当前位置:文档之家› pkpm问题分析

pkpm问题分析

pkpm问题分析
pkpm问题分析

《PKPM软件在应用中的问题解析》讲义(1)

目录

第一章:砖混底框的设计

(一)“按经验考虑墙梁上部作用的荷载折减”

(二)“按规范墙梁方法确定托梁上部荷载”

(三)“底框结构剪力墙侧移刚度是否应该考虑边框柱的作用”

(四)混凝土墙与砖墙弹性模量比的输入

(五)砖混底框结构风荷载的计算

(六)砖混底框不计算地震力时该如何设计?

(七)砖混底框结构刚度比的计算与调整方法探讨

第二章:剪切、剪弯、地震力与地震层间位移比三种刚度比的计算与选择

(一)地震力与地震层间位移比的理解与应用

(二)剪切刚度的理解与应用

(三)剪弯刚度的理解与应用

(四)《上海规程》对刚度比的规定

(五)工程算例

(六)关于三种刚度比性质的探讨

第三章:短肢剪力墙结构的计算

(一)短肢剪力墙结构中底部倾覆力矩的计算

(二)带框支结构短肢剪力墙的计算

第四章:多塔结构的计算

(一)带变形缝结构的计算

(二)大底盘多塔结构的计算

第五章:总刚计算模型不过的主要原因

(一)多塔定义不对

(二)悬空构件

(三)铰接构件定义不对

第六章:错层结构的计算

(一)错层结构的模型输入

(二)错层结构的计算

第七章:PKPM软件关于砼柱计算长度系数的计算

(一)规范要求

(二)工程算例

(三)SATWE软件的计算结果

(四)注意事项

(五)如何判断“水平荷载产生的弯矩设计值占总弯矩设计值的75%以上”这个条件?第八章:梁上架柱结构的荷载导算

(一)工程概况

(二)内力分析

第九章:如何选择剪力墙连梁的两种刚度模型

(一)剪力墙连梁变形的相对位移

(二)结论

第十章:板带截面法计算板柱剪力墙结构体系

(一)板柱剪力墙结构体系的计算方法

(二)有限元法计算的问题

(三)板带截面法的特点

第十一章:弹性楼板的计算和选择

(一)什么是弹性楼板

(二)弹性楼板的选择与判断

(三)四种计算模式的意义和适用范围

(五)工程实例

第十二章:斜屋面结构的计算

(一)斜屋面的建模

(二)软件对屋面斜板的处理

(三)斜屋面结构的计算

(四)工程实例

第十三章:次梁按主梁输和按次梁输的区别

(一)导荷方式相同

(二)空间作用不同

(三)内力计算不同

(四)工程实例

第十四章:不规则结构方案调整的几种主要方法

(一)工程算例1

(二)工程算例2

第十五章:用SATWE软件计算井字梁结构,为什么其计算结果与查井字梁结构计算表相差很大?

(一)计算假定不同

(二)计算假定不同的结果

(三)工程算例

(四)砖混结构,井字梁楼盖,如何计算?

第十六章:JCCAD软件应用中的主要问题

(一)地质资料的输入

(二)荷载的输入

(三)筏板基础的输入

(四)弹性地基梁基础

第十七章:基础的计算

(一)联合基础的计算

(二)砖混结构构造柱基础的计算

(三)浅基础的最小配筋率如何计算?

(四)基础重心校核

(五)弹性地基梁5种计算模式该如何选择?

(六)桩筏筏板有限元计算筏板基础时,倒楼盖和弹性地基梁板模型计算结果差异很大,为什么?

(七)为什么同一个梁式筏板基础,采用梁元法计算和采用板元法计算二者之间会相差较大?

(八)基础沉降计算时,为什么会出现沉降计算值为0?

(九)基床反力系数K值的计算

(十)单桩刚度的计算

第十八章:钢结构

(一)Mu<1.2Mp何意?如何解决?

(二)节点域不满足要求何意?如何解决?

(三)门式刚架结构,柱子的截面很大,应力比也很小,为什么柱长细比总不能满足要求?第十九章:其它问题

(一)结构周期比的计算

(二)为什么SATWE软件在调整0.2Q0系数时要默认最大值为2.0?如果想突破最大默认值该怎么办?

(三)为什么有时候弹性板下的位移值小于刚性板下的位移值?

(四)模拟施工1、模拟施工2和一次性加载三者之间有何联系与区别?

(五)如果地震加速度值不是规范规定中的值该怎么办?

(六)砼柱的单、双偏压计算该如何选择?

(七)梁柱重叠部分简化为刚域该如何选择?

(八)结构振型数的选取

(九)顶塔楼地震作用放大系数该如何填?

(十)底部加强区起算层号该如何填?

(十一)结构基本周期是什么意思?该如何填?

(十二)一根砼柱托两根不在同一条轴线上的梁该如何实现?

(十三)砼剪力墙暗柱为什么会超筋?

(十四)剪力墙边缘构件,钢筋配筋面积太大怎么办?

(十五)如何解决人防地下室工程梁延性比超限问题?

(十六)斜支撑输入中的常见问题

(十七)SATWE软件中“强制执行刚性板假定”是何意?该如何选择?

(十八)何时考虑双向地震作用?

(十九)SATWE和TAT软件中“底层柱墙最大组合内力”里的值是设计值还是标准值?可否作为基础设计依据?

第一章砖混底框的设计

(一)“按经验考虑墙梁上部作用的荷载折减”

⑴由于墙梁的反拱作用,使得一部分荷载直接传给了竖向构件,从而使墙梁的荷载降低。

⑵若选择此项,则程序对所有的托墙梁均折减,而不判断该梁是否为墙梁。

(二)“按规范墙梁方法确定托梁上部荷载”

⑴若选择此项,则则程序自动判断托墙梁是否为墙梁,若是墙梁则自动按照规范要求计算梁上的荷载,若不是墙梁则按均布荷载方式加到梁上。

⑵若同时选择“按经验考虑墙梁上部作用的荷载折减”和“按规范墙梁方法确定托梁上部荷载”两项,则程序对于墙梁则执行“按规范墙梁方法确定托梁上部荷载”,对于非墙梁则执行“按经验考虑墙梁上部作用的荷载折减”。

(三)“底框结构剪力墙侧移刚度是否应该考虑边框柱的作用”

若选择此项,则程序在计算侧移刚度比时,与边框柱相连的剪力墙将作为组合截面考虑。否则程序分别计算墙、柱侧移刚度。

一般而言,对混凝土抗震墙可选择考虑边框柱的作用,对砖抗震墙可选择不考虑边框柱的作用。

(四)混凝土墙与砖墙弹性模量比的输入

⑴适用范围:混凝土墙与砖墙弹性模量比只有在该结构在某一层既输入了混凝土墙,又输入了砖墙时才起作用。

⑵物理意义:混凝土墙与砖墙的弹性模量比。

⑶参数大小:该值缺省时为3,大小在3~6之间。

⑷如何填写:一般而言,混凝土墙的弹性模量是砖墙的10倍以上。如果是同等墙厚,则混凝土墙的刚度就是砖墙的10倍以上。但实际上,在结构设计时,一方面混凝土墙的厚度小于砖墙,从而使混凝土墙的刚度有所降低;另一方面,在实际地震力作用下混凝土墙所受的地震力是否就是砖墙的10倍以上还是未知数,因此我们不能将该值填得过高。

(五)砖混底框结构风荷载的计算

⑴TAT软件可以直接计算风荷载。

⑵SATWE软件不可以直接计算风荷载,需要设计人员在特殊风荷载定义中人为输入。(六)砖混底框不计算地震力时该如何设计?

⑴目前的PMCAD软件不能计算非抗震的砖混底框结构。

⑵处理方法:

①设计人员可以按6度设防计算,砖混抗震验算结果可以不看。

②砖混抗震验算完成后执行SATWE软件进行底框部分内力的计算。

⑶处理方法的基本原理:

①一般来说,砖混底框结构,按6度设防计算时地震力并非控制工况。

②对于构件的弯矩值,基本上都是恒+活载控制;剪力值,有可能某些断面由地震力控制,但该剪力值的大小与恒+活载作用下的剪力值相差也不会很大。直接用该值设计首先肯定安全,其次误差很小。

③如果个别构件出现其弯矩值和剪力值由地震力控制,这种情况一般出现在结构的外围构件中。设计人员或者直接使用该值进行设计,误差不大,或者作为个案单独处理。

(七)砖混底框结构刚度比的计算与调整方法探讨

(A)规范要求

《建筑抗震设计规范》第7.1.8条第3款明确规定:底层框架-抗震墙房屋的纵横两个方向,第二层与底层侧向刚度的比值,6、7度时不应大于2.5,8度时不应大于2.0,且均不应小于1.0。

《建筑抗震设计规范》第7.1.8条第4款明确规定:底部两层框架-抗震墙房屋的纵横两个方向,底部与底部第二层侧向刚度应接近,第三层与底部第二层侧向刚度的比值,6、7度时不应大于2.0,8度时不应大于1.5,且均不应小于1.0。

(B)规范精神

⑴由于过渡层为砖房结构,受力复杂,若作为薄弱层,则结构位移反应不均匀,弹塑性变形集中,从而对抗震不利。

⑵充分发挥底部结构的延性,提高其在地震力作用下的抗变形和耗能能力。

(C)PMCAD对混凝土墙体刚度的计算

⑴对无洞口墙体的计算

①如果墙体高宽比M<1.0,则只计算剪切刚度,计算公式为(略)

②如果墙体高宽比M>1.0,则需计算剪弯刚度,计算公式为(略)

⑵对小洞口墙体的计算

①小洞口墙体的判别标准α=(略)≤0.4

②目前的PMCAD软件,对于砖混底框结构,只允许开设小洞口的剪力墙。对于α≥0.6或洞口高度大于等于0.8倍墙高的大洞口剪力墙,则只能分片输入。

③PMCAD软件根据开洞率按照《抗震规范》表7.2.3乘以墙段洞口影响系数计算小洞口剪力墙的刚度。

(D)工程算例:(例子还有图形等,未录入)本例通过不改变剪力墙布置而用剪力墙开竖

缝的方法来满足其刚度比的要求。(略)

(E)设竖缝的剪力墙墙体的构造要求

⑴竖缝两侧应设置暗柱。

⑵剪力墙的竖缝应开到梁底,将剪力墙分乘高宽比大于1.5,但也不宜大于2.5的若干个墙板单元。

⑶对带边框的低矮钢筋混凝土墙的边框柱的配筋不应小于无钢筋混凝土抗震墙的框架柱的配筋和箍筋要求。

⑷带边框的低矮钢筋混凝土墙的边框梁,应在竖缝的两侧1.5倍梁高范围内箍筋加密,其箍筋间距不应大于100mm。

⑸竖缝的宽度可与墙厚相等,竖缝处可用预制钢筋混凝土块填入,并做好防水。

(F)底部框架-剪力墙部分为两层的砖混底框结构,可以通过开设洞口的方式形成高宽比大于2的若干墙段。

注:本条因为文字编辑的原因略去了一些公式,这些公式可以从其他一些书上看到。

第二章剪切、剪弯、地震力与地震层间位移比三种刚度比的计算与选择

(一)地震力与地震层间位移比的理解与应用

⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。

⑵计算公式:Ki=Vi/Δui

⑶应用范围:

①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。

②可用于判断地下室顶板能否作为上部结构的嵌固端。

(二)剪切刚度的理解与应用

⑴规范要求:

①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2。计算公式见《高规》151页。

②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2。其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。

⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。

⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。

(三)剪弯刚度的理解与应用

⑴规范要求:

①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe不应大于2,抗震设计时γe不应大于1.3。计算公式见《高规》151页。

②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。

⑵SATWE软件所采用的计算方法:高位侧移刚度的简化计算

⑶应用范围:可用于执行《高规》第E.0.2条规定的工程的刚度比的计算。

(四)《上海规程》对刚度比的规定

《上海规程》中关于刚度比的适用范围与国家规范的主要不同之处在于:

⑴《上海规程》第6.1.19条规定:地下室作为上部结构的嵌固端时,地下室的楼层侧向刚度不宜小于上部楼层刚度的1.5倍。

⑵《上海规程》已将三种刚度比统一为采用剪切刚度比计算。

(五)工程算例:

⑴工程概况:某工程为框支剪力墙结构,共27层(包括二层地下室),第六层为框支转换层。结构三维轴测图、第六层及第七层平面图如图1所示(图略)。该工程的地震设防烈度为8度,设计基本加速度为0.3g。

⑵1~13层X向刚度比的计算结果:

由于列表困难,下面每行数字的意义如下:以“/”分开三种刚度的计算方法,第一段为地震剪力与地震层间位移比的算法,第二段为剪切刚度,第三段为剪弯刚度。具体数据依次为:层号,RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层/RJX,Ratx1,薄弱层。

其中RJX是结构总体坐标系中塔的侧移刚度(应乘以10的7次方);Ratx1为本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均刚度80%的比值中的较小者。具体数据如下:

1,7.8225,2.3367,否/13.204,1.6408,否/11.694,1.9251,否

2,4.7283,3.9602,否/11.444,1.5127,否/8.6776,1.6336,否

3,1.7251,1.6527,否/9.0995,1.2496,否/6.0967,1.2598,否

4,1.3407,1.2595,否/9.6348,1.0726,否/6.9007,1.1557,否

5,1.2304,1.2556,否/9.6348,0.9018,是/6.9221,0.9716,是

6,1.3433,1.3534,否/8.0373,0.6439,是/4.3251,0.4951,是

7,1.4179,2.2177,否/16.014,1.3146,否/11.145,1.3066,否

8,0.9138,1.9275,否/16.014,1.3542,否/11.247。1.3559,否

9,0.6770,1.7992,否/14.782,1.2500,否/10.369,1.2500,否

10,0.5375,1.7193,否/14.782,1.2500,否/10.369,1.2500,否

11,0.4466,1.6676,否/14.782,1.2500,否/10.369,1.2500,否

12,0.3812,1.6107,否/14.782,1.2500,否/10.369,1.2500,否

13,0.3310,1.5464,否/14.782,1.2500,否/10.369,1.2500,否

注1:SATWE软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”;

注2:在SATWE软件中没有单独定义薄弱层层数及相应的层号;

注3:本算例主要用于说明三种刚度比在SATWE软件中的实现过程,对结构方案的合理性不做讨论。

⑶计算结果分析

①按不同方法计算刚度比,其薄弱层的判断结果不同。

②设计人员在SATWE软件的“调整信息”中应指定转换层第六层薄弱层层号。指定薄弱层层号并不影响程序对其它薄弱层的自动判断。

③当转换层设置在3层及3层以上时,《高规》还规定其楼层侧向刚度比不应小于相邻上部楼层的60%。这一项SATWE软件并没有直接输出结果,需要设计人员根据程序输出的每层刚度单独计算。例如本工程计算结果如下:

1.3433107/(1.4179107)=94.74%>60%

满足规范要求。

④地下室顶板能否作为上部结构的嵌固端的判断:

a)采用地震剪力与地震层间位移比

=4.7283107/(1.7251107)=2.74>2

地下室顶板能够作为上部结构的嵌固端

b)采用剪切刚度比

=11.444107/(9.0995107)=1.25<2

地下室顶板不能够作为上部结构的嵌固端

⑤SATWE软件计算剪弯刚度时,H1的取值范围包括地下室的高度,H2则取等于小于H1

的高度。这对于希望H1的值取自0.00以上的设计人员来说,或者将地下室去掉,重新计算剪弯刚度,或者根据程序输出的剪弯刚度,人工计算刚度比。以本工程为例,H1从0.00算起,采用刚度串模型,计算结果如下:

转换层所在层号为6层(含地下室),转换层下部起止层号为3~6,H1=21.9m,转换层上部起止层号为7~13,H2=21.0m。

K1=[1/(1/6.0967+1/6.9007+1/6.9221+1/4.3251)]107=1.4607107

K2=[1/(1/11.145+1/11.247+1/10.369)107=1.5132107

Δ1=1/K1 ;Δ2=1/K2

则剪弯刚度比γe=(Δ1H2)/(Δ2H1)=0.9933

(六)关于三种刚度比性质的探讨

⑴地震剪力与地震层间位移比:是一种与外力有关的计算方法。规范中规定的Δui不仅包括了地震力产生的位移,还包括了用于该楼层的倾覆力矩Mi产生的位移和由于下一层的楼层转动而引起的本层刚体转动位移。

⑵剪切刚度:其计算方法主要是剪切面积与相应层高的比,其大小跟结构竖向构件的剪切面积和层高密切相关。但剪切刚度没有考虑带支撑的结构体系和剪力墙洞口高度变化时所产生的影响。

⑶剪弯刚度:实际上就是单位力作用下的层间位移角,其刚度比也就是层间位移角之比。它能同时考虑剪切变形和弯曲变形的影响,但没有考虑上下层对本层的约束。

三种刚度的性质完全不同,它们之间并没有什么必然的联系,也正因为如此,规范赋予了它们不同的适用范围。

第三章短肢剪力墙结构的计算

(一)短肢剪力墙结构中底部倾覆力矩的计算

⑴规范要求:

《高层建筑混凝土结构技术规程》第7.1.2条第2款规定:抗震设计时,筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的50%。

⑵TAT与SATWE软件对短肢剪力墙的判断:

①TAT软件按双向判断;

②旧版SATWE软件按单向判断,新版SATWE软件按双向判断。

⑶工程算例

①工程概况

该工程为一层地下室,第六层(包括地下室)为框支转换层,转换层以上为短肢剪力墙结构,共31层。地震烈度为8度(设计基本地震加速度为0.2g),框支框架抗震等级为一级,剪力墙抗震等级为二级、转换层以上结构平面图如下图所示(图略)

②TAT和SATWE软件底部地震倾覆力矩计算结果:

用TAT计算,Mx短=99548.0、Mx=340276.0、Mx短/Mx=22.63%;My短=103067.2、My=338728.8、My短/My=23.33%。

用SATWE旧版计算,Mx短=313757.7、Mx=598817.6、Mx短/Mx=52.40%;My短=2 66632.3、My=620842.5、My短/My=42.95%。

用SATWE新版计算,Mx短=320114.2、Mx=173764.8、Mx短/Mx=35.18%;My短=1

28251.8、My=353020.7、My短/My=30.95%。

(二)带框支结构短肢剪力墙的计算

⑴结构体系的选择:复杂高层结构还是短肢剪力墙结构?

⑵规范规定

①抗震等级:

a)复杂高层:当转换层的位置设置在3层及3层以上时,其框支柱、剪力墙底部加强部位的抗震等级宜按表4.8.2和表4.8.3的规定提高一级采用,已经是特一级的不再提高。对于转换层的位置设置在3层及3层以下时,不要求提高抗震等级;

b)短肢剪力墙:其抗震等级,应比表4.8.2规定提高一级采用。注意,这里不含表4.8.3,这是因为B级高度的高层建筑和9度抗震设计的A级高度的高层建筑,不应采用短肢剪力墙结构。

②剪刀墙轴压比:

a)复杂高层:剪刀墙轴压比限值不要求降低;

b)短胶剪力墙:当抗震等级为一、二、三级时,分别不宜大于0.5、0.6、0.7;对于无翼缘或端柱的一字形短肢剪力培,其轴压比限值相应降低0.1。

③内力计算:

a)复杂高层:特一、一、二级落地剪力培底部加强部位的弯矩设计值,应按墙体底截面有地震组合的弯矩值乘以增大系数1.8、1.5、1.25;其剪力设计值,应按规程第7.2.10条的规定调整,特一级应来以增大系数1.9;

b)短肢剪力墙:除底部加强部位应按规程第7.2.10条的规定调整外,其他各层短肢剪力墙的剪力设计值,一、二级抗震等级应分别乘以增大系数1.4和1.2。

注意:短肢剪力墙并没有要求对底部加强部位的弯矩设计值按照复杂高层那样乘以放大系数。

④配筋率:

a)复杂高层:底部加强部位墙体水平和竖向分布筋最小配筋率,抗震设计时不应小于0.3%;b)短肢剪力墙:其截面的全部纵向钢筋的配筋率,底剖加强部位不宜小于1.2%,其他部位不宜小于1.0%。

注意:对于配筋率,规范对“复杂高层”和“短肢剪力墙”这两种结构体系的要求是不一样的。前者强调的是水平和坚向分布筋的配筋率,而后者强调的是纵向钢筋的配筋率

⑤底部加强部位高度:

a)复杂高层:剪力墙底部加强部位高度取框支层加上框支层以上两层的高度及墙肢总高度的1/8二者的较大值;

b)短肢剪力墙:其底部加强部位高度并没有特殊要求,仅仅是墙肢总高度的1/8和底部二层两者的较大值。

⑶工程算例

①工程概况:某高层带短肢剪力墙的框支结构,共31层(包括一层地下室)。该工程的第6层(地下室为第1层)为框支转换层,转换层以上为短肢剪力墙结构。地震烈度为7度(设计基本地震加速度为0.15g),框支框架的抗震等级为一级,剪力墙抗震等级为二级。

(图略)

②计算结果分析:两种结构体系的计算结果如表1和表2所示:

--------------------------------

表1“短肢剪刀墙”结构体系计算分析结果

楼层/第3层/第3层/第7层/第7层/第11层/第11层/

剪力墙类别/短剪墙3/普剪墙3/短剪墙7/普剪墙7/短剪墙11/普剪墙11/

抗震等级/特一级/一级/一级/一级/一级/二级/

M1(kn-m)/-168(1)/160(1)/807(37)/402(1)/286(39)/121(1)/

N1(kn)/-3372(1)/-15677(1)/-949(37)/-15183(1)/-457(39)/-9136(1)/

As(mm2)/9898(1)/14700(1)/1600(37)/2875(1)/678(39)/1280(1)/

ρSV(%)/1.82/1.82/2.01/2.01/0.8/0.8/

V2(kn)/564(31)/-6401(39)/56(1)/140(1)/307(35)/9(1)/

N2(kn)/-3191(31)/-7209(39)/-4546(1)/-15183(1)/-1615(35)/-9136(1)/

Ash(mm2)/324.9(31)/547.1(39)/200(1)/125(1)/233.7(35)/100(1)/

N3(kn)/-2895/-13483/-3913/-13057/-1271/-7851/

Uc/0.48/0.32/0.43/0.34/0.45/0.45/

--------------------------------

表2“复杂高层”结构体系计算分析结果

楼层/第3层/第3层/第7层/第7层/第11层/第11层/

剪力墙类别/短剪墙3/普剪墙3/短剪墙7/普剪墙7/短剪墙11/普剪墙11/

抗震等级/一级/一级/二级/一级/二级/二级/

M1(kn-m)/-168(1)/26595(39)/840(37)/402(1)/238(39)/121(1)/

N1(kn)/-3372(1)/-7209(39)/-949(37)/-15183(1)/-457(39)/-9136(1)/

As(mm2)/9898(1)/15315(39)/1600(37)/2875(1)/2039(39)/1280(1)/

ρSV(%)/1.82/1.82/2.01/2.01/0.8/0.8/

V2(kn)/475(31)/-6401(39)/407(41)/140(1)/220(35)/9(1)/

N2(kn)/-3191(31)/-7209(39)/-1199(41)/-15183(1)/-1615(35)/-9136(1)/

Ash(mm2)/202.8(31)/547.1(39)/200(41)/125(1)/100(35)/100(1)/

N3(kn)/-2895/-13483/-3913/-13057/-1271/-7851/

Uc/0.48/0.32/0.43/0.34/0.45/0.45/

-------------------------------

表3 荷载组合分项系数

组合号/ VD / VL / WX / WY / EX / EY / EV /

1 /1.35/0.98/0.00/0.00/0.00/0.00/0.00/

31 /1.20/0.60/0.00/-0.28/0.00/-1.30/0.00/

35 /1.20/0.60/0.00/-0.28/0.00/1.30/0.00/

37 /1.00/0.50/-0.28/0.00/-1.30/0.00/0.00/

38 /1.00/0.50/0.00/0.28/0.00/1.30/0.00/

39 /1.00/0.50/0.00/-0.28/0.00/-1.30/0.00/

41 /1.00/0.50/-0.28/0.00/1.30/0.00/0.00/

-----------------------------

a)抗震等级:从表中看不一样。

b)内力分析:由表中看出,这两种体系的内力计算结果非常复杂,即使是同一片墙在不同的结构体系控制工况下其结果也不一样。按“使杂高层”计算阿“普剪墙3”的“M1”值,远远大于按“短肢剪力墙”计算的“普剪墙3”’的“M1”值。这主要是因为SATWE软件在进行工况组合时,当发现所有工况组合计算的配筋面积均小于构造配筋面积时,程序仅按第一种工况组合输出内力和工况号(即恒十活);只有当发现控制工况组合计算的配筋面积大于构造配筋面积时,才按最大控制工况组合输出内力和工况号。

再从两个表中“短剪墙3”的“V2”计算过程进行分析,规范规定,短胶剪力墙底部加强部位的剪力应按规程第7.2,10条的规定调整,一级为1.6,特一级为1.9,我们结合上面的两个计

算表,验证如下:

475(1.9/1.6)=564 (kn)

其计算结果正好为“短肢剪力墙计算表”中的“V2”值。可见,程序考虑了规范的规定。同样,程序也考虑了“短肢剪力培”结构体系非底部加强部位一、二级抗震等级应分别来以增大系数1.4和1.2的要求(“短肢剪力墙计算表”中第十一层的“短剪墙3”,其V2=2201.4=308(k n)。

c)配筋率:

只有定义了“短股剪力墙”结构,SATWE程序才对自动判断的短肢剪力墙,其截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其他部位不宜小于1.0%,而“复杂高层”却无此功能。

构造边缘构件为何也输出体积配箍率?

根据《高规》7.2.17条规定:抗震设计时,对于复杂高层建筑结构、混合结构、框架-剪力墙结构、简体结构以及B级高度的剪力墙结构中的剪力墙,其构造边缘构件的配箍特征值λV不宜小于0.1。由于程序没有判断A级高度和B级高度的功能,所以程序不论约束边缘构件还是构造边缘构件,均统一输出体积配箍率。

⑷其他注意事项:

a)设计人员在“特殊构件补充定义”里的【抗震等级】中定义了抗震等级后,程序将按设计人员定义的抗震等级进行设计,不再自动提高。

b)对于非框支框架的框架结构,可以按规范规定,将地下一层以下的竖向构件的抗震等级定义为三级或四级的结构,其抗震等级均需设计人员人为定义,程序不能自动判断。

c)《高层建筑混凝土结构技术规程》第10.2.13条的各项规定,程序目前没有执行。

第四章多塔结构的计算

(一)带变形缝结构的计算

⑴带变形缝结构的特点:

①通过变形缝将结构分成几块独立的结构。

②若忽略基础变形的影响,各单元之间完全独立。

③缝隙面不是迎风面。

⑵计算方法:

①整体计算的注意事项:

a)在SATWE软件中将结构定义为多塔结构;

b)所给振型数要足够多,以保证有效质量系数>90%;

c)定义为多塔后,对于老版本软件,程序将对每一个缝隙面都计算迎风面,因此风荷载计算偏大;新版本软件增加了一项新的功能.即可以人为定义遮挡面.从而有效地解决了这一问题。

d)周期比计算有待商讨。

②分开计算的注意事项:

a)旧版软件除风荷载计算有些偏大外,其余结果都没问题,新版软件定义遮挡面后,风荷载计算也没有问题了。

b)一般而言,对于基础连在一起的带变形缝结构,由于基础对上部结构整体的协调能力有限,所以建议采用分开计算。

(二)大底盘多塔结构的计算

⑴大底盘多塔结构的特点:

①各塔楼拥有独立的迎风面。

②各塔楼之间的变形没有直接影响,但都通过大底盘间接影响其他塔楼。

③塔楼与刚性板之间没有—一对应关系,一个塔楼可能只有一块刚性板,也可能有几块刚性板。

④大底盘顶板应有足够的刚度以协调各塔楼之间的内力、变形和位移。

⑵计算方法:

①在SATWE软件中将结构定义为多塔结构;

②位移比、大底盘以上的各塔楼的刚度比均正确;

③周期比、转换部位的刚度比计算有待商讨。

⑶大底盘多塔结构刚度比的计算方法:

大底盘多塔结构在大底盘与各主体之间的刚度比如何计算规范并没有说明,但也没有说不要求。SATWE软件仅仅输出1号塔的主体与大底盘相比较的结果,其它塔与大底盘相比的结果则用“*”号表示。

①大底盘多塔结构刚度比的整体计算:根据龚思礼先生主编的《建筑抗震设计手册》提供的方法:要求在计算大底盘多塔结构的地下室楼层剪切刚度比时,大底盘地下室的整体刚度与所有塔楼的总体刚度比不应小于2,每栋塔楼范围内的地下室剪切刚度与相邻上部塔楼的剪切刚度比不宜小于1.5。

②大底盘多塔结构刚度比的分开计算:

a)根据《上海规程》第6.1.19条中条文说明中建议的方法:如遇到较大面积地下室而上部塔楼面积较小的情况,在计算地下室相对刚度时,只能考虑塔楼及其周围的抗侧力构件的贡献,塔楼周围的范围可以在两个水平方向分别取地下室层高的2倍左右。

b)在各塔楼周边引45度线,45度线范围内的竖向构件作为与上部结构共同作用的构件。第五章总刚计算模型不过的主要原因

(一)多塔定义不对

⑴同一构件同时属于两个塔。(图略)

⑵定义为空塔。(图略)

⑶某些构件不在塔内。(图略)

(二)悬空构件

⑴用户输入斜梁、层间梁或不与楼面等高的梁时,如果不仔细检查,可能出现梁在梁端不与任何构件相连的情况,即梁被悬空。(图略)

注意:节点处如果有墙,则变节点高是不起作用的,与此节点相连的任一构件标高均与楼层相同。

⑵节点处有柱时,与同一柱相连的梁,如果标高差小于500时,标高较低的节点会被合并到较高的节点处,大于500则不合并,但最多只允许3种不同的标高。如下图所示(图略)。(三)铰接构件定义不对

⑴设计人员在定义铰接构件时,使结构成为可变体系(如下图所示)。(图略)

该工程顶层为网架模型,各节点处梁均设为铰接,这样就出现了与同一节点相连的杆件均为铰接的情况,这在程序中是不允许的。

⑵钢支撑在SATWE中是默认为两端铰接的,对于越层钢支撑,用户常常忽略这一点,同样造成与同一节点相连的村件(这里为上下层的两段支撑)均为铰接的情况,为避免这种情况,用户应在SATWE前处理的“特殊构件补充定义”中将越层支撑设为两端固接(如下图所示)。(图略)

第六章错层结构的计算

(一)错层结构的模型输入

⑴错层高度不大于框架架高时的错层结构的处理;

⑵对于错层高度大于框架梁高的单塔错层结构的输入

⑶对于错层高度大于框架梁高的多塔错层结构的输入

⑷错层洞口的输入

(二)错层结构的计算

⑴规范要求

⑵错层结构设计中应注意的问题:SATWE软件在计算错层结构时,会在越层的柱和墙处施加水平力。由于在越层处水平力的存在,从而使越层构件上下端的配筋不一样,设计人员在出施工图时可以取二者的大值。

(本章可能是讲课人员的提纲,没有具体内容。后面还有相类似的情况,只有标题)

第七章PKPM软件关于混凝土柱计算长度系数的计算

(一)规范要求

⑴《混凝土结构设计规范》(GB 50010-2002)(以下简称《混凝土规范》)第7.3.11条第2款规定:一般多层房屋梁柱为刚接的框架结构,各层柱的计算长度系数可按表7.3.11-2取用。

⑵第7.3.11条第3款规定:当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度l0可按下列两个公式计算,并取其中的较小值:

l0=[l+0.15(Ψu+Ψl)]H(7.3.11-1)

l0=(2十0.2Ψmin)H (7.3.11-2)

式中:Ψu、Ψl——柱的上端、下端节点处交汇的各柱线刚度之和与交汇的各梁线刚度之和的比值;

Ψmin——比值Ψu、Ψl中的较小值;

H——柱的高度,按表7.3.11-2的注采用。

(二)工程算例

⑴工程概况:某工程为十层框架错层结构,首层层高2m,第二层层高4.5m。其第一、二层结构平面图、结构三维轴侧图如图1所示。(图略)

(三)SATWE软件的计算结果

⑴计算结果表:

--------------------------------

表1柱1、柱2、柱3按照表7.3.11-2直接取值的计算长度系数

柱1/3.25/3.25/1.44/1.44/

柱2/1.00/3.25/1.25/1.44/

柱3/1.00/1.00/1.25/1.25/

--------------------------------

表2柱1、柱2、柱3按公式7.3.11-1和7.3.11-2计算的计算长度系数

柱1/3.59/3.83/1.60/1.70/

柱2/1.33/3.83/1.42/1.70/

柱3/1.19/1.12/2.23/2.14/

-------------------------------

表中数据依次为:柱号/首层Cx/首层Cy/二层Cx/二层Cy/

柱1是边柱,首层无梁,二层与三根梁相连;柱2也是边柱,首层下向有一根梁,二层与三根梁相连;柱3是中柱,首层、二层均与四根梁相连。

⑵结果分析:

①表1中Cx、Cy的计算过程

②表2中Cx、Cy的计算过程

根据公式(7.3.11-1)和(7.3.11-2),

Ψux=(ECIC下/LC1+ECIC上/LC2)/[(ECIb左/Lb1+ECIb右/Lb2)2]

对于底层柱,由于柱底没有梁,所以程序自动取Ψlx=0.1。

(四)注意事项

⑴采用公式(7.3.11-1)和(7.3.11-2)计算柱的计算长度系数时,程序采用以下原则计算梁、柱构件的刚度:

①没有按规范要求判断水平荷载产生的弯矩设计值占总弯矩设计值的75%以上这个条件;

②对于混凝土梁,程序采用架的刚度放大系数值恒为2.0;对于钢梁,则采用设计人员输入的梁刚度放大系数;

③程序对于另一端不与柱(墙)相连的梁按远端梁铰接处理;

④当梁的两端与柱铰接时.不考虑梁的刚度;

⑤当梁的一端与柱刚接、另一端与柱铰接时.对于混凝土梁,梁的刚度折减50%,并不受有无侧限的限制;对于钢梁,有侧限时折减50%,无侧限时不折减;

⑥当柱一端铰接时.则相应端梁与柱的刚度比取0.1;

⑦斜柱(支撑)刚度不考虑在约束刚度比的计算中;

⑧单向墙托柱、柱托单向墙,面内按固端计算,刚度比取10,面外按实际情况计算;

⑨双向墙托柱、柱托双向墙,双向刚度比均取10(柱端已定义为铰接的不在此列)。

⑵斜柱(支撑)的计算长度取1.0。

⑶地下室的越层柱,程序不能自动搜索,而按层逐段计算柱的计算长度系数。

⑷所有边框柱,其计算长度系数内定为0.75。

⑸对于混凝土柱,其计算长度系数上限为2.5,钢柱的计算长度系数上限为6.0。

⑹程序只执行现浇楼盖的计算长度系数,没有执行装配式楼盖的计算长度系数。

⑺目前的SATWE软件对有吊车或无吊车的排架结构的柱计算长度系数仍按框架结构实行。

⑻对于SATWE软件,设计人员修改柱计算长度系数后,不要再进行“形成SAIWE数据”和“数据检查”等操作,而应该直接计算,否则程序仍然按照原来的计算长度系数进行计算。(五)如何判断“水平荷载产生的弯矩设计值占总弯矩设计值的75%以上”这个条件?

由于目前的SATWE软件没有直接判断“水平荷载产生的弯矩设计值占总弯矩设计值的75%以上”这个条件的功能,因此需要设计人员自己进行判断,具体判断过程我们可以遵循以下步骤:

⑴在新版的SATWE软件中首先按照不执行《混凝土规范》7.3.11-3条的方法进行计算,从而得到所有荷载产生的总弯矩设计值;

⑵点取SATWE软件“总信息”中“恒活载计算信息”里的“不计算恒活载”选项,然后进行计算,从而得到水平荷载产生的弯矩设计值;

⑶将头两步计算得到的弯矩设计值相比看是否满足《混凝土规范》7.3.11-3条中的条件;

⑷在选择弯矩设计值时要注意尽量选择同一工况荷载作用下的内力值。

第八章梁上架柱结构的荷载导算

(一)工程概况

某工程为梁抬柱结构,共30层,含4层地下室,地震设防烈度为8度,地震基本加速度为0.2g,如图1(a)所示,第四层的节书点1处为梁1和梁2的交点,该节点抬了一根120 01200的劲性混凝土柱1,该结构的第四层和第五层干面图如图1所示(图略)。

(二)内力分析

经计算,得到如下结果:

⑴柱1在恒载作用下的柱底轴力标准值为-586.5kn。

⑵结构总质量进行核核:

①PMCAD软件中“平面荷载显示校核”里计算出的结构总质量为84012.4吨。

②SATWE软件中质量文件WMASS.OUT中显示的结构总质量为84233.484吨。

⑶计算结果:

不同梁截面尺寸下的柱底轴力(单位:kn)

柱1/-586.5/-2110.5/-4692.8/-7033.9/

柱2/-9015.7/-8944.8/-8824.5/-8715.8/

柱3/-12176.2/-11701.1/-10895.3/-10164.5/

柱4/--9204.3/-9130.2/-9004.6/-8891.1/

柱5/-11251.7/-10999.0/-10570.8/-10182.5/

柱6/-10081.0/-10010.2/-9890.1/-9781.7/

柱7/-15007.5/-14555.5/-13789.1/-13094.6/

柱8/-9732.7/-9666.4/-9554.0/-9452.5/

柱9/-10731.8/-10487.2/-10072.3/-9692.2/

节点1位移(mm)/-86.06/-74.8/-55.695/-38.397/

表中后面四个数据依次为梁1和梁2截面尺寸为/250600/300900/2001200/5001500/时的数据。

柱3和柱7在节点1的左和右,柱5和柱9在节点1的上和下,柱2在节点1的左下角,柱8在节点1的右下角,柱4在节点1的左上角,柱6在节点1的右上角。

⑷结果分析:产生这种情况的主要原因是梁的刚度太小,节点位移太大,从而使内力转移到其他的竖向构件中。

第九章如何选择剪力墙连梁的两种刚度模型

在SATWE软件中,剪刀墙连梁刚度的计算有两种模型,第一种为杆元模型,即连梁按照普通梁的方式输入,另一种为壳元模型,即连梁以洞口的方式形成。在设计中这两种刚度模型如何选择是设计人员非常关心的问题。

(一)剪力墙连梁变形的相对位移

⑴以双肢墙为例,采用连续化算法推导剪切变形与相对位移比的计算公式。

⑵剪力墙连梁变形的计算

⑶通过公式推导,得出剪切变形与相对位移比的计算公式:

δν/δ=1/[1+1/3(2a/hp)(2a/hp)]-----(1)

⑷根据式(1),本文列出δν/δ和连梁跨高比之间的相对关系,如表1所示:

表1δν/δ和连梁跨高比之间的相对关系

跨高比/0.5/1.0/1.5/2.0/2.5/3.0/3.5/4.0/4.5/5.0/

δν/δ/0.923/0.75/0.571/0.428/0.324/0.25/0.197/0.158/0.129/0.107/

(二)结论

⑴连梁跨高比大干5.0时可按照普通梁输入;

⑵连梁跨高比小于2.5时可以洞口方式形成;

⑶连梁跨高比大于2.5,但小于5.0时可视具体情况酌情处理。

⑷连梁形成方式的不同,对结构的整体刚度、周期、位移以及连梁的内力计算都会产生影响。第十章板带截面法计算板柱剪力墙结构体系

(一)板往剪力墙结构体系的计算方法

⑴等代框架法

⑵有限元法

(二)有限元法计算的问题

⑴局部应力的大小与有限元划分的大小密切相关,不便于设计人员掌握;

⑵用SATWE软件的“复杂楼板有限元分杯”子菜单分析板柱剪力墙结构,其内力和配筋是以点值或极值的方式输出的。“点值”方式不利于确定配筋范围,“极值”方式又未免配筋太大,造成浪费。

(三)板带截面法的特点

⑴首先采用有限元法进行内力和配筋设计。

⑵根据设计人员已定义的骨架线(即相邻支座的连线,骨架线上有梁(包括虚梁)或剪力墙)划分板带。

⑶既能保证计算精度,又具备方便的后处理功能。

⑷目前的板带截面法,楼板荷载计算比较大。

参考文献:赵勇、李云贵、黄鼎业《基于有限元分析结果的混凝土板板带截面设计法》载《建筑结构》杂志2004年第8期。

第十一章弹性楼板的计算和选择

(一)什么是弹性楼板

在外力作用下能够产生弹性变形的楼板。

(二)弹性楼板的造择与判断

⑴楼饭局部大开洞(图略)

⑵板柱体系或板柱—抗震墙体系:

《高规》第5.3.3条规定:对于平板无梁楼盖,在计算中应考虑板的平面外刚度的影响,其平面外刚度可按有限元方法计算或近似将柱上板带等效为扁梁计算。

根据《高规》的此项规定,板—柱体系要考虑楼板的平面外刚度,因此板柱体系要定义弹

性楼板(如图2所示)。(图略)

⑶框支转换结构

研究表明,对于框支转换结构,转换梁不仅会产生弯矩和剪力,而且还会产生较大的轴力,这个轴力不能忽略。在SATWE软件中,只有定义弹性楼板才能产生转换梁的轴力。因此,对于框支转换结构,必须整层定义弹性楼板。

⑷厚板转换结构

对于厚板转换结构,由于其厚板的面内刚度很大,可以认为是平面内无限刚,其平面外的刚度是这类结构传力的关键。因此,此类结构的厚板转换层应定义为弹性楼板。

⑸多塔联体结构:多塔联体结构的连廊定义为弹性楼板。

(三)四种计算模式的意义和适用范围

⑴刚性板假定

假定楼板平面内无限刚,平面外刚度为零。

①梁刚度放大系数的应用

《高规》第5.2.2条规定:在结构内力与位移计算中,现浇楼面和装配整体式楼面中梁的刚度可考虑翼缘的作用予以放大。楼面梁刚度增大系数可根据翼缘情况取1.3~2.0。对于无现浇面层的装配式结构,可不考虑楼面翼缘的作用。

②适用范围:楼板形状比较规则的结构。

⑵弹性板6假定

①楼板的平面内刚度和平面外刚度均为有限刚。

②适用范围:板柱体系或板柱-剪力墙结构。

⑶弹性膜假定

①采用平面应力膜单元真实地反映楼板的平面内刚度,同时又忽略了平面外刚度,即假定楼板平面外刚度为零。

②适用范围:广泛应用于楼板厚度不大的弹性板结构中,比如体育场馆等空旷结构、楼板局部大开洞结构、楼板平面布置时产生的狭长板带(如图1(C)所示,图略)、框支转换结构中的转换层楼板、多塔联体结构中的弱连接板(如图3所示,图略)等结构。

⑷弹性板3假定

①楼板平面内刚度无限大,平面外刚度为有限刚。程序采用中厚板弯曲学元来计算楼板平面外刚度。

②适用范围:厚板转换层结构和板厚比较大的板柱体系或板柱-抗震墙体系。

③注意事项:

a)要在PMCAD软件的人机交互式建模中输入100mm100mm的虚粱。虚梁在结构设计中是一种无刚度、无自重的梁,不参与结构计算。它的主要作用有以下三点:

☆为SATWE或PMSAP软件提供板的边界条件;

☆传递上部结构的竖向荷载。

☆为弹性楼板单元的划分提供必要条件。

b)采用弹性板3模式进行设计时,与厚板相邻的上下层的层高应包含厚板厚度的一半。(四)工程实例

⑴工程概况:某工程为框支剪力墙结构,共30层,带一层地下室,地面以上第4层为框支转换层,地震设防烈度为8度,地震基本加速度为0.2g,场地类别为三类场地土,中梁刚度放大系数取2.0,边梁刚度放大系数取1.5,转换层楼板厚度为180mm,结构体系按复杂高层计算,并考虑偶然偏心的影响。该结构的三维轴测图、框支转换层和框支转换层上一层的结构平面图如囹4所示。(图略)

⑵计算结果

将转换层楼板分别采用弹性板6、弹性膜和刚性板假定进行计算,该结构的周期、转换层处层间位移角和转换梁1的内力和配筋计算结果分别如表1、表2和表3所示。

表1周期计算表

T1(X向)/1.3627/1.3639/1.3572/

T2(Y向)/1.2143/1.2147/1.2060/

T3(扭转)/1.0468/1.0473/1.0323/

------------------------

表2转换层处层间位移角计算表

X向/1/2933/1/2899/1/3187/

Y向/1/3006/1/2995/1/3274/

------------------------

表3转换梁1的内力和配筋计算表

-M(kn-m)/-218(30)/-225(30)/-198(29)/

Top Ast/2000/2000/2000/

+M(kn-m)/1060(30)/1071(30)/1015(30)/

Btm Ast/4116/4156/2814/

Shear/-587(30)/-597(30)/-538(30)/

Asv/825/825/825/

Nmax(kn)/567(29)/572(29)/0/

---------------------------

以上三张表中的后面3个数值依次分别为楼板条件是(/弹性板6/弹性膜/刚性板/)时的数值。

表4相应工况下的荷载组合分项系数

Ncm/V-D/V-L/X-W/Y-W/X-E/Y-E/Z-E

29/1.20/0.60/-0.28/0.00/-1.30/0.00/0.00

30/1.20/0.60/0.00/0.28/0.00/1.30/0.00

----------------------------

⑶结果分析

①本工程刚性板假定下结构刚度大于弹性板6假定下结构的刚度。

②弹性膜假定下其结构的刚度最小,结构的位移和周期均最大。

③通过对表3的分析可以看出,三种计算模式下梁的负端弯矩和跨中弯矩相差并不大,但采用弹性板6和弹性膜假定下梁的跨中纵向钢筋的配筋面积明显大于采用刚性极假定下梁的配筋面积、这主要是由于框支梁按照拉弯构件设计造成的。在表3中,采用弹性板6和弹性膜计算模式时,框支梁会产生较大的轴力,而采用刚性板假定时,框支梁的轴力为0。

④由于弹性板6模式考虑了楼板的平面外刚度,因此,框支梁计算的安全储备降低,从表3可以看出,采用弹性膜假定计算出的框支梁1的弯矩、剪刀和轴力均大于采用弹性板6假定下的计算结果。在本工程中,这两种模式的计算结果虽然不大,但这种计算结果的差

异与楼板厚度有关,板厚越大,计算结果的差异也越大。

第十二章斜屋面结构的计算

(一)斜屋面的建模

⑴通过设置“梁两端标高”或者“改上节点高”等方式形成屋面斜板。

⑵在PMCAD建模时,屋面斜梁不能直接落在下层柱的柱项,斜梁下应输入100mm高的短柱(如图1所示,图略)。短柱通常只传递荷载和内力,而没有设计意义。

⑶当采用TAT和SATWE软件计算时,顶部倾斜的剪力墙程序不能计算,PMSAP可以计算,但要在“复杂结构空间建模”冲将其定义为弹性板6。

(二)软件对屋面斜板的处理

⑴TAT和SATWE软件只能计算斜粱,对斜屋面的刚度不予考虑。

⑵PMSAP软件可以计算屋面斜板的刚度对整体结构的影响。

(三)斜屋面结构的计算

⑴简化模型1:忽略斜屋面刚度对整体结构的影响,将屋面斜板的荷载导到斜梁上,用TAT 或SATWE软件计算。

⑵简化模型2:将斜屋面刚度用斜撑代替,屋面斜板的荷载导到斜梁上,用TAT或SATWE 软件计算。斜撑的主要目的是为了模拟斜屋面的传力,其本身的内力计算没有意义,但在计算屋面荷载时,应适当考虑斜撑自重。

⑶真实模型:考虑斜屋面刚度对整体结构的影响,用PMSAP软件计算。

(四)工程实例

⑴工程概况:某工程为框架结构的仿古建筑,共4层,第二层的两端和第四层的中间部分布置了较多的斜屋面,该结构斜屋面组成比较复杂(如图1所示,图略),板厚为180mm,地震设防烈度为8度,地震基本加速度为0.2g,周期折减系数0.7,考虑偶然偏心的影响,并用总刚模型计算。该结构的三维轴测图、首层平面图和第四层斜梁线框图如图1所示(图略)。

⑵斜屋面结构的计算

为了能够有效地体现屋面斜板对结构设计的影响,现分别采用三种计算模型对结构进行计算,第一种模型为考虑斜屋面,按真实模型进行计算;第二种模型为忽略斜屋面,将斜屋面引起的荷载传递给斜梁,按简化模型1计算;第三种模型为将斜屋面用斜撑代替,斜屋面引起的荷载传递给斜梁,按简化模型2计算。这三种计算模型中结构周期和位移的计算如表1所示,某根构件的内力计算如表2、表3和表4所示。

表1三种计算模型中结构周期和位移的计算

周期/真实模型/简化模型1/简化模型2/

T1/0.997(Y)/1.119(Y)/1.027(Y)/

T2/0.964(X)/1.018(X)/0.981(X)/

T3/0.801(T)/0.891(T)/0.826(T)/

最大层间位移角(X向)/1/363/1/338/1/354/

最大层间位移角(Y向)/1/366/1/298/1/326/

------------------------------

表2三种模型中梁1的弯矩计算

①恒载下真实模型的弯矩标准值:110(左端)/-77.3(跨中)/86.2(右端)

②恒载下简化模型1的弯矩标准值:106.5(左端)/-77.8(跨中)/89.8(右端)

③恒载下简化模型2的弯矩标准值:107.1(左端)/-77.9(跨中)/89.2(右端)

④X向地震下真实模型的弯矩标准值:-204(左端)/-42.7(跨中)/199.5(右端)

⑤X向地震下简化模型1的弯矩标准值:-178.9(左端)/-36.6(跨中)/174.5(右端)

⑥X向地震下简化模型2的弯矩标准值:-202(左端)/-42.2(跨中)/197.8(右端)

⑦真实模型的弯矩设计值:-399.5(左端)/193.9(跨中)/-366(右端)

⑧简化模型1的弯矩设计值:-403.6(左端)/193.2(跨中)/-376(右端)

⑨简化模型2的弯矩设计值:-394(左端)/185(跨中)/-367(右端)

--------------------------------

表3三种模型中梁2的弯矩计算

①恒载下真实模型的弯矩标准值:57.5(左端)/-43.4(跨中)/7.2(右端)

②恒载下简化模型1的弯矩标准值:126.9(左端)/-62(跨中)/109.7(右端)

③恒载下简化模型2的弯矩标准值:127.1(左端)/-62.0(跨中)/109.5(右端)

④X向地震下真实模型的弯矩标准值:-5.2(左端)/-0.5(跨中)/8.0(右端)

⑤X向地震下简化模型1的弯矩标准值:-7.6(左端)/-3.0(跨中)/-1.7(右端)

⑥X向地震下简化模型2的弯矩标准值:-6.0(左端)/-2.1(跨中)/1.7(右端)

⑦真实模型的弯矩设计值:-98(左端)/69.6(跨中)/-95(右端)

⑧简化模型1的弯矩设计值:-155.9(左端)/111.5(跨中)/-135.5(右端)

⑨简化模型2的弯矩设计值:-156(左端)/115(跨中)/-135(右端)

--------------------------------

表4三种模型中柱1的弯矩(My)计算

①恒载下真实模型的弯矩标准值:-9.7(上端)/3.5(下端)

②恒载下简化模型1的弯矩标准值:-10.9(上端)/4.7(下端)

③恒载下简化模型2的弯矩标准值:-11.0(上端)/4.7(下端)

④X向地震下真实模型的弯矩标准值:-296.8(上端)/334.4(下端)

⑤X向地震下简化模型1的弯矩标准值:-258.7(上端)/291.5(下端)

⑥X向地震下简化模型2的弯矩标准值:-292.8(上端)/330.1(下端)

⑦真实模型的弯矩设计值:456.7(上端)/528.7(下端)

⑧简化模型1的弯矩设计值:467.7(上端)/541.6(下端)

⑨简化模型2的弯矩设计值:423.2(上端)/528.4(下端)

--------------------------------

梁1是一根首层的边框架梁;梁2是四层与柱1相连的斜梁;柱1是一根框架边柱,梁1一端与之相连。

⑶结果分析

①从表1可以看出,屋面斜板对结构的周期和位移均有一定影响。采用简化模型1计算,由于忽略了斜屋面的面内刚度和面外刚度,计算结果偏柔;采用简化模型2计算,由于斜撑起到了一定的楼板刚度的作用,因此其计算结果介于简化模型1和真实模型之间;

②表2和表4主要反映的是屋面斜板对其他楼层的水平和竖向构件内力的影响。从中可以看出,在竖向荷载作用下(如恒载),三种计算模型算出的构件内力相差很小,几乎可以认为相等;在水平荷载作用下(如地震力),简化模型1与真实模型和简化模型2计算出的构件内力有一定差别,但差别也不是很大。真实模型和简化模型2计算出的构件内力则相差很小;

③表3主要反映的是屋面斜板对屋面斜梁内力的影响。从中可以看出,由于屋面斜板定义了弹性板6,从而使采用简化模型计算的梁内力值明显大于采用真实模型计算的梁内力值。

第十三章次梁按主梁输和按次梁输的区别

(一)导荷方式相同

这两种输入方式形成的次梁均可将楼板划分成双向或单向板,以双向或单向板的方式进行导荷。

(二)空间作用不同

⑴次梁按次梁输时,输入的次粱仅仅将其上所分配的荷载传递到主梁上,次梁本身的刚度不代入空间计算中,即对结构的刚度、周期、位移等均不产生影响。

⑵次梁按主梁输时,输入的次梁本身的刚度参与到空间计算中,即对结构的刚度、周期、位移等均会产生影响。

(三)内力计算不同

⑴次梁按次梁输时,次梁的内力按连续梁方式一次性计算完成,主梁是次梁的支座。

⑵次梁按主梁输时,程序不分主次梁,所有梁均为主梁。梁的内力计算按照空间交叉梁系方式进行分配。即根据节点的变形协调条件和各梁线刚度的大小进行计算。主梁和次梁之间没有严格的支座关系。

(四)工程实例

⑴本工程实例主要用于说明为什么有些悬挑梁在计算时没有按悬挑梁计算?

该工程局部悬挑梁的布置如图1所示(图略,图1显示的局部悬挑梁布置是平行的三道梁,上下两道为框架梁,中间为支承在另一方向上的框架梁上的连续梁,均有挑梁)。

⑵计算结果

如上图所示,从主框架梁中间悬挑出去的梁端负筋明显小于从柱悬挑出去的梁端负筋。

以下是这两种梁的内力计算结果:

表1图中中间悬挑梁内力值

截面号/I/1/2/3/4/5/6/7/J/

-M/-61.0/-52.2/-43.9/-36.3/-29.8/-24.3/-19.6/-15.6/-12.4/

Top Ast/652/652/652/652/652/652/652/652/652/

+M/0.0/0.8/1.5/1.9/2.1/1.9/1.5/0.8/0.0/

Btm Ast/652/652/652/652/652/652/652/652/652/

Shear/40.0/38.2/35.6/32.2/27.9/23.7/20.2/17.6/15.9/

Asv/61.4/61.4/61.4/61.4/61.4/61.4/61.4/61.4/61.4/

---------------------------------------表2图中下部悬挑梁内力值

截面号/I/1/2/3/4/5/6/7/J/

-M/-61.0/-52.2/-43.9/-36.3/-29.8/-24.3/-19.6/-15.6/-12.4/

Top Ast/652/652/652/652/652/652/652/652/652/

+M/0.0/0.8/1.5/1.9/2.1/1.9/1.5/0.8/0.0/

Btm Ast/652/652/652/652/652/652/652/652/652/

Shear/40.0/38.2/35.6/32.2/27.9/23.7/20.2/17.6/15.9/

Asv/61.4/61.4/61.4/61.4/61.4/61.4/61.4/61.4/61.4/

---------------------------------------⑶内力分析

通过梁的内力文件可以看出,从主框架梁中间悬挑出去的梁端负弯矩明显小于从柱悬挑出去的梁端负弯矩。

这主要是因为当这两种悬桃梁都按主梁输时,梁的内力计算按照空间交叉梁系方式进行计算。由于柱的线刚度大,变形小,因此对悬挑梁的约束能力强,则相应的梁端负弯矩大。而主框架梁的平面外抗扭刚度小,变形大,因此对悬桃梁的约束能力低,则相应的梁端负弯矩就小。

第十四章不规则结构方案调整的几种主要方法

(一)工程算例1

⑴工程概况:某工程为一幢高层住宅建筑,纯剪力墙结构,结构外形呈对称Y形。一层地下室,地上共23层,层高2.8m。工程按8度抗震烈度设防,地震基本加速度为0.2g,建筑抗震等级为二级,计算中考虑偶然偏心的影响。其结构平面图如图1所示。(图略)

⑵这个工程的主要特点是:

①每一个楼层沿Y向对称。

②结构的角部布置了一定数量的角窗。

③结构平面沿Y向凹进的尺寸10.2m,Y向投影方向总尺寸为22.3m。开口率达45%,大于相应投影方向总尺寸的30%,属于平面布置不规则结构,对结构抗震性能不利。

⑶本工程在初步设计时,结构外墙取250厚,内墙取200厚。经试算结果如下:

结构周期:

T1=1.4995s,平动系数:0.21(X),扭转系数:0.79

T2=1.0954s,平动系数:0.79(X),扭转系数:0.21

T3=1.0768s,平动系数:1.00(Y),扭转系数:0.00

周期比:T1/T2=1.37,T1/T3=1.39

最大层间位移比:1.54

最大值层间位移角:1/1163

⑷通过对上述计算结果的分析可以看出,该结构不仅周期比大于规范规定的0.9限值,而且在偶然偏心作用下的最大层间位移比也超过1.5的最高限值。

经过分析我们得知,之所以产生这样的结果,主要是由于结构的抗扭转能力太差引起的。

⑸为了有效地提高结构的抗扭转能力,经与建筑协商,在该结构的深开口处前端每隔3层布置两道高lm的拉梁,拉梁间布置200mm厚的连接板(如图2所示)。(图略)

经过上述调整后,计算结果如下:

T1=1.3383s,平动系数:0.22(X),扭转系数:0.78

T2=1.0775s,平动系数:0.78(X),扭转系数:0.22

T3=1.0488s,平动系数:1.00(Y),扭转系数:0.00

周期比:T1/T2=1.24,T1/T3=1.28

最大层间位移比:1.48

最大值层间位移角:1/1250

⑹从上述结果中可以看出,由于设置了拉梁和连续板,使结构的整体性有所提高,抗扭转能力得到了一定的改善。结构的周期比和位移比有所降低,但仍不满足要求。

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移

初学者如何看懂PKPM文字结果信息

结构设计总信息: 1、刚重比:框架结构,大于20不考虑重力二阶效应,大于10通过整体稳定验算。剪力墙结构及框架剪力墙结构,大于2.7不考虑重力二阶效应,大于1.4通过整体稳定验算(高规5.4) 2、刚度比:本层塔侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值大于1。查看Ratx1是否大于1,否则薄弱层(结构竖向布置,高规4.4.2) 3、薄弱层: A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%;B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。查看Ratio_Bu是否小于0.8,若小则是薄弱层(结构竖向布置,高规4.4.3) 周期振型地震力:1、计算得第一平动周期输入到风荷载信息中的结构周期 2、周期比:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85。(结构平面布置,高规4.3.5) 3、查看地震作用最大的方向是否大于15度否则输入到总信息中的水平力与整体坐标夹角 4、有效质量系数是否大于90%见高规5.1.13: 1 应采用至少两个不同力学模型的三维空间分析软件进行整体内力位移计算; 2 抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%; 3 应采用弹性时程分析法进行补充计算; 4 宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 5、剪重比,见抗规5.2.5是否大于剪力系数λ 结构位移:1、位移比,结构平面布置应减少扭转的影响。在考虑偶然偏心影响的地震 作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。(结构平面布置,高规4.3.5)查看Ratio-(X),Ratio-(Y),Ratio-Dx,Ratio-Dy是否大于1.2 2、层间位移角,高度不大于150m,框架1/550,剪力墙1/1000,见高规4.6.3。层间位移角不需要考虑偶然偏心,另外在总信息里对所有楼层采用刚性楼板假定,且是在单向水平地震作用下。 框架倾覆弯矩:是小于40%,则按短肢剪力墙计算

结构设计pkpm软件SATWE计算结果分析报告

学习笔记 PMCAD中--进入建筑模型与荷载输入: 板荷:点《楼面恒载》会有对话框出来,选上自动计算现浇楼板自重,然后在恒载和活载项输入数值即可,一般恒载要看楼面的做法,比如有抹灰,找平,瓷砖,吊顶什么的,在民用建筑中可以输2.0,活载就是查荷载规范。梁间荷载:PKPM中梁的自重是自己导入的,所以梁间荷载是指梁上有隔墙或者幕墙或者女儿墙之内在建模时不建的构建,把他们折算成均布荷载就行。比如,一根梁上有隔墙,墙厚200mm,层高3000mm,梁高500mm,如果隔墙自重为11KN/m3,那么恒载为11*(3000-500)*200+墙上抹灰的自重什么的即可。 结构设计pkpm软件SATWE计算结果分析 SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:

PKPM计算结果分析及注意的问题讲义(终审稿)

P K P M计算结果分析及注意的问题讲义 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第一节结构整体性能控制 I、轴压比 一、规范要求 轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。它是影响墙柱抗 震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范 采取的措施之一就是限制轴压比。规范对墙肢和柱均有相应限值要求, 见10 版高规和。 抗震设计时,钢筋混凝土柱轴压比不宜超过表的规定;对于Ⅳ类场 地上较高的高层建筑,其轴压比限值应适当减小。 二、电算结果的判别与调整要点: 混凝土构件配筋、钢构件验算输出文件(WPJ*.OUT) Uc --- 轴压比(N/Afc) 1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的 限制也越严格。对于框支柱、一字形剪力墙等情况而言,则要求更严 格。抗震等级低或非抗震时可适当放松,但任何情况下不得小于。

2.限制墙柱的轴压比,通常取底截面(最大轴力处)进行验算,若截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。SATWE验算结果,当计算结果与规范不符时,轴压比数值会自动以红色字符显示。 3.需要说明的是,对于墙肢轴压比的计算时,规范取用重力荷载代表值作用下产生的轴压力设计值(即恒载分项系数取,活载分项系数取)来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,避免受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。 4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规范针对情况的不同,对柱的轴压比限值作了适当的调整(抗规条注)。 5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。当为一级抗震(9度)时的墙肢轴压比大于,一级(8度)大于,二级大于时,应设置约束边缘构件,否则可设置构造边缘构件,程序对底部加强部位及其上一层所有墙肢端部均按约束边缘构件考虑。 三、轴压比不满足简便的调整方法: 1.程序调整:SATWE程序不能实现。 2.人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 II、位移和位移比 一、位移和位移比控制

PKPM必须检查的计算结果输出信息

PKPM必须检查的计算结果输出信息 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.6和6.4.5。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。 新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。 新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80% 新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择: (1)高规附录E.0.1建议的方法--剪切刚度 Ki=GiAi/Hi (2)高规附录E.0.2建议的方法--剪弯刚度Ki=Vi /△i (3)抗震规范3.4.2和3.4.3条文说明中建议的方法Ki=Vi/△ui 选用方法如下: (1)对于多层(砌体、砖混底框),宜采用刚度1; (2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2; (3)多数结构宜采用刚度3。(所有的结构均可用刚度3) 竖向刚度不规则结构的程序处理: 抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数;

PKPM计算结果及注意的问题-资料

第一节结构整体性能控制 I、轴压比 一、规范要求 轴压比:柱( 墙)轴压比N/(fcA) 指柱( 墙) 轴压力设计值与柱( 墙) 的全截面面积和混凝土轴心抗压强度设计值乘积之比。它是影响墙柱抗震性能的主要因素之一,为了使柱墙具有很好的延性和耗能能力,规范采取的措施之一就是限制轴压比。规范对墙肢和柱均有相应限值要求,见10 版高规6.4.2和7.2.13。 抗震设计时,钢筋混凝土柱轴压比不宜超过表6.3.6的规定;对于Ⅳ类场地上较高的高层建筑,其轴压比限值应适当减小。 二、电算结果的判别与调整要点: 混凝土构件配筋、钢构件验算输出文件(WPJ*.OUT) Uc --- 轴压比(N/Afc) 1.抗震等级越高的建筑结构,其延性要求也越高,因此对轴压比的限制也越严格。对于框支柱、一字形剪力墙等情况而言,则要求更严格。抗震等级低或非抗震时可适当放松,但任何情况下不得小于1.05。 2.限制墙柱的轴压比,通常取底截面(最大轴力处)进行验算,若截面尺寸或混凝土强度等级变化时,还验算该位置的轴压比。SATWE验算结果,当计算结果与规范不符时,轴压比数值会自动以红色字符显示。 3.需要说明的是,对于墙肢轴压比的计算时,规范取用重力荷载代表值作用下产生的轴压力设计值(即恒载分项系数取1.2,活载分项系数取1.4)来计算其名义轴压比,是为了保证地震作用下的墙肢具有足够的延性,避免受压区过大而出现小偏压的情况,而对于截面复杂的墙肢来说,计算受压区高度非常困难,故作以上简化计算。 4.试验证明,混凝土强度等级,箍筋配置的形式与数量,均与柱的轴压比有密切的关系,因此,规范针对情况的不同,对柱的轴压比限值作了适当的调整(抗规6.3.6条注)。 5.当墙肢的轴压比虽未超过上表中限值,但又数值较大时,可在墙肢边缘应力较大的部位设置边缘构件,以提高墙肢端部混凝土极限压应变,改善剪力墙的延性。当为一级抗震(9度)时的墙肢轴压比大于0.3,一级(8度)大于0.2,二级大于0.1时,应设置约束边缘构件,否则可设置构造边缘构件,程序对底部加强部位及其上一层所有墙肢端部均按约束边缘构件考虑。 三、轴压比不满足简便的调整方法: 1.程序调整:SATWE程序不能实现。 2.人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

pkpm文本输出符号说明

符号说明: * * * * B,H --- 矩形截面宽、高(mm) * * Dr --- 圆柱直径(mm) * * B,H,U,T,D,F --- 异型截面参数(mm) * * Hr --- 变截面异型截面参数之右端高度(mm) * * Ac --- 截面面积(mm) * * Lc,Lg,Lwc,Lwb,Lb --- 分别为柱、支撑、墙柱、墙梁和梁的长度(m) * * N-C,N-G,N-WC,N-WB,N-B --- 分别为柱、支撑、墙柱、墙梁和梁的单元号 * * Nfc,Nfg,Nfw,Nfwb,Nfb --- 分别为柱、支撑、墙柱、墙梁和梁的抗震等级 * * Rcc,Rcg,Rcw,Rcwb,Rcb --- 分别为柱、支撑、墙柱、墙梁和梁的材料强度 * * Rsc,Rsg,Rsb --- 分别为柱、支撑和梁的钢号或复合截面的钢号 * * Cover --- 保护层厚度(mm) * * (Icn) --- 控制内力的内力组合号 * * LoadCase --- 控制梁内力包络的组合号 * * * * 混凝土、型钢混凝土,矩形、圆形、异型柱、支撑配筋输出符号说明: * * Cx,Cy --- 分别为X、Y向计算长度系数 * * Cmax --- 圆柱或异型柱最大计算长度系数 * * Rs --- 全截面配筋率,上下端取大值(As/Ac) * * Rsv --- 体积配箍率(Vs/Vc) * * Uc --- 轴压比(N/Ac/fc) * * (Icn)Nu --- 控制轴压比的轴力(kN) * * As_corner --- 矩形截面单根角筋面积(mm) * * Asxt,Asxb --- 矩形截面B边上下端单边配筋面积(含两根角筋)(mm) * * Asyt,Asyb --- 矩形截面H边上下端单边配筋面积(含两根角筋)(mm) * * Asvx,Asvx0 --- 矩形截面H边加密区配箍面积和非加密区配箍面积(mm) * * Asvy,Asvy0 --- 矩形截面B边加密区配箍面积和非加密区配箍面积(mm) * * Ast,Asb --- 圆截面上下端全截面配筋面积(mm) * * Aszt,Aszb --- 异型截面柱角部上下端的固定配筋面积之和(mm) * * Asft,Asfb --- 异型截面柱上下端分布配筋面积之和(mm) * * Asv,Asv0 --- 圆截面或异型截面柱加密区和非加密区配箍面积(mm) * * (Icn)N,Mx,My --- 矩形柱、圆柱、异型柱纵向钢筋配筋控制内力(kN,kN-m)* * (Icn)N,Vx,Vy --- 矩形柱、圆柱、异型柱箍筋的配筋控制内力(kN) * * Asvjx,Asvjy --- 柱节点域B、H边的配箍面积(mm) * * (Icn)Nj,Vjx,y --- 节点域箍筋Asvjx、Asvjy的控制内力(kN) * * 注:柱箍筋是指间距Sc范围内的箍筋面积 * * * * 矩形钢管混凝土柱、钢柱、钢支撑验算输出符号说明: * * F1 --- 强度验算 * * F2,F3 --- 分别为X,Y向的稳定验算 * * Px,Py --- 分别为X,Y向梁、柱全塑性承载力之比 * * Rx,Ry --- 分别为X,Y向的长细比 * * (Icn)N,Mx,My --- 钢柱验算的验算控制内力(kN,kN-m) *

PKPM问题解析

1、在PKPM的JCCAD中设计剪力墙下的桩基和承台,如何建模? 答:剪力墙下承台,可按非承台桩布置,由围桩承台方式生成,也可以用布置筏板的方式生成,最后用桩筏有限元计算。 2、请问底层柱子配筋比上层小, 这种情况正常吗? 答:正常。如果底层柱为大偏心受压,起控制作用的内力为弯矩大、轴力小的组合内力,这样底层柱的配筋就可能比上层柱的配筋大。 3、SATWE内力与配筋计算,怎么运行到VSS模态分析时就运行不下去了? 答:如果选择模拟施工3或VSS求解,可能会出现计算到“VSS模态分析”停止,表明振 型数取的过多,超过了VSS求解器的限制。降低振型数试试看,再不行,选择“模拟施工1+LDLT分解”计算。 4、08版PKPM,独立基础怎么没有标注尺寸和独基编号了呢? 答:在基础施工图的下拉菜单,在“标注构件”与“标注字符”中分别标注独基尺寸与独基编号。 5、筏板后浇带如何设置? 答:在新版JCCAD,基础人机交互输入中筏板菜单下增加“布后浇带”功能,可直接输入后浇带宽度后进行布置。 6、08版PMCAD中楼板层间复制如何使用? 答:选择当前标准层,勾选需要复制的目标标准层号,即可把当前标准层的楼板开洞和板厚等信息复制到目标标准层里。 7、PKPM里面生成的吊筋有没有考虑人防荷载? 答:没有考虑。SATWE内力作整体分析,按照等效静力荷载考虑人防荷载,而次梁集中力属于局部内力计算,可以不考虑。目前程序只是考虑1.2恒+1.4活工况组合下的次梁集中力来计算次梁箍筋加密与吊筋。 8、PKPM楼梯建模,可以建剪刀梯吗? 答:楼梯布置菜单下暂时没有剪刀梯的楼梯类型,可按照斜杆来近似模拟剪刀梯板的作用。 9、请问WDISP.OUT文件中竖向恒载作用下的楼层最大位移为星号是什么原因? 答:模型输入有问题,请检查。局部构件没有竖向构件的支撑,形成长悬臂结构而导致恒载作用下竖向位移超大的现象。 10、用JCCAD筏板有限元计算的土最大反力出现超大的异常情况? 答:地质资料输入不完整,该部分筏板下无地质资料,增加孔点使输入的地质资料范围扩大至筏板所有区域。 11、混凝土梁做成型钢混凝土梁后,梁施工图中挠度反而变大? 答:型钢混凝土梁挠度的计算与内部型钢及配筋均有关。虽然变为型钢砼梁,但相应配筋也减小,导致挠度变化不大。可使用“考虑楼板作为翼缘的作用“来计算型钢混凝土梁的挠度,考虑会挠度有较明显减小。

SATWE软件计算结果分析一、位移比

SATWE 软件计算结果分析 一、位移比 规范条文: 新高规3.4.5规定:结构平面布置应减少扭转的影响。在考虑偶然偏心影响的规定水平地震力作用下,楼层竖向构件最大的水平位移和层间位移,A 级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B 级高度高层建筑、超过A 级高度的混合结构及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。 基本概念:位移比包含两项内容 (1)楼层竖向构件的最大水平位移与平均水平位移的比值; (2)楼层竖向构件的最大层间位移与平均层间位移的比值; 计算位移比仅考虑墙顶,柱顶等竖向构件上节点的最大位移,不考虑其他节点的位移。位移比可以用结构刚心与质心的相对位置(偏心率)表示,二者相距较远的结构在地震作用下扭转效应较大,位移比是控制结构整体抗扭特性和平面不规则性的重要指标。 钢筋混凝土高层建筑结构的最大适用高度应区分为A 级和B 级: A 级高度钢筋混凝土乙类和丙类高层建筑最大适用高度 B 级高度钢筋混凝土乙类和丙类高层建筑最大适用高度 操作要点:位移比在<结构位移>(WDISP.OUT )中输出,各楼层位移比为Ratio(X)和Radio(Y)。其中,Ratio(X)=Max(X)/Ave(X) 位移比不满足,简便的调整方法: 1)程序调整:satwe 程序不能实现 2)人工调整:只能人工调整改变结构平面布置,使结构规则,刚度均匀,减小结构刚心与 结构体系 非抗震设计 抗震设防烈度 6度 7度 8度 9度 0.20g 0.30g 框架 70 60 50 40 35 ------- 框架-剪力墙 150 130 120 100 80 50 剪力墙 全部落地剪力墙 150 140 120 100 80 60 部分框支剪力墙 130 120 100 80 50 不应采用 筒体 框架-核心筒 160 150 130 100 90 70 筒中筒 200 180 150 120 100 80 板柱-剪力墙 110 80 70 55 40 不应采用 结构体系 非抗震设计 抗震设防烈度 6度 7度 8度 0.20g 0.30g 框架-剪力墙 170 160 140 120 100 剪力墙 全部落地剪力墙 180 170 150 130 110 部分框支剪力墙 150 140 120 100 80 筒体 框架-核心筒 220 210 180 140 120 筒中筒 300 280 230 170 150

PKPM计算结果,PKPM计算书合理性判定

PKPM计算结果,PKPM计算书合理性判定 PKPM计算结果,PKPM计算书合理性决定到设计的成败,要做到PKPM计算准确无误需要有PKPM计算结果,PKPM计算书合理性判定!我们杭州绿树结构施工图设计室在PKPM软件计算,提取计算书时对PKPM计算结果,PKPM计算书合理性判定有如下总结: 1.检查原始数据是否有误,特别是是否遗漏荷载; 2.计算简图是否与实际相符,计算程序是否选则正确 3.7大指标判定: (1).柱及剪力墙轴压比是否满足要求,主要为控制结构延性;见抗规6.3.7和6.4.6 (2).剪重比:主要为控制各楼层最小地震剪力,确保结构安全性;见抗规5.2.5 剪重比也就是地震剪力系数,由《抗规》(GB50011-2001)对5.2.5条的条文说明知,“对于扭转效应时显或基本周期小于3.5S的结构,剪力系数取0.2amax”,由此可据《抗规》表 5.1.4-1推算出各地震列度下的剪力系数:9度为0.2*0.32=0.064,8度为0.2*0.16(0.24)=0.032(0.048),7度为0.2*0.08(0.12)=0.016(0.024),6度为0.2*0.04=0.008。在计算时应注意《抗规》5.2.5条,对于6度区可不要求该剪力系数,可详读该条的条文说明。即6度区按0.8%较好,这样对结构来说是更安全的(类似于最小配筋率的概念)。 剪重比主要是考虑基本周期大于3s的长周期结构。地震对于此类结构的破坏相比短周期的结构有更大影响,但规范用的振型分解反应普法无法作出估计;而且对于此类长周期结构计算所得的水平地震作用下的结构效应可能偏小,这可能就是规范设定最小剪重比的原因。另外不要忘了对竖向不规则结构的薄弱层的水平剪力应增大1.15倍,即楼层最小剪力系数不小于《高规》表3.3.13(即上表)中相应数值的1.15倍。在抗震规范的抗震截面验算的条文说明中,明确指出,剪重比是一个调整系数,即这不是一个指标,计算结果出来后,若剪重比大于规定的最小值,计算结果不作调整,若小于,将地震剪力调大,使剪重比达到规定的最小值.类似框剪结构的0.2Qo,在satwe的结果文件Wmass.out,给出这一调整的信息,多看看这

PKPM结果输出文件说明

结构设计信息输出文件(WMASS ·OUT) 运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。 WMASS ·OUT 文件包括六部分容,其输出格式如下: 第一部分为结构总信息 这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。 第二部分为各层质量质心信息,其格式如下: Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中: Floor —— 层号 Tower —— 塔号 ? ??--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位t) Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2 ) 接后输出 Total Mass of Dead Load Wd —— 恒载产生的质量 Total Mass of Live Load Wl —— 活荷产生的质量 Total Mass of the Structure Wt —— 结构的总质量 第三部分为各层构件数量、构件材料和层高等信息,输出格式如下: Floor Tower Beams Columns Walls Height Total-Height 其中: Floor —— 层号 Tower —— 塔号 Beams (Icb ) —— 该层该塔的梁数,括号的数字为梁砼标号 Columns (Icc )—— 该层该塔的柱数,括号的数字为柱砼标号 Walls (Icw ) —— 该层该塔墙元数,括号的数字为墙砼标号 Height —— 该层该塔的层高(单位m), Total-Height —— 到该层为止的累计高度。 第四部分为风荷载信息 Floor Tower Wind-X Shear-X Moment-X Wind-Y Shear-Y Moment-Y 其中: Floor —— 层号 Tower —— 塔号

PKPM 软件计算结果分析详细说明

PKPM软件计算结果分析详细说明 一、位移比、层间位移比控制 规范条文: 《高规》JGJ3-2010中第3.4.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、 B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层 平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层 平均值的1.4倍。 《高规》JGJ3-2010的第3.7.3条规定,高度不大于150m的高层建筑,其楼层层间最大 位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 《抗规》GB50011-2010中第3.4.4条第1款第一条:“扭转不规则时,应计入扭转影响, 且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层 间位移平均值的1.5倍,当最大层间位移远小于规范限值时,可适当放宽。” 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值 即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同 电算结果的判别与调整要点: 1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用;

PKPM结果输出文件说明

结构设计信息输出文件(WMASS ·OUT) 运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。 WMASS ·OUT 文件包括六部分内容,其输出格式如下: 第一部分为结构总信息 这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。 第二部分为各层质量质心信息,其格式如下: Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中: Floor —— 层号 Tower —— 塔号 ? ??--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外 加恒载(单位t) Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2) 接后输出 Total Mass of Dead Load Wd —— 恒载产生的质量 Total Mass of Live Load Wl —— 活荷产生的质量 Total Mass of the Structure Wt —— 结构的总质量 第三部分为各层构件数量、构件材料和层高等信息,输出格式如下: Floor Tower Beams Columns Walls Height Total-Height 其中: Floor —— 层号 Tower —— 塔号 Beams (Icb ) —— 该层该塔的梁数,括号内的数字为梁砼标号 Columns (Icc )—— 该层该塔的柱数,括号内的数字为柱砼标号 Walls (Icw ) —— 该层该塔墙元数,括号内的数字为墙砼标号 Height —— 该层该塔的层高(单位m), Total-Height —— 到该层为止的累计高度。 第四部分为风荷载信息 Floor Tower Wind-X Shear-X Moment-X Wind-Y Shear-Y Moment-Y

SATWE软件计算结果分析与调整过程

SATWE软件计算结果分析与调整 规范条文:高规的4.3.5 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。Ratio-(X)、Ratio-(Y)---- X、Y 向最大位移与平均位移的比值 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。Ratio-Dx,Ratio-Dy : 最 大层间位移与平均层间位移的比值 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值 即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同 电算结果的判别与调整要点: 1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用; 2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心; 3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响 4.最大层间位移、位移比是在刚性楼板假设下的控制参数。构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算 出位移,而后采用弹性楼板进行构件分析。 5.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

PKPM结果输出文件说明精选文档

P K P M结果输出文件说 明精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

结构设计信息输出文件(WMASS ·OUT) 运行第二项菜单“结构整体分析”项时,首先计算各层的楼层质量和质心座标等有关信息,并将其存放在WMASS ·OUT 文件中,在整个结构整体分析计算中,各步所需要的时间亦写在该文件的最后,以便设计人员核对分析。 WMASS ·OUT 文件包括六部分内容,其输出格式如下: 第一部分为结构总信息 这部分是用户在“参数定义”中设定的一些参数,把这些参数放在这个文件中输出,目的是为了便于用户存档。 第二部分为各层质量质心信息,其格式如下: Floor Tower X-Center Y-Center Dead-Mass Live-Mass Mass Moment 其中: Floor —— 层号 Tower —— 塔号 ? ??--center y center x —— 楼层质心座标(m) Dead-Mass —— 该楼层恒载产生的质量,其中包括结构自重和外加恒载(单位 t) Live-Mass —— 该楼层活荷载产生的质量(已乘过活荷质量折减系数,单位t) Mass-Moment —— 该楼层的质量矩(t*m 2) 接后输出

Total Mass of Dead Load Wd ——恒载产生的质量 Total Mass of Live Load Wl ——活荷产生的质量 Total Mass of the Structure Wt ——结构的总质量 第三部分为各层构件数量、构件材料和层高等信息,输出格式如下:Floor Tower Beams Columns Walls Height Total-Height 其中: Floor ——层号 Tower ——塔号 Beams(Icb)——该层该塔的梁数,括号内的数字为梁砼标号 Columns(Icc)——该层该塔的柱数,括号内的数字为柱砼标号 Walls(Icw)——该层该塔墙元数,括号内的数字为墙砼标号 Height ——该层该塔的层高(单位m), Total-Height ——到该层为止的累计高度。 第四部分为风荷载信息 Floor Tower Wind-X Shear-X Moment-X Wind-Y Shear-Y Moment-Y 其中: Floor ——层号 Tower ——塔号

(整理)pkpm一些参数设置及pkpm钢筋输出文件简图.

1、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。模拟施工加载2则可以更合理的给基础传递荷载。复杂结构设计人员可以指定施工次序。 模拟施工加载的选择 1.一次性加载模型,计算时只形成一次整体刚度矩阵,用于多层 2.模拟施工加载1.是整体刚度分层加载模型,本层加载对上部结构没有影响,总刚矩阵由构件单刚形成,程序默认算法。用于多高层 3..模拟施工加载2,逐层加载模型,n层会有n个总刚矩阵形成,计算量大。与手算接近。用于多高层,较少采用。 4.模拟施工加载3,新版有。分层刚度分层加载模型,更符合工程实际,高层首选。 5.对有吊车的结构必须用一次性加载,因为吊车对上部结构有影响,也就是对有上传荷载的结构要用一次性加载。 6.要知道由于模拟施工加载计入了施工引起的变形,在计算结果输出中各节点在竖荷载作用下的节点力矩是不平衡的。只有一次性加载下才是平衡的 2、修正后的基本风压一般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。 3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。结构阻尼比取0.01~0.02,程序缺省0.02。 4、侧刚计算方法:一种简化计算法,计算速度快,但应用范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有一定误差;总刚计算方法:精度高,适用范围广,计算量大。 对于没有定义弹性楼板且没有不与楼板相连构件的工程,两种方法结果一样。 (以下转贴) “刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的削弱、不连续,均可采用这个假定。 相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。 “弹性板6 ”的适用范围:所有的工程均可采用。 相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。板的面外刚度将承担一部分梁柱的面外弯矩,而使梁柱配筋减少。此时结构分析时间大大增加。“弹性板3 ”的适用范围:需要保证楼板平面内刚度非常大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。“ 如厚板转换层中的厚板,板厚达到1m以上。而面外刚度则需要按实际考虑。 相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差异产生的传力问题。“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。设计时可以进行梁的刚度放大和扭矩折减。 (弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁共同承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.此外计算工作量大.因此该模型仅适用于板柱结构;

《satwe剪力墙配筋结果查看总结》

《satwe剪力墙配筋结果查看总结》 结构知识点个人总结---剪力墙配筋satwe查看总结 剪力墙配筋satwe查看总结 在参考了网上各位前辈网友的方法后,总结了satwe中剪力墙配筋的查看方法。 satwe完成“结构内力、配筋计算”后,点击进入satwe“分析结果图形和文本显示”。 现以一幢10层框剪结构为例,说明satwe中剪力墙配筋的三种方法,其中,结构抗震等级二级。 第一种方法: 点击“图形文件输出”第2项“混凝土构件配筋及钢构件验算见图”,如图1所示。 图1 结构知识点个人总结---剪力墙配筋satwe查看总结 图2 点开后,以一段l形剪力墙为例,如图2所示,现称该墙为l1墙。此种方法satwe将每段剪力墙看做单独的直线墙柱,直线墙段的上方(左方)纯数字表示直线段单侧端部暗柱的计算配筋量,比如,12和11,分别表示左侧竖向直线墙段单侧的暗柱计算配筋量,单位cm2,而直线墙段下方的以h开头的数字则表示墙身水平分布筋间距内的水平分布筋配筋值。比如,此处墙身水平分布筋间距200mm,则此处的h1.3表示该墙身间距200mm内水平分布筋的面积为1.3cm2,即

为130mm2。 图3 图3是此段墙的轴压比,可知,其轴压比>0.3,按照规范要求配置约束边缘构件。 所以,其阴影部分配筋面积为:12x2+11=35cm2=3500mm2 此处12x2的意思是。竖向的墙段总长为900mm(从轴线交点算起),此处900mm全长设为约束边缘构件,而12cm2只是暗柱一段的配筋量,所以此竖向墙段的配筋总量为12x2,加上下面横向墙段的坐侧暗柱配筋量11cm2,共计35cm2。 结构知识点个人总结---剪力墙配筋satwe查看总结 本约束边缘构件水平墙段lc=0.15x4500=675mm,ls=300mm,竖向墙段lt=800(全长) 规范要求,二级抗震的约束边缘构件的阴影部分配筋率不小于1.0%,且不小于6a16,下面验算: 配筋率验算:配筋率验算:。=3500/(200x(1000+300))=1.35%>1.0%,且:6a16面积为1206mm2,所以,选配3500mm2合理。 注意。此种方法文本输出文件为wpjx.out,详见pkpmsatwev2.1版用户手册p119,p126。 第二种方法: 点击“图形文件输出”第3项“混凝土构件配筋及钢构件验算见图”,如图4所示。

PKPM文本文件输出和图形文件输出内容说明

文 本文件输出和图形文件输出内容说明 1、WMASS.OUT文件 SATWE后处理—文本文件输出,第1项:结构设计信息WMASS.OUT 在该文件中可以查看楼层刚度比(1.11.1)、刚重比(1.11.3)、楼层受剪承载力(1.11.5) /////////////////////////////////////////////////////////////////////////// | 公司名称: | | | | 建筑结构的总信息| | SATWE 中文版| | 2011年10月12日10时53分| | 文件名: WMASS.OUT | | | |工程名称: 设计人: | |工程代号: 校核人: 日期:2013/ 4/23 | /////////////////////////////////////////////////////////////////////////// 1.1 总信息 总信息 .............................................. 结构材料信息: 钢砼结构 混凝土容重(kN/m3): Gc = 25.00 钢材容重(kN/m3): Gs = 78.00 水平力的夹角(Rad): ARF = 0.00 地下室层数: MBASE= 0 竖向荷载计算信息: 按模拟施工3加荷计算 风荷载计算信息: 计算X,Y两个方向的风荷载 地震力计算信息: 计算X,Y两个方向的地震力 “规定水平力”计算方法: 楼层剪力差方法(规范方法) 特殊荷载计算信息: 不计算 结构类别: 框架结构 裙房层数: MANNEX= 0 转换层所在层号: MCHANGE= 0 嵌固端所在层号:MQIANGU= 1 墙元细分最大控制长度(m) DMAX= 1.00 墙元网格: 侧向出口结点 是否对全楼强制采用刚性楼板假定是 强制刚性楼板假定是否保留板面外刚度是

相关主题
文本预览
相关文档 最新文档