当前位置:文档之家› 聚丙烯与三元乙丙橡胶的共混

聚丙烯与三元乙丙橡胶的共混

聚丙烯与三元乙丙橡胶的共混
聚丙烯与三元乙丙橡胶的共混

(一)聚丙烯与三元乙丙橡胶的共混

为改善PP的冲击性能、低温脆性,可在其中掺入一定量的乙-丙共聚物,即制取PP/EPR共混物。但此种共混物的耐热性及耐老化性能有所下降,另一种常用作PP改性的是含有二烯烃成分的乙烯-二烯烃三元共聚物(EPDM),PP/EPDM的耐老化性能超过PP/EPR 共混物。等规聚丙烯和EPR以及EPDM一般是不相容的,因此它们的共混物具有多相的形态结构。在相同的共混工艺条件下,组成比及不同聚合物组分的熔融黏度差决定着此种共混物的形态。当PP与EPR以及EPDM具有相近的熔融黏度时,所制共混物的形态结构较均匀;当各组分熔融黏度不同,若EPR黏度低于PP,则EPR可以被很好地分散。相反,若EPR黏度高于PP,则EPR的相畴粗大,且基本呈球形。在PP/EPR共混比例为60/40~40/60范围出现相转变,即在此范围内,两组分均为连续相。

(二)三元乙丙橡胶增韧聚丙烯的机理

EPDM是较早用于增韧PP的橡胶,对提高PP的韧性具有较好的效果。J3080P(三元乙丙橡胶,中国石油集团吉化公司产品)可以明显提高PP1300(北京燕山石化总公司)和PP1847(北京燕山石化总公司)的冲击强度,J3080P对PP1300的增韧效果要优于PP1847。对于PP1300/EPDM体系,材料的常温冲击强度和低温冲击强度都随着EPDM用量增加而增加,常温下发生脆韧转变所需的EPDM用量比低温下发生脆韧转变所需用量低,前者所需EPDM用量为10~20质量份,后者为20~30质量份。对于PP1847/EPDM体系,随着EPDM

用量增加,材料的低温冲击强度增加,而常温冲击强度先增加,当EPDM用量为40质量份时,反而略有下降,发生脆韧转变所需的EPDM用了都为20~30质量份。令人惊奇的是,当EPDM用了为40质量份时,两种共混体系的低温冲击强度高于常温冲击强度。根据银纹在其周围支化进而吸收大量的冲击能量;同时由于大量银纹之间应力的相互干扰,降低了银纹端的应力,阻碍了银纹的进一步发展,使材料的韧性大大提高。对于PP1847/EPDM体系,材料受冲击时引发银纹和剪切带的效果相对差些。加入20质量份和30质量份EPDM,材料的常温冲击断面都没有出现明显的细小沟槽或粗大的裙边带状沟槽;当EPDM用了为20质量份时,橡胶的分数尺寸约为1μm,并有极少数的橡胶粒子从冲击断面脱落。

茂金属催化聚合所得的三元乙丙橡胶(mEPDM)和传统EPDM 对PP具有不同的增韧效果。PP/mEPDM的相容性优于PP/EPDM的,PP/mEPDM增韧剂临界质量分数小,扯断伸长率高,脆韧转变区间远小于PP/EPDM共混物。

(三)三元乙丙橡胶与聚烯烃增韧聚丙烯的对比

PP/POE、PP/EPDM(弹性体质量分数为15%)共混物的转矩对时间的变化曲线及两种弹性体POE、EPDM的用量对体系MFR的影响。

共混物的转矩大小为PP/POE

子量分布和长链支化结构,使POE具有较强的剪切敏感性和优异的加工流变性能。随着弹性体含量的增加,MFR呈下降趋势,表明随着弹性体含量的增加,体系加工性能变差。这是因为弹性体本身熔体流动速率较低,它的加入使共混体系的内摩擦阻力增大,导致集合物分子链之间的相对运动困难,从而降低了体系的流动性。按照流变学的原理解释,共混时弹性体以微小的液滴分散在PP熔体中,在不考虑两相之间化学联结的最简单情况下,PP连续相剪切场中小液滴的存在扰乱了流线,因而使体系耗散额外的能量,这种附加的能量耗散表现为黏度的增加及MFR值的下降。当弹性体用量相同时,POE体系的MFR高于EPDM体系,进一步说明了用POE改性PP更具有加工优势。

随弹性体含量的增加,冲击强度呈上升趋势。弹性体对PP的增韧存在一个临界含量,只有超过这个临界含量,弹性体才表现出明显的增韧效果,对于PP,POE的脆韧转化点在10%,而EPDM在15%,换言之要达到相同的增韧效果,所需POE的用量要小于EPDM。当弹性体质量分数为15%时,POE体系的冲击强度明显高于EPDM体系。

两体系的屈服强度和弯曲强度均随弹性体用量的增加而降低,而EPDM体系的降低幅度略微大于POE体系,在弹性体的质量分数为20%时。EPDM以比较规则的球状粒子分布于PP基体中,形成了典型的“海-岛”结构,并且空洞于连续相PP界面较为清晰,说明EPDM 粒子与连续相PP的界面黏结力较小,其断面相对于POE体系来说较

光滑平整,断裂特征显示出较多的脆性。而POE是以片状或条状等很不规整的形状分布于PP基体中的,共混物两相之间形成了互锁的网络结构,在弹性体相间有PP微纤相联,断面粗糙,呈现典型的韧性断裂。因此POE用作PP的增韧剂,具有明显的优势。

(四)动态硫化法制备聚丙烯/三元乙丙橡胶热塑性弹性体EPDM是传统的橡胶,而PP是传统的塑料,这两者通过共混和动态硫化,则可制备出性能优异的热塑性弹性体,这是橡塑并用的典型例子。EPDM/PP是最早应用于实际并走向市场的一类热塑性弹性体(TPE、TPV),它既具有传统橡胶的性质,又能用热塑性塑料加工设备和方法进行加工。动态硫化是制备新型热塑料弹性体的一种新方法,这种方法制得的热塑性弹性体具有良好的性能,甚至在某些性能上优于嵌段共聚热塑料弹性体。用这种方法制备热塑料弹性体并不需要合成新聚合物,而只需将现有聚合物进行共混,因此节约了开发新聚合物品种时的巨额资金投入。制备动态硫化TPV的关键技术在于共混体系相畴大小、形态结构和橡胶相粒径的控制方法和手段。EPDM/PP中EPDM的交联程度是影响相形态的一个重要因素。只有当共混体系中EPDM有适宜的交联程度,EPDM易被剪切成微米级颗粒时才能制得性能好、具有传统橡胶特征的EPDM/PPTPV(EP TPV)。EP TPV具有优异的综合性能,如加工成型方便、边角废料可回收利用、设备投资少、耐热性好、耐化学腐蚀性好、耐溶剂性及电绝缘性良好等,被广泛用于汽车配件、电线电缆、土木建筑、家用电器等行业,逐渐取代传统橡胶。

制备动态硫化法PP/EPDM TPV的影响因素可归纳如下几点。

(1)树脂组分特征的影响在橡胶表面能相近的条件下,选择MFR小(即分子量大)且结晶度高的PP树脂作为基体制备的TPV 性能最好,且随着PP的MFR增大,TPV的奶溶胀性、耐压缩性下降。

(2)橡胶相组分特征的影响橡胶相EPDM的交联速率增加,则交联效应增大,橡胶相平均粒径减小,交联密度增大,TPV的耐压缩性、耐溶胀性提高,且体系微观相态较均匀,具有较好的加工形态稳定性。但若EPDM的交流速率过高,橡胶相在反应挤出后期易发生硫化返原,使交联密度减小,导致制品的力学性能不佳。所以EPDM 的交流速率应适宜。橡胶相粒径小,交联密度高,TPV拉伸强度大,扯断永久变形低。EP TPV的橡胶相平均粒径在0.05μm一下,由于橡胶相粒子已足够小,此时橡胶相粒径对PP基体结晶度的影响起了主要作用。橡胶相粒径越小,橡塑界面面积越大,使得PP基体的结晶度越低,故TPV的拉伸强度和断裂能减小,扯断伸长率和扯断永久变形减小。所以,EPDM应以合适的粒径分布在PP基体中才能制得性能良好的TPV。

(3)橡塑比的影响随橡塑比减小(即PP含量增加),EPDM 交联度下降。这是因为PP对硫黄及硫化剂有稀释作用,同时在高温过程中硫黄挥发损失。因此,要使EPDM/PP中EPDM有适宜交联程度,应使硫黄及助剂的用量稍有增加以弥补上述两种效应。随着EPDM含量增加,共混物的硬度、拉伸强度、弯曲强度、撕裂强度、

300%定伸应力、永久变形、耐溶胀性、加工流动性减小,弹性、耐压缩性、黏度、冲击强度增大,而扯断伸长率随EPDM橡胶含量的增加而降低。当共混物中EPDM含量超过一定值时,其强大又逐渐下降。EPDM含量为30%~40%的共混物冲击强度最佳。硫化前,当橡塑比为50/50和60/40时,EPDM和PP形成两个连续相,当橡塑比大于60/40时,发生相反转,共混物中EPDM橡胶由分散相变为连续相。已硫化的EPDM颗粒作为分散相分散于PP连续相中,形成“海-岛”结构,且这种相态一般不随橡塑比变化而改变。相态结构越均匀,EPDM相粒子粒径越小,粒子交联程度越高,则挤出物具有越好的加工流动性和加工形态稳定性。橡塑比越高,单位体积内EPDM 粒子数目越多,不同EPDM粒子间的联系越紧密。当橡塑比高到一定程度时,不同EPDM粒子间易发生聚结,体系中可能形成胶粒、小胶粒聚集网络及大胶粒聚集网络等不同结构层次的结构单元,因此橡塑比稍大一些好。

(4)

三元乙丙橡胶的特性

三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1 低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0.8 7。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。 2 耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在1 20 ℃下可长期使用,在1 50~200 。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30%,可达1 50 h 以上不龟裂。 3 耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一~列举。 4 耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃过热蒸汽中,近1 00 h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5 耐过热水性能:三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、TMTD为硫化系统的乙丙橡胶,在1 2 5 ℃过热水中浸泡1 5个月后,力学性能变化甚小,体积膨胀率仅0.3%。

三元乙丙橡胶的改性与应用现状 2006121816172541

三元乙丙橡胶的改性与应用现状 王 明 李忠明 (四川大学高分子材料科学与工程学院,成都,610065) 摘 要 介绍了三元乙丙橡胶相容性的改善、拉伸强度的提高及其硫化的研究、三元乙丙橡胶在汽车工业、电子电气、建筑及其它领域的应用、三元乙丙橡胶的回收利用现状。 关键词:三元乙丙橡胶改性硫化汽车建筑电子电气阻燃 一、概述 三元乙丙橡胶(EPDM)是乙烯、丙烯及少量非共轭双烯采用溶液法或悬浮法共聚而制得的。催化剂主要采用Zieglar2Natta催化剂,不过催化效率更高的茂金属催化剂将很有可能取代Zieglar2Natta催化剂[1]。EPDM 的分子链结构特点是分子链基本不含不饱和键,取代基空间位阻小,分子链柔性好,是一种饱和非结晶性橡胶。这样的分子结构决定了EPDM具有良好的综合性能:高动态力学性能、耐候性、抗腐蚀性及耐臭氧性等。但EPDM也存在不足,那就是不耐油、与其它材料粘合性差、硫化速度慢等。 二、EPDM的改性 11EPDM的自粘性和互粘性的提高 近年来用EPDM增韧塑料的研究是一个热门课题,且取得了大量的成果,产生了广泛的经济效益。但EPDM通常与其它聚合物相容性差,如何解决这个课题是EPDM共混研究的问题关键。解决这个问题一般有以下三种途径: (1)共混改性 通过EPDM和一种易与其它材料粘合的物质共混来提高EPDM材料的自粘性和互粘性。如在EPDM中加入一定量的氯丁橡胶(CR)进行共混,这样得到的混合胶料的自粘性和互粘性有明显提高[2]。 (2)增容 采用第三组分增容,如对NBR2EPDM 共混体系的研究表明,第三组分EVA能很好地改善此并用胶的相容性、加工性和力学性能[3]。又如在PA2EPDM体系中常用加入反应型高聚物增容剂(M EPDM、CPE等)的方法来达到增容目的[4—6]。 (3)接枝 通过在EPDM的分子链上接枝一种易与其它材料粘合的支链来改善EPDM的自粘性和互粘性。如用马来酸酐(MAH)接枝EPDM可以提高EPDM与PA之间的相容性[7]。不过MAH在高温下容易挥发,对人体刺激性大,并对设备具有腐蚀性。若用甲基丙烯缩水甘油酯(GMA)接枝EPDM,就可很好地解决以上问题。研究发现PA在

三元乙丙橡胶项目立项报告

三元乙丙橡胶项目立项报告 规划设计/投资分析/实施方案

摘要说明— 三元乙丙橡胶是乙烯、丙烯和少量的非共轭二烯烃的共聚物,是乙丙 橡胶的一种,以EPDM(EthylenePropyleneDieneMonomer)表示,因其主链是由化学稳定的饱和烃组成,只在侧链中含有不饱和双键,故其耐臭氧、 耐热、耐候等耐老化性能优异,可广泛用于汽车部件、建筑用防水材料、 电线电缆护套、耐热胶管、胶带、汽车密封件等领域。 该三元乙丙橡胶项目计划总投资16049.08万元,其中:固定资产投资12677.94万元,占项目总投资的78.99%;流动资金3371.14万元,占项目 总投资的21.01%。 达产年营业收入25735.00万元,总成本费用19402.33万元,税金及 附加311.27万元,利润总额6332.67万元,利税总额7517.41万元,税后 净利润4749.50万元,达产年纳税总额2767.91万元;达产年投资利润率39.46%,投资利税率46.84%,投资回报率29.59%,全部投资回收期4.88年,提供就业职位484个。 报告内容:项目总论、项目背景研究分析、项目市场空间分析、建设 规模、项目选址、土建工程研究、工艺原则、环境保护可行性、安全管理、风险评估、项目节能、实施进度、投资情况说明、项目经营效益、项目评 价等。

规划设计/投资分析/产业运营

三元乙丙橡胶项目立项报告目录 第一章项目总论 第二章项目背景研究分析 第三章建设规模 第四章项目选址 第五章土建工程研究 第六章工艺原则 第七章环境保护可行性 第八章安全管理 第九章风险评估 第十章项目节能 第十一章实施进度 第十二章投资情况说明 第十三章项目经营效益 第十四章招标方案 第十五章项目评价

三元乙丙橡胶

三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 三元乙丙橡胶分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。 在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 EPDM第三单体的选择 第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求: 最多两键:一个可聚合,一个可硫化 反应类似于两种基本的单体 主键随机聚合产生均匀分布 足够的挥发性,便于从聚合物中除去 最终聚合物硫化速度合适

二烯烃类型和含量对聚合物特性的影响 三元乙丙生产中主要是用ENB和DCPD。 三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增: EPM

天然橡胶和三元乙丙橡胶的区别

天然橡胶和三元乙丙橡胶的区别 天然橡胶(NR) 生胶的玻璃化温度为-72℃,胶流温度130℃,开始分解温度200℃,激烈分解温度270℃。当天然橡胶硫化后,其Tg上升,也再不会发生粘流。 天然橡胶的弹性: 其生胶及交联密度不太高的硫化胶的弹性是高的。例如在0-100℃范围内,回弹性在50-85℃之间,其弹性模量仅为钢的1/3000,伸长率可达1000%,拉伸到350%,后,缩回永久变形仅为15%,天然橡胶的弹性较高,在通用橡胶中仅次于顺丁橡胶。 天然橡胶的强度: 在弹性材料中,天然橡胶的生胶、混炼胶、硫化胶的强度都比较高。未硫化橡胶的拉伸强度称为格林强度,天然橡胶的格林强度可达 1.4~2.5Mpa,适当的格林强度对于橡胶加工成型是必要的。天然橡胶撕裂强度也较高,可达98kN/m,其耐磨性也较好。天然橡胶机械强度高的原因在于它是自补强橡胶,当拉伸时会使大分子链沿应力方向取向形成结晶。 天然橡胶的电性能:

天然橡胶是非极性物质,是一种较好的绝缘材料。当天然橡胶硫化后,因引入极性因素,如硫黄、促进剂等,从而使绝缘性能下降。 天然橡胶的耐介质性能: 天然橡胶是一种非极性物质,它溶于非极性溶剂和非极性油中。天然橡胶不耐环己烷、汽油、苯等介质,未硫化胶能在上述介质中溶解,硫化橡胶则溶胀。天然橡胶不溶于极性的丙酮、乙醇中,更不溶于水中,耐10%的氢氟酸、20%的盐酸、30%的硫酸、50%的氢氧化钠等。 天然橡胶主要用途: 天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的轮胎;工业上用的运输带、传动带、各种密封圈。 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。

三元乙丙橡胶在电线电缆领域应用

三元乙丙橡胶在电线电缆领域应用 众所周知,EPDM t胶是一种非极性聚合物,其主要由乙烯、丙烯,及不饱和的第三单体三元共聚而成;具有优良的耐热性和耐气候性,及化学结构稳定性;特别是在电气性能方面更具特色;具有优异的高绝缘电阻率特点,更适用于电线电缆的绝缘材料部分;就目前市场而言,三元乙丙橡胶的牌号种类繁多,各有所长;但比较能适合于电线电缆行业加工和挤出,以及具有比较稳定电气性能的EPDM橡胶牌号,则相对而言就没那么多了,本文以德国朗盛公司TELTAN EPDM 2470三元乙丙橡胶为例,向大家介绍下其在线缆领域的应用。 EPDM在绝缘性能应用方面试验介绍 表1 EPDM K2470L & KEP210橡胶参数

本次试验配方:EPBM K2470L,100,硬脂酸1,氧化锌(间接法)5.0,防老剂RD 1.0,防老剂MB 1.5 , 56C白石蜡5.0,高温煅烧陶土和超细滑石粉140,偶联剂A-172 0.5,过氧化物硫化剂DCP 2.8; 文中所举德国朗盛公司的EPDMK2470L产品是一种高乙烯含量、中等的第三单体含量、及低门尼粘度的橡胶(见表 1),从橡胶本身的结构方面而言,由于K2470L本身具有比较高的乙烯含量,从而赋予材料有比较好的力学性能;相对于比较低的门尼粘度聚合物,其加工时所需的能耗也比较小,既节约了能耗,同时又能帮助填料在其橡胶内部均匀地分散,无需任何其他软化剂的条件下,即可得到比较柔软的、性能比较稳定的混炼料; 表2混炼料的硫化特性 从表2可以看出,由EPDM K2470和KEP210橡胶分别所制得的混炼料,其门尼粘度非常接近,从混炼加工方面而 言也是比较类似;则说明混炼加工速度比较快;从混炼料的门尼粘度值反映,其比较适宜于挤出加工类的产品制作, 相对而言,这得归功于原有橡胶本身的门尼粘度值比较低的缘故;同时,又可说明混炼料的流动性能比较好,在高

EPDM--三元乙丙橡胶

EPDM中文名:三元乙丙橡胶 英文全称:Ethylene-Propylene-Diene Monomer(简称:EPDM) 三元乙丙橡胶介绍 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。 在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 EPDM第三单体的选择 第三二烯烃类型的单体是通过乙烯和丙烯的共聚,在聚合物中产生不饱和,以便实现硫化。第三单体的选择必须满足以下要求:最多两键:一个可聚合,一个可硫化

反应类似于两种基本的单体 主键随机聚合产生均匀分布 足够的挥发性,便于从聚合物中除去 最终聚合物硫化速度合适 目前工业化生产三元乙丙橡胶用第三单体只有如下三种: 乙叉降冰片烯(ENB) 双环戊二烯(DCPD) 1,4-己二烯(HD) CH3-CH=CH-CH2-CH=CH2 (此种单体目前只有美国Du Pont公司一家使用) 二烯烃类型和含量对聚合物特性的影响 三元乙丙生产中主要是用ENB和DCPD。 三元乙丙中最广泛使用的是ENB,它比DCPD产品硫化要快得多。在相同的聚合条件下,第三单体的本质影响着长链支化,按以下顺序递增:EPM

三元乙丙橡胶性能简介

三元乙丙橡胶性能简介 三元乙丙橡胶(EPDM)耐臭氧性、耐热性、耐候性、低温柔软性较好,可用于耐臭氧、耐候、耐紫外线场合,但基于自身的结构特点,其阻燃性、耐油性和粘结性较差。这种橡胶均具有主链饱和结构,可共混,性能上可取长补短。三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1 低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0. 8 7。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。 2 耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在1 20 ℃下可长期使用,在1 50~200 。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30% ,可达1 50 h以上不龟裂。 3 耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一~列举。 4 耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃过热蒸汽中,近1 00 h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5 耐过热水性能:三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、TMTD为硫化系统的乙丙橡胶,在1 2 5 ℃过热水中浸泡1 5个月后,力学性能变化甚小,体积膨胀率仅0.3% 。 6 电性能:三元乙丙橡胶具有优异的电绝缘性能和耐电晕性,电性能优于或接近丁苯橡胶、氯磺化聚乙烯、聚乙烯和交联聚乙烯。 7 弹性:三元乙丙橡胶分子结构中无极性取代基,分子内聚能低,分子链可在较宽范围内保持柔顺性,仅次于天然橡胶和顺丁橡胶,并在低温下仍能保持。

三元乙丙胶

三元乙丙橡胶是由乙烯、丙烯经溶液共聚合而成的橡胶,再引入第三单体(ENB)。三元乙丙橡胶基本上是一种饱和的高聚物,耐老化性能非常好、耐天候性好、电绝缘性能优良、耐化学腐蚀性好、冲击弹性较好。乙丙橡胶的最主要缺点是硫化速度慢;与其它不饱和橡胶并用难,自粘和互粘性都很差,故加工性能不好。 根据乙丙橡胶的性能特点,主要应用于要求耐老化、耐水、耐腐蚀、电气绝缘几个领域,如用于轮胎的浅色胎侧、耐热运输带、电缆、电线、防腐衬里、密封垫圈、建筑防水片材、门窗密封条、家用电器配件、塑料改性等。 乙丙橡胶的性质与用途 乙丙橡胶以乙烯和丙烯为主要原材料合成,耐老化、电绝缘性能和耐臭氧发能突出。乙丙橡胶可大量充油和填充碳黑,制品价格较低,乙丙橡胶化学稳定性好,耐磨性、弹性、耐油性和丁苯橡胶接近。乙丙橡胶的用途十分广泛,可以作为轮胎侧、胶条和内胎以及汽车的零部件,还可以作电线、电缆包皮及高压、超高压绝缘材料。还可制造及鞋、卫生用品等浅色制品。 乙丙橡胶的性能与改进 一、1、低密度高填充性 乙丙橡胶的密度是较低的一种橡胶,其密度为0.87。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了乙丙橡胶生胶价格高的缺点,并且对高门尼值的乙丙橡胶来说,高填充后物理机械能降低幅度不大。 2、耐老化性 乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。乙丙橡胶制品在120℃下可长期使用,在150- 200℃下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。以过氧化物交联的三元乙丙橡胶可在苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50pphm、拉伸30%的条件下,可达150h以上不龟裂。 3、耐腐蚀性 由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等)及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TO 7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料,并规定了1-4级表示其作用程度, 腐蚀性化学品对橡胶性能的影响: 等级体积溶胀率/% 硬度降低值对性能影响 1 <10 <10 轻微或无 2 10-20 <20 较小 3 30-60 <30 中等 4 >60 >30 严重 4、耐水蒸汽性能 乙丙橡胶有优异的耐水蒸汽性能并估优于其耐热性。在230℃过热蒸汽中,近100h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5、耐过热水性能 乙丙橡胶耐过热水性能亦较好,但与所有硫化系统密切相关。以二硫化二吗啡啉、TMTD 为硫化系统的乙丙橡胶,在125℃过热水中浸泡15个月后,力学性能变化甚小,体积膨胀率仅0.3%。

三元乙丙橡胶的应用

因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。 1.汽车工业 乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。在汽车密封条行业中,主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。由于热塑性三元乙丙橡胶EPDM/PP 强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。目前,我国乙丙橡胶在汽车工业中的用量占全国乙丙橡胶总用量的42%-44%,其中还不包括船舶、列车和集装箱密封条的乙丙橡胶用量。因乙丙橡胶的粘接性能不好,在汽车轮胎行业中在大量用料的轮胎主体和胎面部位上无法推广使用乙丙橡胶,只在内胎、白胎侧、胎条等部位少量使用乙丙橡胶。 2.建筑行业 由于乙丙橡胶具有优良的耐水性、耐热耐寒性和耐候性,又有施工简便等特点,因此乙丙橡胶在建筑行业中主要用于塑胶运动场、防水卷材、房屋门窗密封条、玻璃幕墙密封、卫生设备和管道密封件等。乙丙橡胶在建筑行业中用量最大的还数塑胶运动场和防水卷材,就国内用量而言已占乙丙橡胶总用量的26%-28%。用EPDM生产的防水卷材已逐渐代替其他材料(如CMS)制作的防水卷材,尤其是用于地下建筑的防水卷材。 3.电气和电子行业 在电气和电子行业中主要利用乙丙橡胶的优良电绝缘性、耐候性和耐腐蚀性,在许多电气部件中采用了此类橡胶。例如用乙丙橡胶生产电缆,尤其是海底电缆用EPDM或EPDM/PP 代替了PVC/NBR制作电缆的绝缘层,电缆的绝缘性能和使用寿命有了大幅度提高。在变压器绝缘垫、电子绝缘护套方面也大量采用了乙丙橡胶制作。 4.与其他橡胶并用 乙丙橡胶与其他橡胶并用也是乙丙橡胶应用的一个很大的领域。乙丙橡胶与其他橡胶并用在性能上可互补并改善工艺和降低成本。但由于各种配合剂对不同高聚物的亲合能力各异,共硫化性又取决于各高聚物交联效率,不同高聚物并用共混不可能达到分子级相容,而是分相存在的不均体系。配合剂的这种相间不均分配,对乙丙并用橡胶的性能有重大影响。在此简要介绍如下: (1)三元乙丙橡胶与丁基橡胶有较好的相容性和共硫化性,此两胶并用物理机械性能呈加和性,丁基橡胶可改善乙丙橡胶气密性,提高撕裂性和隔音性;而乙丙橡胶改善了丁基橡胶的耐臭氧性和耐老化性,改善了丁基橡胶压出表面光度,提高了半成品停放时的抗变形性能。 (2)三元乙丙橡胶可以不同比例与氯丁橡胶并用,以改善乙丙橡胶的耐油性能。乙丙橡胶与氯丁橡胶并用后,两种橡胶性能互补。乙丙橡胶的耐油性、耐燃性和粘着性有所改进;氯丁橡胶也改善了耐臭氧、耐化学腐蚀、耐热、耐蒸汽、耐低温屈挠等性能,并提高了氯丁橡胶的加工油及炭黑的填充量,从而降低了成本。 (3)乙丙橡胶与硅橡胶并用后,耐热性、耐天候性、低温柔顺性和电性能进一步获得改

乙丙橡胶调研报告

三元乙丙橡胶调研报告 三元乙丙橡胶以乙烯、丙烯为主要原材料,是乙烯、丙烯和非共轭二烯烃的三元共聚物在常温下为白色或者微黄色固体,易于混合,相对密度为0.85-0.86。三元乙丙橡胶具有较好的耐老化性、耐化学品性、耐低温性及介电性能。主要用于房屋建筑、电线电缆、汽车工业等领域。房屋建筑方面,主要用于屋顶单层防水卷材等;电线电缆方面,主要用于民用和商用建筑的输入线、建筑用电线、矿用电缆、核电站用电线、汽车点火线、控制电缆等;汽车工业方面,主要用于汽车、卡车和公共汽车轮胎和非轮胎部件,包括汽车的水箱及加热软管、密封条、橡胶带、车身及底盘的部件、挡雨条、底板和环管等。 一、世界乙丙橡胶供需情况 世界乙丙橡胶的总生产能力已经过剩5%-10%,总需求比较平稳,市场增长平稳,预计未来几年世界乙丙橡胶的需求量将以年均约3%-4%的速度增长。

截止2012年底世界乙丙橡胶生产厂家

二、国内乙丙橡胶供需情况 随着我国经济开始回暖,汽车、建筑等支柱行业进入快速发展期,明显拉动了三元乙丙橡胶市场需求量上升。2012年中国三元乙丙橡胶产量达到1.91万吨,表观消费量达到22.75万吨,行业进口依存度依然很高。 随着我国经济总量的提升,作为支柱产业的汽车工业持续快速发展,未来一段时期仍将是三元乙丙橡胶在上述行业的快速发展期,加上城市基本建设、高速铁路、轨道交通建设等的不断发展,必将拉动中国三元乙丙橡胶市场进入一个需求高峰。预测,2015年国内对三元乙丙橡胶的总需求量将达到32万吨左右。 2012年,中国乙丙橡胶产业继续保持其热点投资的态势。据不完全统计,国内、国外生产商计划近年在中国国内拟建乙丙橡胶项目的厂家总计10余家,新增总能力接近85万吨/年。 据不完全统计,目前已建成项目见下表 据不完全统计,拟建项目见下表

三元乙丙橡胶

三元乙丙橡胶(EPDM)基本特性: 1 三元乙丙橡胶的相对密度小(0.85-0.86),具有耐臭氧性、耐候性、耐热性和耐化学稳定性等特性。 2可采用硫磺促进剂硫化体系硫化,也可以用有机过氧化物交联,而制得高强度的制品。 3耐低温性好,电绝缘性能也好。 4配合时有容纳高量填料和油类的承受能力。 5可与不饱和橡胶、低不饱和橡胶和塑料相容并用。 6由于硫化胶表面良好具有高的物性,适于制作发泡制品。 7未硫化橡胶粘合性差。应用范围:主要用于汽车工业、电线电缆工业、建筑和防水材料、工业橡胶制品、民用制品,与其它橡胶和塑料树脂等并用或共混,以及制作添加剂等等。 氯丁橡胶(CR)基本特性: 1 原料橡胶贮存性差。贮存过程要发生增硬现象。耐寒性不好。 2 因受结晶引响,生胶强度较高,与天然橡胶相似。 3 有优良的耐寒性、耐臭氧性、耐热老化性和耐油耐溶剂性。 4 有好的耐化学性和优异的耐燃性。 5 有良好的粘合性。 6 相对密度大,一般在1.23,在相同体积下,用量比一般通用橡胶大。 7 与其它特种橡胶比较,个别性能差些,但总的性能平衡好。 8 可溶于苯、四氯化碳和氯苯等。 应用范围:主要用于耐油制品,各种胶管、胶带尤其是耐热输送带,耐油、耐酸碱胶管、密封制品,汽车飞机的部件,粘合剂和涂料,印刷胶辊,胶板,桥梁支座等,也大量用于电缆护套、电线包皮等。 小结: EPDM三元乙丙橡胶: 具有很好的耐候性、耐臭氧性、耐水性以及耐化学性。可用于醇类及酮类,还可以用于高温水蒸气环境之中的密封。适用于卫浴设备、汽车散热器以及汽车刹车

系统中。不建议用于食用用途或是暴露于矿物油之中。一般的使用温度范围为:-55~150℃。 CR 氯丁橡胶: 耐阳光、耐天候性能特别好。不怕二氯二氟甲烷和氨等制冷剂,耐稀酸、耐硅脂系润滑油,但是在苯胺点低的矿物油中膨胀量大。在低温时易结晶、硬化。适用于各种接触大气、阳光、臭氧的环境以及各种耐燃、耐化学腐蚀的密封环节。不建议用于强酸、硝基烃、酯类、氯仿以及酮类的化学物之中。一般的使用温度范围为:-55~120℃。

三元乙丙橡胶(EPDM)特点是什么32

三元乙丙橡胶(EPDM)特点是什么 三元乙丙橡胶(EPDM)特点,性能参数与加工 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 (注:EPDM中文名:三元乙丙橡胶) 三元乙丙橡胶的性能与优点 三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1、低密度高填充性: 三元乙丙橡胶是一种密度较低的橡胶,其密度为0.87。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本, 弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。 2、耐老化性: 乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在120 ℃下可长期使用,在150~200。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30%,可达1 50 h以上不龟裂。 3、耐腐蚀性:

由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一一列举。 4、耐水蒸气: 乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃ 过热蒸汽中,近100h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5、耐过热水性能: 三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、TMTD为硫化系统的乙丙橡胶,在125 ℃过热水中浸泡1 5个月后,力学性能变化甚小,体积膨胀率仅0.3%。 6、电性能: 三元乙丙橡胶具有优异的电绝缘性能和耐电晕性,电性能优于或接近丁苯橡胶、氯磺化聚乙烯、聚乙烯和交联聚乙烯。 7、弹性: 三元乙丙橡胶分子结构中无极性取代基,分子内聚能低,分子链可在较宽范围内保持柔顺性,仅次于天然橡胶和顺丁橡胶,并在低温下仍能保持。 8、黏接性: 三元乙丙橡胶由于分子结构中缺少活性基团,内聚能低,加上胶料易于喷霜,自黏性和互黏性很差。 分子结构和性能 三元乙丙是乙烯,丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不

三元乙丙橡胶配方

起止日期:2009.1—2009. 配位嵌段共聚合制备乙丙橡胶的合成工艺 一、聚合方法概述 反应方程式: CH3 CH3 |︱ CH2= CH2 + CH= CH2 ( CH2--- CH2)m(—CH2)n 乙烯丙烯共聚物 CH3 | CH2= CH2 + CH= CH2 +二烯烃 CH3 ︱ (CH2--- CH2)m—(CH—CH2)n—(二烯烃)y EPDM三元共聚物 反应机理:以乙烯、丙烯为单体,用钒-铝配合物为引发剂,其聚合机理属于配位离子型聚合反应。聚合时,首先是单体上双键的∏电子在引发剂活性中心的空位上进行络合,由于R-V键变弱,以致断裂,单体分子插入R-V键,链的增长按这个方式不断重复进行。 主要用途:因乙丙橡胶分子主链为饱和结构而呈现出卓越的耐候性、耐臭氧、电绝缘性、低压缩永久变形、高强度和高伸长率等宝贵性能,其应用极为广泛,消耗量逐年增加。根据乙丙橡胶的不同系列和分子结构方面的特点,乙丙橡胶应用种类有通用型、混用型、快速硫化型、易加工型和二烯烃橡胶并用型等不同应用类型。从实际应用情况分析,乙丙橡胶在非轮胎方面得到了广泛的应用。 1.汽车工业乙丙橡胶在汽车制造行业中应用量最大,主要应用于汽车密封条、散热器软管、火花塞护套、空调软管、胶垫、胶管等。在汽车密封条行业中,

主要利用EPDM的弹性、耐臭氧、耐候性等特性,其ENB型的EPDM橡胶已成为汽车密封条的主体材料,国内生胶年消耗量已超过1万吨,但由于品种关系,其一半还依靠进口。由于热塑性三元乙丙橡胶EPDM/PP强度高、柔性好、涂装光泽度高、易回收利用的特点,在国内外汽车保险杠和汽车仪表板生产中已作为主导材料。预计到2010年仅汽车保险杠和仪表板两项产品,EPDM/PP的国内年用量可达4.5万吨。此类产品的回收利用主要采用的工艺方法是:先去掉产品表面的涂料-粉碎-清洗-再造粒-添加新料后生产新产品。这样在保险杠和仪表板生产中,就能节约大量原材料取得较好的经济效益。目前,我国乙丙橡胶在汽车工业中的用量占全国乙丙橡胶总用量的42%-44%,其中还不包括船舶、列车和集装箱密封条的乙丙橡胶用量。因乙丙橡胶的粘接性能不好,在汽车轮胎行业中在大量用料的轮胎主体和胎面部位上无法推广使用乙丙橡胶,只在内胎、白胎侧、胎条等部位少量使用乙丙橡胶。 2.建筑行业由于乙丙橡胶具有优良的耐水性、耐热耐寒性和耐候性,又有施工简便等特点,因此乙丙橡胶在建筑行业中主要用于塑胶运动场、防水卷材、房屋门窗密封条、玻璃幕墙密封、卫生设备和管道密封件等。乙丙橡胶在建筑行业中用量最大的还数塑胶运动场和防水卷材,就国内用量而言已占乙丙橡胶总用量的26%-28%。用EPDM生产的防水卷材已逐渐代替其他材料(如CMS)制作的防水卷材,尤其是用于地下建筑的防水卷材。 3.电气和电子行业在电气和电子行业中主要利用乙丙橡胶的优良电绝缘性、耐候性和耐腐蚀性,在许多电气部件中采用了此类橡胶。例如用乙丙橡胶生产电缆,尤其是海底电缆用EPDM或EPDM/PP代替了PVC/NBR制作电缆的绝缘层,电缆的绝缘性能和使用寿命有了大幅度提高。在变压器绝缘垫、电子绝缘护套方面也大量采用了乙丙橡胶制作。 4.乙丙橡胶与其他橡胶并用也是乙丙橡胶应用的一个很大的领域乙丙橡胶与其他橡胶并用在性能上可互补并改善工艺和降低成本。但由于各种配合剂对不同高聚物的亲合能力各异,共硫化性又取决于各高聚物交联效率,不同高聚物并用共混不可能达到分子级相容,而是分相存在的不均体系。配合剂的这种相间不均分配,对乙丙并用橡胶的性能有重大影响。在此简要介绍如下: (1)三元乙丙橡胶与丁基橡胶有较好的相容性和共硫化性,此两胶并用物理机械性能呈加和性,丁基橡胶可改善乙丙橡胶气密性,提高撕裂性和隔音性;而乙丙橡胶改善了丁基橡胶的耐臭氧性和耐老化性,改善了丁基橡胶压出表面光度,提高了半成品停放时的抗变形性能。 (2)三元乙丙橡胶可以不同比例与氯丁橡胶并用,以改善乙丙橡胶的耐油性能。乙丙橡胶与氯丁橡胶并用后,两种橡胶性能互补。乙丙橡胶的耐油性、耐燃性和粘着性有所改进;氯丁橡胶也改善了耐臭氧、耐化学腐蚀、耐热、耐蒸汽、耐低温屈挠等性能,并提高了氯丁橡胶的加工油及炭黑的填充量,从而降低了成本。

三元乙丙橡胶(EPDM)特点,性能参数与加工word版本

三元乙丙橡胶(E P D M)特点,性能参数与加工

三元乙丙橡胶(EPDM)特点,性能参数与加工 三元乙丙橡胶(EPDM)特点,性能参数与加工 三元乙丙橡胶是乙烯、丙烯以及非共轭二烯烃的三元共聚物,1963年开始商业化生产。每年全世界的消费量是80万吨。EPDM最主要的特性就是其优越的耐氧化、抗臭氧和抗侵蚀的能力。由于三元乙丙橡胶属于聚烯烃家族,它具有极好的硫化特性。在所有橡胶当中,EPDM具有最低的比重。它能吸收大量的填料和油而影响特性不大。因此可以制作成本低廉的橡胶化合物。 (注:EPDM中文名:三元乙丙橡胶) 三元乙丙橡胶的性能与优点 三元乙丙橡胶主链由化学性稳定的饱和烃组成,仅在侧链中含不饱和双键,故基本上属于种饱和型橡胶。由于分子结构内无极性取代基,分子间内聚能低,故分子链可在较宽的温度范围内保持柔顺性。乙丙橡胶的化学结构使其硫化制品具有独特的性能。 1、低密度高填充性:三元乙丙橡胶是一种密度较低的橡胶,其密度为0.87。加之可大量充油和加入填充剂,因而可降低橡胶制品的成本,弥补了三元乙丙橡胶生胶价格高的缺点,并且对高门尼值的三元乙丙橡胶来说,高填充后物理机械性能降低幅度不大。

2、耐老化性:乙丙橡胶有优异的耐天候、耐臭氧、耐热、耐酸碱、耐水蒸汽、颜色稳定性、电性能、充油性及常温流动性。三元乙丙橡胶制品在120 ℃下可长期使用,在150~200。C下可短暂或间歇使用。加入适宜防老剂可提高其使用温度。用过氧化物交联的三元乙丙橡胶可在更苛刻的条件下使用。三元乙丙橡胶在臭氧浓度50×10~,拉伸30%,可达1 50 h以上不龟裂。 3、耐腐蚀性:由于乙丙橡胶缺乏极性,不饱和度低,因而对各种极性化学品如醇、酸、碱、氧化剂、制冷剂、洗涤剂、动植物油、酮和脂等均有较好的抗耐性;但在脂属和芳属溶剂(如汽油、苯等及矿物油中稳定性较差。在浓酸长期作用下性能也要下降。在ISO/TR7620中汇集了近400种具有腐蚀性的气态和液态化学品对各种橡胶性能作用的资料。刘乙丙橡胶作用程度为1级的化学品有80多种,在此不一一列举。 4、耐水蒸气:乙丙橡胶有优异的耐水蒸气性能并优于其耐热性。在230℃过热蒸汽中,近100h后外观无变化。而氟橡胶、硅橡胶、氟硅橡胶、丁基橡胶、丁腈橡胶、天然橡胶在同样条件下,经历较短时间外观发生明显劣化现象。 5、耐过热水性能:三元乙丙橡胶耐过热水性能亦较好,但与所用硫化系统密切相关。以二硫代二吗啡啉、

EPDM现状

乙丙橡胶生产原料现状 我国乙丙橡胶2002年消费量为2.9万吨/年,预计到2006年乙丙橡胶的总消费量将达6.0万吨/年,需要有新的生产能力满足需求的迅速增长。国内吉化、燕化公司都在考虑新建三元乙丙橡胶(EPDM)装置,DSM早就想在中国新建乙丙橡胶装置,据媒体报道,拜耳公司正在考虑在上海漕泾投资2亿多美元建SBR装置和三元乙丙橡胶(EPDM)装置,日本三井化学公司正考虑在中国建设一座生产高性能乙丙弹性体(Eptalloy,乙丙合金)厂。如果乙丙橡胶新建装置落成,新建装置所在地的乙烯、丙烯、第三单体的发展状况将会影响乙丙橡胶新建装置的效益。 1.乙烯 目前,我国现有乙烯生产装置18套,生产能力在3O万吨/年以上的生产装置只有7套(燕山石化、上海石化2号乙烯、齐鲁石化、扬子石化、茂名石化、大庆石化、吉林石化大乙烯),其余的生产装置(天津石化、中原石化、广州石化、吉林石化小乙烯、兰州石化、抚顺石化、独山子石化、辽阳化纤、东方化工、盘锦乙烯、上海石化1号乙烯)生产能力大都在20万吨/年以下。规模化经济是当今乙烯工业的发展趋势。2001年世界乙烯装置平均规模已经达到42.7万吨/年,最大装置规模已经达到189万吨/年。我国乙烯装置平均规模为24.7万吨/年,远远低于世界平均规模。目前,我国乙烯工业与国外乙烯相比,差距主要还表现在技术装备水平、检维修周期、物耗能耗以及人员配备等几个方面,从而导致了我国乙烯工业现金操作费用高、经济效益低下的局面。 近年来,我国的乙烯产量继续保持稳步增长势头。2000年我国乙烯产量为469万吨,2001年我国乙烯产量达到479万吨,比上年增长1.O2鬈。2002年乙烯产量为540万吨,比2001年增长1.13鬈。预计2003年产量为590万吨。 未来我国乙烯需求仍将有较大的缺口,预计到2005年,我国乙烯的消费量将达到1500万吨/年,同期乙烯生产能力将翻一番,达到830万吨/年,仍有近一半的乙烯当量需求要靠进口产品满足。2010年乙烯消费量将达到1900万吨/年,乙烯当量石化产品仍然有短缺。为此,世界各大跨国公司看好我国乙烯市场将不断扩展的商机,纷纷参与中国乙烯工业的规模化经营。5家跨国公司-巴斯夫、BP、壳牌、埃克森美孚和陶氏化学公司在中国组建了6家大型乙烯合资企业,埃克森美孚组建了2家。 巴斯夫公司与扬子石化公司(巴斯夫/扬子石化/中国石化各持股50/12.5/37.5)参与扬巴一体化60万吨/年乙烯工程,定于2004~2005年投产。BP公司与上海石化(BP/中国石化/上海石化各持股50/30/20)参建赛科石化9O万吨/年乙烯工程,定于2005年投产。壳牌公司与中南海(壳牌/中南海/广东各持股50/45/5)参建南海8O万吨/年乙烯工程,定于2005年投产。陶氏化学公司与天津石化公司(各持股50/50)合资的乙烯项目可望由原来的6O万吨/年扩大到100万吨/年,推迟到2008年后完成。 埃克森美孚公司与福建炼化(埃克森美孚/沙特美孚/福建炼化各持股25/25/50)参建 6O万吨/年乙烯工程,定于2006~2007年投产;埃克森美孚还与广州石化公司合作改建

2012最新三元乙丙橡胶项目调研报告

三元乙丙橡胶项目市场调研报告

目录 第一章 EPDM概况 (1) 1.1 EPDM介绍 (1) 1.2 EPDM合成工艺介绍 (1) 1.2.1 合成EPDM的原料组成介绍 (1) 1.2.2 合成EPDM的合成方法 (3) 第二章 EPDM市场调研 (4) 2.1 EPDM市场环境分析 (4) 2.2 EPDM生产现状 (4) 2.2.1 国内生产现状 (4) 2.2.2 在建项目 (5) 2.2.3 国内乙丙橡胶招商情况 (7) 2.3 国际EPDM产能与预测 (8) 2.4 国内EPDM的供求情况 (11) 2.5 EPDM消费现状与发展前景 (12) 第三章原材料市场调研 (13) 3.1 概述 (13) 3.2原材料综述 (13) 3.2.1乙烯 (13) 3.2.2丙烯 (14) 3.2.3第三单体 (16) 3.3 原料产能分析 (17)

3.3.1乙烯 (17) 3.3.2丙烯 (18) 3.3.3第三单体 (18) 3.4主要原材料价格分析 (20) 3.4.1乙烯 (20) 3.4.2丙烯 (21) 3.4 国内生产厂家介绍 (24) 3.4.1 乙烯 (24) 3.4.2 丙烯 (24) 第四章 EPDM下游市场分析 (25) 4.1 EPDM应用现状介绍 (25) 4.2 EPDM市场趋势分析展望 (25) 第五章关于胜友橡胶EPDM项目的思考 (26) 5.1 EPDM项目前期准备 (26) 5.2 EPDM项目发展展望 (29)

第一章EPDM概况 1.1 EPDM介绍 三元乙丙橡胶(EPDM)是乙烯、丙烯以及非共轭二烯烃的三元共聚物。1955年意大利G.Natta进一步研究和发展Ziegler催化剂,应用过度金属化合物和烷基铝化合物为催化剂合成了二元乙丙橡胶,开创了乙丙橡胶的发展史,1957年英国Dunlop公司发明以双环戊二烯为第三单体的三元乙丙橡胶,1963年实现工业化生产,随后陆续出现不同第三单体的三元乙丙橡胶。1972年,我国采用北京化工研究院技术成果,在兰州合成橡胶厂建成2000吨/年半工业生产装置,但因设备装置问题停产,二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热、光、氧气、尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。 1.2 EPDM合成工艺介绍 1.2.1 合成EPDM的原料组成介绍 三元乙丙橡胶橡胶工业生产中,除乙烯、丙烯单体外,还需加入第三单体、溶剂、催化剂、分子量调节剂、活化剂等。 乙烯、丙烯 乙烯、丙烯是三元乙丙橡胶合成的主单体。乙烯和丙烯通常是有气体烃或液体石油馏分和深冷分离法提供聚合级原料。 第三单体为非共轭二烯烃,为获得硫磺硫化提供不饱和度。工业上常使用的第三单体有乙叉降冰片烯(ENB)、双环戊二烯(DCPD)和1,4-己二烯(HD)。 溶剂 溶剂的选择按照溶解度参数相近原则,通常是脂肪族饱和烃,如环戊烷、环己烷、芳烃等,生产上一般采用己烷为溶剂。

相关主题
文本预览
相关文档 最新文档