习题答案九

高等数学复旦大学出版社习题答案九

高等数学复旦大学出版社习题答案九
高等数学复旦大学出版社习题答案九

194

习题九

1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4

t =; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).

解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π

4

t =

的切向量为 {}πππ,,,0,444T x y z a c ????????'''==-?? ? ? ?????????

当π

4

t =

时, ,,222a b c x y z ===

切线方程为

2220a b c x y z a c

-

--==-. 法平面方程为

0()0.222a b c a c x y z ??????++-=--- ? ? ???????

即 22

022

a c ax cz --

+=. (2)联立方程组

2226

x y z x y z ?++=?

++=? 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得

d d 2220d d d d 10d d y z x y z x x

y z x x

?

+?+?=???

?++=?? 解得

d d ,,d d y z x z x y

x y z x y z

--==--

195

在点M 0(1,-2,1)处,00

d d 0,1d d M M y z

x x ==- 所以切向量为{1,0,-1}. 故切线方程为

121

101

x y z -+-==

- 法平面方程为

1(x -1)+0(y +2)-1(z -1)=0

即x -z =0.

(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得

d d 22,21d d y z

y

m z x x

==- 于是

d d 1,d d 2y m z x y x z

==- 曲线在点(x 0,y 0,z 0)处的切向量为0

011,

,2m

y z ??-????,故切线方程为 00000

,112x x y y z z m y z ---==-

法平面方程为

00000

1()()()02m x x y y z z y z -+

---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin

2

t

在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。

解:1cos ,sin ,2cos

2

t x t y t z '''=-==, 在t 处切向量为{}

1cos ,sin ,2cos 2

t T t t =-, 已知平面的法向量为{1,1,2n =.

且T ∥n ,

2cos 1cos sin 11

t

t t

-==解得π2t

=

,相应点的坐标为π1,1,2?- ?

.且{1T =

196

故切线方程为

π1

1211x y -

+-==

法平面方程为

π

1102

x y z -

++--= 即

π042x y ??

++-=+

??

?

. 3. 证明:螺旋线x = acost, y = asint, z = bt 的切线与z 轴形成定角。 证明:sin ,cos ,.x a t y a t z b '''=-== 螺旋线的切向量为

{sin ,cos ,}T a t a t b =-.

与z 轴同向的单位向量为

{0,0,1}k =

两向量的夹角余弦为

cos θ=

=

为一定值。

故螺旋线的切线与z 轴形成定角。

4. 指出曲面z = xy 上何处的法线垂直于平面x -2y +z =6,并求出该点的法线方程与切平面方程。

解:z x =y , z y =x .

曲面法向量为{}1,,1n y x =-. 已知平面法向量为{}21,2,1n =-. 且1n ∥2n ,故有

112

y x ==-- 解得x =2,y =-1,此时,z =-2.

即(2,-1,-2)处曲面的法线垂直于平面,且在该点处的法线方程为

212

121

x y z -++==--. 切平面方程为

-1(x -2)+2(y +1)-(z +2)=0

即 x -2y +z -2=0. 5. 求下列曲面在给定点的切平面和法线方程:

197

(1)z = x 2+y 2,点M 0(1,2,5); (2)z = arctan y

x

,点M 0(1,1,π4);

解:(1)00

2, 4.22y

x

m m m m z z y x ====

故曲面在点M 0(1,2,5)的切平面方程为

z -5=2(x -1)+4(y -2).

即 2x +4y -z =5. 法线方程为

125

241

x y z ---==

- (2)0

22

22

1

1,.2

2

y

x

m m m m y

x z z x y x y -

==-=

=++ 故曲面在点M 0(1,1,

π

4

)的切平面方程为 z -π4=-12 (x -1)+1

2

(y -1). 法线方程为

π11411122

z x y -

--==--.

6. 证明:曲面xyz = a 3上任一点的切平面与坐标面围成的四面体体积一定。 证明:设 F (x ,y ,z )=xyz -a 3. 因为 F x =yz ,F y =xz ,F z =xy ,

所以曲面在任一点M 0(x 0,y 0,z 0)处的切平面方程为

y 0z 0(x -x 0)+x 0z 0(y -y 0)+x 0y 0(z -z 0)=0.

切平面在x 轴,y 轴,z 轴上的截距分别为3x 0,3y 0,3z 0.因各坐标轴相互垂直,所以切平面与坐标面围成的四面体的体积为

33000000

1119132727.

3336622

V z x y z a a x y ??=?==?=?????

它为一定值。

7.解:平面∏与曲面22

z x y =+在(1,2,5)-的切平面的法向量为 }{}{

002,2,12,4,1n x y =-=--

从而平面∏的方程为:2450x y z ---=

198

又l 的方向向量为110(1)11

i j k

s i j a k a ==-++--

由0n s ?=求得5a =-

在l 上取一点,不妨取01x =求得00(1).53y b z b =-+=+ 由于000(,,)x y z 在平面∏上,代入平面方程中可求得2b =-. 8. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ

,,343

αβγ===的方向导数。 解:

(1,1,2)(1,1,2)

(1,1,2)cos cos cos u u u u

y l x z αβγ????=++????

22(1,1,2)(1,1,2)(1,1,2)πππ

cos cos cos 5.(2)()(3)343

xy xz y yz z xy =++=---

9. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:{4,3,12},13.AB AB ==

AB 的方向余弦为

4312

cos ,cos ,cos 131313

αβγ=

== (5,1,2)

(5,1,2)

(5,1,2)(5,1,2)

(5,1,2)(5,1,2)

2105

u yz x u xz y u xy

z

?==??==??==? 故

4312982105.13131313

u l ?=?+?+?=? 10.

求函数22221

x y z a b ??

=-+ ???在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。

解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为

2222

220,x y b x

y y a b a y

''+==- 所以在点处切线斜率为

199

2.b y a a '

==-

法线斜率为cos a b

?=.

于是tan sin ??==

2222,,z z x y x a y b

??=-=-??

2222z l

a b ??=--=

?? 11.研究下列函数的极值: (1) z = x 3+y 3-3(x 2+y 2); (2) z = e 2x (x +y 2+2y ); (3) z = (6x -x 2)(4y -y 2); (4) z = (x 2+y 2)22()

e

x y -+;

(5) z = xy (a -x -y ),a ≠0.

解:(1)解方程组2

2

360

360

x y z x x z y y ?=-=??=-=?? 得驻点为(0,0),(0,2),(2,0),(2,2).

z xx =6x -6, z xy =0, z yy =6y -6

在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点.

在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8.

(2)解方程组22

2e (2241)0

2e (1)0

x x x

y z x y y z y ?=+++=??=+=?? 得驻点为1,12??-

???

. 22224e (21)4e (1)2e x xx x xy x

yy z x y y z y z =+++=+=

在点1,12??-

???处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ??

=-- ???

.

200

(3) 解方程组2

2

(62)(4)0

(6)(42)0

x y z x y y z x x y ?=--=??=--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).

Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y ) Z yy =-2(6x -x 2)

在点(3,2)处,A =-8,B =0,C =-18,B 2-AC =-8×18<0,且A <0,所以函数有极大值z (3,2)=36.

在点(0,0)处,A =0,B =24,C =0,B 2-AC >0,所以(0,0)点不是极值点. 在点(0,4)处,A =0,B =-24,C =0,B 2-AC >0,所以(0,4)不是极值点. 在点(6,0)处,A =0,B =-24,C =0,B 2-AC >0,所以(6,0)不是极值点. 在点(6,4)处,A =0,B =24,C =0,B 2-AC >0,所以(6,4)不是极值点.

(4)解方程组2

2

22()22()22

2e

(1)02e

(1)0x y x y x x y y x y -+-+?--=??--=??

得驻点P 0(0,0),及P (x 0,y 0),其中x 02+y 02=1,

在点P 0处有z =0,而当(x ,y )≠(0,0)时,恒有z >0, 故函数z 在点P 0处取得极小值z =0.

再讨论函数z =u e -u

d e (1)d u z u u -=-,令d 0d z u

=得u =1, 当u >1时,d 0d z u <;当u <1时,d 0d z

u

>,

由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有

2222

()

1()e

e x y z x y -+-=+≤.

故函数z 在点(x 0,y 0)取得极大值z =e -

1

(5)解方程组(2)0

(2)0x y

z y a x y z x a y x =--=??=--=??

得驻点为 12(0,0),,33a a P P ??

???

z xx =-2y , z xy =a -2x -2y , z yy =-2x .

故z 的黑塞矩阵为 222222y

a x y H a x y x ---?

?

=?

?---?? 于是 122033(),().023

3a

a a H P H P a a

a ??--

????

==????????--???? 易知H (P 1)不定,故P 1不是z 的极值点,

201

H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3

,2733a

a a z ??= ???,

H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3

,27

33a

a a z ??= ???.

12. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。 解:由已知方程分别对x ,y 求导,解得

484,281

281

z x z z y x z x y z x ?--?-==?+-?+- 令

0,0,z z x y ??==??解得0,2

x y z ==-, 将它们代入原方程,解得16

2,7

x x =-=. 从而得驻点16(2,0),,07??

-

???

. 2

222222

2

(281)(48)4828(281)428,(281)4(281)8

.

(281)z z z x x z z x x x z x z y z x x y z x z z x z

y y z x ??????+-++--+ ? ????????=?+-???+ ?????=??++?-+--??=?+-

在点(-2,0)处,44

1,,0,,1515

Z A B C ==

==B 2-AC <0,因此函数有极小值z =1. 在点16,07??

???

处,82828,,0,,7105105Z A B C =-=-

==-B 2-AC <0,函数有极大值87z =-. 13. 在平面xOy 上求一点,使它到x =0, y =0及x +2y -16=0三直线距离的平方之和为最小。

解:设所求点为P (x ,y ),P 点到x =0的距离为|x |,到y =0的距离为|y |,到直线x +2y -16=0的距离为

=

距离的平方和为

2221

(216)5

z x y x y =+++-

202

由22(216)0542(216)0

5z x x y x z y x y y

??=++-=??????=++-=???

得唯一驻点816,

55?? ???,因实际问题存在最小值,故点816,55??

???

即为所求。

14. 求旋转抛物面z = x 2+y 2与平面x +y -z =1之间的最短距离。

解:设P (x ,y ,z )为抛物面上任一点.则点P 到平面的距离的平方为2

(1)3x y z d +--=,即

求其在条件z = x 2

+y 2

下的最值。设F (x ,y ,z )=

2

22(1)()3

x y z z x y λ+--+-- 解方程组22

2(1)203

2(1)203

2(1)

03x

y

z x y z F x x y z F y x y z F z x y

λλλ+--?=-=??

+--?=-=???-+--=

+=??

?=+? 得1

2

x y z ===

1

== 15. 抛物面z = x 2+y 2被平面x +y +z =1截成一椭圆,求原点到这椭圆的最长与最短距离。

解:设椭圆上的点为P (x ,y ,z ),则

|OP |2=x 2+y 2+z 2.

因P 点在抛物面及平面上,所以约束条件为

z =x 2+y 2, x +y +z =1

设F (x ,y ,z )= x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1)

解方程组12121222220220

201

x y

z F x x F y y F z z x y x y z λλλλλλ=-+=??=-+=??

=++=??=+??++=?

23x y z ==

=

203

由题意知,距离|OP |有最大值和最小值,且

()2

2

222

29532

3x y z OP =++=+

=.

. 16. 在第I 卦限内作椭球面

222

222

1x y z a b c ++= 的切平面,使切平面与三坐标面所围成的四面体体积最小,求切点坐标。

解:令222

222(,,)1x y z F x y z a b c

=++-

∵222

222,,,x y z x y z

F F F a b c =

== ∴椭球面上任一点0000(,,)P x y z 的切平面方程为

000

000222222()()()0.x y z x x y y z z a b c

-+-+-= 即 000222 1.x x y y z z

a b c

++=

切平面在三个坐标轴上的截距分别为222

000

,,a b c x y z ,因此切平面与三个坐标面所围的四面体

的体积为

222222

000000

166a b c a b c V x y z x y z =???=

即求2226a b c V xyz =在约束条件222

2221x y z a b c

++=下的最小值,也即求xyz 的最大值问题。

设 222222(,,)1x y z x y z xyz a b c λ??

Φ=+++- ???

,

解方程组2

2

2222

22220,20,20,

1.

x

y z x yz a x xz b x xy c x y z a

b c λλλ?

Φ=+=??

?Φ=+=???Φ=+=???++=?

204

得x y z =

==

故切点为,此时最小体积为

222.6a b c V a b c ==

*

17. 设空间有n 个点,坐标为(,,)(1,2,

,)i i i x y z i n =,试在xOy 面上找一点,使此点与这n

个点的距离的平方和最小。 解:设所求点为P (x ,y ,0),则此点与n 个点的距离的平方和为

2222221112222222

2

1212222222222121212()()()()()()2()2()

()()()

n n n n n n n n S x x y y z x x y y z x x y y z nx x x x x ny y y y y x x x y y y z z z =-+-++-+-+++-+-+=-++++-++

++++

++++++++

+

解方程组121222()0

22()0x n y

n S nx x x x S ny y y y =-+++=??

=-+++=??

得驻点1212n n

x x x x n

y y y y n +++?=???

+++?=??

又在点1111,n

n i i i i x y n n ==?? ???

∑∑处

S xx =2n =A , S xy =0=B , S yy =2n =C B 2-AC =-4n 2<0, 且A >0取得最小值.

故在点1111,n

n i i i i x y n n ==?? ???∑∑处,S 取得最小值.

即所求点为1111,,0n n i i i i x y n n ==??

???

∑∑.

*

205

试求产量和利润的函数关系,并预测当产量达到120千件时工厂的利润。

解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f (x )=ax +b ,求[]

6

2

1

()i i i u y ax b ==

-+∑的最小值,即求解方程组

666

2

111

66

1

1,6.i i i i i i i i i i i a x b x y x a x b y =====?+=????+=??∑∑∑∑∑ 把(x i ,y i )代入方程组,得

2983440224003

4026320a b a b +=??

+=?

解得 a =0.884, b =-5.894

即 y =0.884x -5.894,

当x =120时,y =100.186(3

10元

).

高等数学经济数学习题集含答案

《高等数学(经济数学1)》课程习题 集 西南科技大学成人、网络教育学院版权所有 习题 【说明】:本课程《高等数学(经济数学1)》(编号为01014)共有单选题,填空题1,计算题等多种试题类型,其中,本习题集中有[]等试题类型未进入。 一、单选题 1.幂函数、指数函数、对数函数、三角函数和反三角函数统称() A 、函数 B 、初等函数 C 、基本初等函数 D 、复合函数 2.设,0 ,0 ,)(???≥+<=x x a x e x f x 当a=()时,)(x f 在),(+∞∞-上连续 A 、0 B 、1 C 、2 D 、3 3.由函数2x u e y u ==,复合而成的函数为() A 、2 x e y =B 、2 x e x =C 、2 x xe y =D 、x e y = 4.函数f(x)的定义域为[1,3],则函数f(lnx)的定义域为() A 、],[3e e B 、]3,[e C 、[1,3] D 、],1[3e 5.函数x y x y z 2222-+=的间断点是()A 、{} 02),(2=-x y y x B 、2 1 =x C 、0=x D 、2=y 6.不等式15<-x 的区间表示法是()A 、(-4,6)B 、(4,6)C 、(5,6)D 、(-4,8) 7.求323 lim 3 x x x →-=-()A 、3B 、2C 、5D 、-5 8.求=++→43lim 20 x x x () A 、1 B 、2 C 、3 D 、4 9.若f(x)的定义域为[0,1],则 )(2x f 的定义域为()

A 、[-1,1] B 、(-1,1) C 、[0,1] D 、[-1,0] 10.求=+-→t e t t 1lim 2()A 、21(1)e -+B 、211(1)2e +C 、)11(212+-e D 、11 (1)2e -+ 11.求0sin lim x x x ω→=()A 、0B 、1C 、2ωD 、ω 12.求=-∞→x x x )1 1(lim ()A 、e 1B 、1C 、0D 、e 13.求=-+→x x x 11lim ()A 、1 B 、12C 、13D 、1 4 14.已知x x x f +-= 11)(,求)0(f =()A 、1 B 、2C 、3D 、4 15.求29)(x x f -=的定义域()A 、[-1,1]B 、(-1,1)C 、[-3,3]D 、(-3,3) 16.求函数y =的定义域()A 、[1,2]B 、(1,2)C 、[-1,2]D 、(-1,2) 17.判断函数53)(2+=x x f 的奇偶性()A 、奇函数B 、偶函数C 、奇偶函数D 、非奇非偶函数 18.求13+=x y 的反函数()A 、113y x = +B 、113y x =-C 、13 x y += D 、31 -=x y 19.求极限lim )x x →+∞的结果是()A 、0B 、1 2 C 、∞ D 、不存在 20.极限01lim 23x x →+的结果是()。A 、0B 、不存在C 、15D 、1 2 21.设x x y sin ?=,则y '=() A 、)cos 2sin ( x x x x +B 、)sin 2cos (x x x x +C 、)cos 2sin (x x x x -D 、)sin 2cos (x x x x - 22.设4)52(+=x y ,则y '=()A 、34(25)x +B 、3)52(8+x C 、44(25)x +D 、48(25)x + 23.设t e t y sin =则y ''=()A 、2sin t e t --B 、2sin t e t -C 、2cos t e t -D 、t e t cos 2-- 24.=--→1 1lim 3 1x x x ()A 、1B 、2C 、3D 、4 25.设)()2)(1()(n x x x x x f ---=K ,则)()1(x f n +=()A 、)!1(+n B 、1n +C 、0D 、1 26.曲线x y sin 2 += π 在0=x 处的切线轴与x 正向的夹角为:() A 、 2πB 、3πC 、4 πD 、5π

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高等数学课后习题与解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

(word完整版)高等数学习题集及答案

第一章 函数 一、选择题 1. 下列函数中,【 】不是奇函数 A. x x y +=tan B. y x = C. )1()1(-?+=x x y D. x x y 2sin 2 ?= 2. 下列各组中,函数)(x f 与)(x g 一样的是【 】 A. 3 3)(,)(x x g x x f = = B.x x x g x f 22tan sec )(,1)(-== C. 1 1)(,1)(2+-=-=x x x g x x f D. 2 ln )(,ln 2)(x x g x x f == 3. 下列函数中,在定义域内是单调增加、有界的函数是【 】 A. +arctan y x x = B. cos y x = C. arcsin y x = D. sin y x x =? 4. 下列函数中,定义域是[,+]-∞∞,且是单调递增的是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 5. 函数arctan y x =的定义域是【 】 A. (0,)π B. (,) 22ππ- C. [,] 22ππ- D. (,+)-∞∞ 6. 下列函数中,定义域为[1,1]-,且是单调减少的函数是【 】 A. arcsin y x = B. arccos y x = C. arctan y x = D. arccot y x = 7. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 8. 已知函数arcsin(1)y x =+,则函数的定义域是【 】 A. (,)-∞+∞ B. [1,1]- C. (,)ππ- D. [2,0]- 9. 下列各组函数中,【 】是相同的函数 A. 2()ln f x x =和 ()2ln g x x = B. ()f x x =和()g x = C. ()f x x =和()2 g x = D. ()sin f x x =和()arcsin g x x = 10. 设下列函数在其定义域内是增函数的是【 】 A. ()cos f x x = B. ()arccos f x x = C. ()tan f x x = D. ()arctan f x x = 11. 反正切函数arctan y x =的定义域是【 】 A. (,)22 ππ - B. (0,)π C. (,)-∞+∞ D. [1,1]- 12. 下列函数是奇函数的是【 】

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

高等数学练习题库及答案

高等数学练习题库及答 案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

《高等数学》练习测试题库及答案 一.选择题 1.函数y= 1 1 2 +x 是( ) A.偶函数 B.奇函数 C 单调函数 D 无界函数 2.设f(sin 2 x )=cosx+1,则f(x)为( ) A 2x 2-2 B 2-2x 2 C 1+x 2 D 1-x 2 3.下列数列为单调递增数列的有( ) A . ,,, B . 23 ,32,45,54 C .{f(n)},其中f(n)=?????-+为偶数,为奇数n n n n n n 1,1 D. {n n 21 2+} 4.数列有界是数列收敛的( ) A .充分条件 B. 必要条件 C.充要条件 D 既非充分也非必要 5.下列命题正确的是( ) A .发散数列必无界 B .两无界数列之和必无界 C .两发散数列之和必发散 D .两收敛数列之和必收敛 6.=--→1 ) 1sin(lim 21x x x ( ) .0 C 2 7.设=+∞→x x x k )1(lim e 6 则k=( ) .2 C 6 8.当x →1时,下列与无穷小(x-1)等价的无穷小是( ) 2 B. x 3-1 C.(x-1)2 (x-1) (x)在点x=x 0处有定义是f(x)在x=x 0处连续的( )

A.必要条件 B.充分条件 C.充分必要条件 D.无关条件 10、当|x|<1时,y= () A、是连续的 B、无界函数 C、有最大值与最小值 D、无最小值 11、设函数f(x)=(1-x)cotx要使f(x)在点:x=0连续,则应补充定义f(0)为() A、B、e C、-e D、-e-1 12、下列有跳跃间断点x=0的函数为() A、 xarctan1/x B、arctan1/x C、tan1/x D、cos1/x 13、设f(x)在点x 0连续,g(x)在点x 不连续,则下列结论成立是() A、f(x)+g(x)在点x 必不连续 B、f(x)×g(x)在点x 必不连续须有 C、复合函数f[g(x)]在点x 必不连续 D、在点x0必不连续 f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b 14、设 满足() A、a>0,b>0 B、a>0,b<0 C、a<0,b>0 D、a<0,b<0 15、若函数f(x)在点x 0连续,则下列复合函数在x 也连续的有() A、 B、

高等数学(专科)复习题及答案

高等数学期末试卷 一、填空题(每题2分,共30分) 1.函数1 1 42-+ -= x x y 的定义域是 . 解. ),2[]2,(∞+--∞ 。 2.若函数52)1(2-+=+x x x f ,则=)(x f . 解. 62 -x 3.________________sin lim =-∞→x x x x 答案:1 正确解法:101sin lim 1lim )sin 1(lim sin lim =-=-=-=-∞→∞→∞→∞→x x x x x x x x x x x 4.已知22 lim 2 22=--++→x x b ax x x ,则=a _____, =b _____。 由所给极限存在知, 024=++b a , 得42--=a b , 又由23 4 12lim 2lim 22 22=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→) 1)((lim 0x a x b e x x ,则=a _____, =b _____。 ∞=---→)1)((lim 0x a x b e x x , 即01)1)((lim 0=-=---→b a b e x a x x x , 1,0≠=∴b a 6.函数????? ≥+<=0 1 01sin )(x x x x x x f 的间断点是x = 。 解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。 因为 1)0(1)1(lim 01 sin lim 00 ==+=+- →→f x x x x x 所以函数)(x f 在0=x 处是间断的, 又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。 7. 设()()()n x x x x y -??--= 21, 则() =+1n y (1)!n + 8.2 )(x x f =,则__________)1)((=+'x f f 。

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

大学高等数学下考试习题库(附答案)

欢迎阅读 《高等数学》试卷6(下) 一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a +=++-=2,2,则有( ). A.a ∥b 3. (A ) 6π4.A.=?b a 5.函数z A.2 6.设z =A. 2 2 7. 级数(A 8.幂级数=1n n A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21 二.填空题(4分?5)

1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. 设L 为取正向的圆周:221x y +=,则曲线积分2 (22)d (4)d L xy y x x x y -+-=? ?____________. 5. .级数 n ∞ 三.1.设z =2.3.计算D ??4. . 一.二.1.2-y x 2.(xy cos 3.62-y x 4. ()n n n n ∑ ∞ =+-01 21. 5.()x e x C C y 221-+= . 三.计算题 1. ()()[]y x y x y e x z xy +++=??cos sin ,()()[]y x y x x e y z xy +++=??cos sin .

大学高等数学下考试题库(及答案)

一.选择题(3分?10) 1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ). A.3 B.4 C.5 D.6 2.向量j i b k j i a ρρρ ρρ??+=++-=2,2,则有( ). A.a ρ∥b ρ B.a ρ⊥b ρ C.3,π=b a ρρ D.4 ,π=b a ρρ 3.函数1 122 2 22-++ --= y x y x y 的定义域是( ). A.(){ }21,22≤+≤y x y x B.( ){} 21,22<+p D.1≥p 8.幂级数∑∞ =1 n n n x 的收敛域为( ). A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1- 9.幂级数n n x ∑∞ =?? ? ??02在收敛域内的和函数是( ). A. x -11 B.x -22 C.x -12 D.x -21

10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分?5) 1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________. 2.函数()xy z sin =的全微分是______________________________. 3.设133 2 3 +--=xy xy y x z ,则 =???y x z 2_____________________________. 4. x +21 的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分?6) 1.设v e z u sin =,而y x v xy u +==,,求 .,y z x z ???? 2.已知隐函数()y x z z ,=由方程052422 2 2 =-+-+-z x z y x 确定,求 .,y z x z ???? 3.计算 σd y x D ?? +2 2sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径). 5.求微分方程x e y y 23=-'在00 ==x y 条件下的特解. 四.应用题(10分?2)

(完整版)高等数学试题及答案

《高等数学》试题30 考试日期:2004年7月14日 星期三 考试时间:120 分钟 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

高等数学习题集[附答案及解析]

WORD 格式 第一章 函数与极限 §1 函数 必作习题 P16-18 4 (5) (6) (8),6,8,9,11,16,17 必交习题 一、一列火车以初速度0v ,等加速度a 出站,当速度达到1v 后,火车按等速运动前进;从 出站经过T 时间后,又以等减速度a 2进站,直至停止。 (1) 写出火车速度v 与时间t 的函数关系式; (2) 作出函数)(t v v =的图形。 二、 证明函数1 2+= x x y 在),(+∞-∞内是有界的。

三、判断下列函数的奇偶性: (1)x x x f 1sin )(2= ; (2)1 212)(+-=x x x f ; (3))1ln()(2++=x x x f 。 四、 证明:若)(x f 为奇函数,且在0=x 有定义,则0)0(=f 。

WORD 格式 §2 初等函数 必作习题 P31-33 1,8,9,10,16,17 必交习题 一、 设)(x f 的定义域是]1,0[,求下列函数的定义域: (1))(x e f ; (2))(ln x f ; (3))(arcsin x f ; (4))(cos x f 。 二、(1)设)1ln()(2x x x f +=,求)(x e f -; (2)设23)1(2+-=+x x x f ,求)(x f ; (3)设x x f -= 11)(,求)]([x f f ,})(1{x f f 。)1,0(≠≠x x

三、设)(x f 是x 的二次函数,且1)0(=f ,x x f x f 2)()1(=-+,求)(x f 。 四、设???>+≤-=0, 20, 2)(x x x x x f ,???>-≤=0,0,)(2x x x x x g ,求)]([x g f 。

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学典型习题及参考答案

第八章典型习题 一、 填空题、选择题 1、点)3,1,4(M -到y 轴的距离就是 2、平行于向量}1,2,1{a -=? 的单位向量为 3、().0431,2,0垂直的直线为 且与平面过点=--+-z y x 4、.xoz y z y x :面上的投影柱面方程是在曲线?? ?==++Γ2 10222 5、()==-=+=+=-δ λ δλ则平行与设直线,z y x :l z y x : l 1111212121 ()23A ()12B ()32C ()21 D 6、已知k 2j i 2a ????+-=,k 5j 4i 3b ? ???-+=,则与b a 3??-平行的单位向量为 ( ) (A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-± (D )}11,7,3{179 1-± 7、曲线???==++2 z 9 z y x 222在xoy 平面上投影曲线的方程为( ) (A )???==+2z 5y x 22 (B )???==++0z 9z y x 222(C )???==+0 z 5y x 22 (D )5y x 22=+ 8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9 、 设 空 间 三 直 线 的 方 程 分 别 为 251214: 1+=+=+z y x L ,67313:2+=+=z y x L ,4 1312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L 10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面 11、方程05 z 3y 3x 2 22=-+所表示的曲面就是( ) (A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面 二、解答题

2019年交通大学{高等数学)试题及答案

《高等数学》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( C ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( A ) A )、必要条件 B )、充分条件 C )、充要条件 D )、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( D ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( B ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、 2arctan 1dx dx x x =+? D )、2 11 ()dx C x x -=-+? 5. 下列等式不正确的是( A ). A )、 ()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=???? ??'? 6. 0 ln(1)lim x x t dt x →+=?( A ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( C ) A )、 C bx bx b x +-sin cos B ) 、C bx bx b x +-cos cos C )、C bx bx bx +-sin cos D )、C bx b bx bx +-cos sin

相关主题
文本预览
相关文档 最新文档