当前位置:文档之家› 仪器分析复习(应化)

仪器分析复习(应化)

仪器分析复习(应化)
仪器分析复习(应化)

仪器分析

第一章绪论

一、什么是仪器分析?

仪器分析以物质的某些物理或物理化学性质(光、电、热、磁等)为基础,并借助于特殊的仪器,对待测物质进行定性、定量及结构分析和动态分析的一类方法。

这些方法一般都有独立的方法原理及理论基础。

二、仪器分析的特点

灵敏度高;

选择性高;

准确度高;

操作简便,分析速度快,易于实现自动化

样品用量少。

价格一般来说比较昂贵。

三、仪器分析方法分类

1. 光学分析法

2. 电分析化学方法

3. 色谱分析法

四、定量分析方法的评价指标

1、精密度

精密度是指使用同一方法,对同一试样进行多次所得结果的一致程度。常用测定结果的标准偏差s或相对标准偏差度量。

2、准确度

试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度。准确度常用相对误差量度。

3、灵敏度

物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为方法的灵敏度,用S表示。

4、检出限

某一方法在给定的置信水平上可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。

以浓度表示的称为相对检出限,以质量表示的称为绝对检出限。(XL:可以与空白信号区别的最小信号.)

5、标准曲线

标准曲线—被测物质的浓度或含量x与仪器响应信号y的关系曲线;线性范围—定量测定的最低浓度到标准曲线偏离线性浓度的范围;

标准曲线的绘制

用“一元线性回归法”的数据统计方法来给出y与x的关系式

y=a+bx

第三章紫外可见吸收光谱

一、概念

1、定义:紫外可见吸收光谱分析法:

利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度,对物质的组成、含量和结构进行分析、测定、推断的分析方法。

2、吸收曲线

以波长为横坐标,吸光度为纵坐标作图,即可得到一条吸光度随波长变化的曲线,称之为吸收曲线或吸收光谱。

3、朗伯-比耳定律

A、当一束平行单色光照射到任何均匀、非散射的介质(固体、液体或气体),如果同时考虑溶液的浓度和液层的厚度都变化,都影响物质对光的吸收,则上述两个定律可合并为朗伯-比耳定律,即得到:

logI0/I=Kbc 令:A=logI0/I 则:

A=K b C

会运用该公式计算。

二、引起偏离朗伯-比耳定律的原因

(一)物理因素

1.单色光不纯所引起的偏离

2.非平行入射光引起的偏离

3.介质不均匀性引起的偏离

(二)化学因素

1.溶液浓度过高引起的偏离

2.化学变化所引起的偏离

三、最佳的吸光度测量范围

T在15% ~80%时误差较小。在T=0.368,误差最小。

四、吸光光度法的仪器

由光源、单色器(分光系统)、吸收池、检测系统和信号显示系统等五部分组成。

第二节吸光光度法分析条件的选择

一、显色反应及其条件的选择

(一)显色反应和显色剂

1.显色反应

在分光光度分析中,将试样中被测组分转变成有色化合物的反应叫显色反应。显色反应可分两大类,即络合反应和氧化还原反应,而络合反应是最主要的显色反应。

选择显色反应的一般标准 :

(1) 选择性要好。

(2)灵敏度要高。

(3)对比度要大。

(4)有色化合物的组成要恒定,化学性质要稳定。

(5)显色反应的条件要易于控制。

第三节、紫外可见吸收光谱与分子结构的关系

1、紫外可见吸收光谱是由分子中价电子能级跃迁产生的,这种吸收光谱取决于价电子的性质。

1)形成单键的σ电子 C-H、C-C

2)形成双键的π电子 C=C、C=O

3)未成键的孤对电子n 电子

跃迁所需能量为:

σ→σ* > n→σ* ≥π→π* > n→π*

2. 一些常用名词

A. 生色团

B. 助色团

C. 红移

D. 蓝移

E. 溶剂的极性效应

3.有机化合物的紫外光谱

A. 饱和烃及其衍生物:σ→σ*、 n→σ*(作溶剂)

B. 不饱和烃及共轭烯烃:σ→σ*、π→π* (K吸收带) 共轭

C. 羰基化合物: n →π* (R吸收带)、n→σ*、π→π*弱吸收D.B吸收带和E吸收带—苯环带,B带中吸收,E吸收带,强吸收。

第四章红外吸收光谱法

一、基本概念

红外吸收光谱分析法:利用物质对红外辐射的吸收所产生的红外吸收光谱,对物质的组成、结构及含量进行分析测定的方法叫红外吸收光谱分析法。

红外吸收光谱是一种分子吸收光谱。属于分子的振动-转动光谱。

红外光谱一般用的是中红外区。

中红外区:波长 2.5~25 μm

波数 4000~400 cm-1

二、红外吸收光谱产生的条件和谱带强度

1. 红外辐射的频率等于分子某个基团的振动频率.

ν红外= ν振

2.引起偶极矩变化的振动形式μ≠0

红外吸收光谱与分子结构

1、基团频率:通常把能代表某基团存在,并有较高强度的吸收峰,称为特征吸收峰,所在的频率位置称为基团频率。

2、4000~1300 区域:是由伸缩振动产生的吸收带,为化学键和基团的特征吸收峰,吸收峰较稀疏,鉴定基团存在的主要区域——官能团区;

3、1300~650区域:吸收光谱较复杂,能反映分子结构的细微变化——指纹区。

第五章 分子发光分析法

一、分子发光分析法及其分类

某些物质的分子吸收一定能量后,电子从基态跃迁到激发态,以光辐射的形式从激发态回到基态,这种现象称为分子发光,在此基础上建立起来的分析方法为分子发光分析法. 1、荧光和磷光光谱的产生

具有不饱和基团的基态分子光照后,价电子跃迁回基态产生荧光和磷光。

I f =KC

常见化合物的特征基团频率分区

4000 2500 2000

1400 400cm -1

ν X -H X -H 伸缩振动区 ν O -H 3700~3100 ν N -H 3500~3300 ν C -H 3300~2700 C -H : 3000为界,3000以 上为不饱和化合物 的C -H —ν≡C H ν =C H ν ΦC H ; 3000以下

饱和化合物ν C -H

三键和累积

双键的伸缩振动区 ν C ≡C ν C ≡N ν C =C =C

ν C =C =N ν C =C =O 双键伸缩振动区 ν C =C 1680~1620 ν C =O 1850~1600 羰基吸收峰 强度大 芳环ν C =C

1600,1580,

1500, 1450

单键的伸缩

振动和弯曲振动区 ν X -Y : ν C -O ν C -N ν N -O ν C -X

ν C -C δX -H : δC -H δO -H

二、荧光和磷光分析仪器

(一)荧光分析仪器——主要由光源、单色器、液槽、检测器和显示器组成

第六章原子发射光谱法

一、概念

1、原子发射光谱法:根据待测物质的气态原子或离子受激发后所发射的特征光谱的波长及其强度来测定物质中元素组成和含量的分析方法。

2、方法过程(蒸发,解离,激发,返回辐射,发射,分光、光谱)

3、名词

A原子线(Ⅰ);B共振线和主共振线;C、离子线(Ⅱ,Ⅲ);D最灵敏线、最后线、分析线;

二、定量

I = a C

修正式:I = a C b

定量分析时,宜选用γ反衬度高的紫外Ⅰ型感光板

定性分析时,宜选用惰延量Hi灵敏度较高的紫外Ⅱ型感光板.

三、光谱定性分析

1、原子发射光谱法是理想的、快速的定性方法,可测70多种元素。

在元素光谱定性分析时,并不要求对元素的每条谱线都进行鉴别,一般只要在试样光谱找出待测元素的2-3条元素的灵敏线。就可以确定试样中存在该元素。

2、光谱定性分析的方法

A.标准试样光谱比较法。

B.标准光谱图比较法—铁光谱比较法。

四、光谱定量分析

A、光谱定量分析的基本关系式:

lg I = b lg C + lg a

B、摄谱法光谱定量分析公式.

ΔS= γ blgC+ γ lgA

第七章原子吸收光谱法

一、概念

1、它是利用待测元素所产生的基态原子对其特征谱线的吸收程度来进行定量分析的方法。

2、吸收线的轮廓与变宽

A. 自然宽度;

B. 热变宽度又叫多普勒变宽;

C.压力变宽(碰撞变宽);

二、定量依据

A=K2C定量分析的依据

三、原子化方式

A、火焰原子化

B 、非火焰原子化(石墨炉原子化器 ) 四、仪器

1、不管型号如何变化,都是由光源、原子化器、分光系统和检测系统四大部件组成。

2、与普通分光光度计相似,用锐线光源代替连续光源;用原子化器代替了普通的吸收池.

第八章 电分析化学导论

一、概念

1、根据物质在溶液中的电化学性质及其变化来测定物质组分含量的方法,称为电分析化学法。

根据待测试液的浓度C 与某一电参数之间的关系求得分析结果。

电参数可以是电导、电位、电流、电量等;

它包括:电导、电位、极谱、库仑分析法;

2、电极电位方程式

3、测定电极电位的三个条件: 指示电极、参比电极、待测液

E ° = φ° 正 - φ° 负

E = φ 正 - φ 负 4、极化与过电位

)

(Re )(lg

d a Ox a s +?=??

极化——电流通过电极与溶液界面时,电极电位偏离平衡电位(即能斯特公式计算的电位)的现象;

极化产生的原因:浓差极化和电化学极化.

5、电池的表示方法

国际纯粹与应用化学联合会规定电池用图解表示式表示。规定如下:(1)习惯上把负极写在左边,正极写在右边

(2)电池组成的每一个接界面用“|”隔开。两种溶液通过盐桥连接时,用“||”表示。

(3)电解质溶液位于电极之间,并应注明活度(或浓度)。若有气体,应注明其分压、温度,若不注明,则指25℃,101325Pa

原电池的表示方法:

(-) Zn(s)|ZnSO4(a1)||CuSO4(a2)|Cu(s) (+)

第九章电位分析法

一、概念

1、电位分析法是电化学分析的一个重要分支,它是在通过电路的电流近于零的条件下,以测定电池的电动势或电极电位为基础的电分析化学方法。

2、分类

直接电位法:适用于微量组分测定;

电位滴定法:适用于常量组分测定;

3、敏感膜是一种能分开两种电解质溶液,并对某种物质有选择性响应的薄膜,它能形成膜电位。

?离子 = K ± (0.059V/n)lga

E 电池= ? SCE - ?玻+ ?

不对称+ ?液接

= ? SCE - ? AgCl/Ag - ?膜+ ?不对称+ ?液接

E 电池 = K - 0.059Vlga H+

指示电极作负极,参比电极作正极,阳离子为负号;阴离子上式为正号。反之,指示电极作正极,参比电极作负极,阳离子为正号;阴离子上式为负号。

如:(-)Ag|AgCl,0.1mol2L -1HCl|玻璃膜|试液或标准缓冲溶液‖KCl(饱和),Hg 2Cl 2|Hg (+)

E 电池= ? SCE — ?玻+ ?不对称+ ?液接

= ? SCE —? AgCl/Ag- ?膜+ ?不对称+ ?液接 在测定条件下, ? SCE 、 ?不对称、 ?液接及? AgCl/Ag 可视为常数,合并为K,于是上式写为: E 电池 = K - 0.059Vlga H+ 或 E 电池 = K + 0.059V pH

4、总离子强度调节缓冲溶液( TISAB )

电位分析中,通常采用加入TISAB的方法来控制溶液的总离子强度、pH值、掩蔽干扰离子。

TISAB一般由离子强度调节剂、掩蔽剂和缓冲溶液组成。

例如:测定试样中的氟离子所用的TISAB由

氯化钠、柠檬酸钠及HAc-NaAc 缓冲液组成。

第十章极谱分析法

一、概念

1、极谱分析法是一种在特殊条件下进行电解的分析方法,它是以小面积滴汞电极作工作电极与参比电极组成电解池,电解待测物质的稀溶液,根据所得的电流电压曲线进行分析的方法。

2、极谱图

三、定量依据

i d=KC

四、电解条件的特殊性

A. 要求待测物质浓度较稀;

B、电解电流包括迁移电流+对流电流+扩散电流,其中只有扩散电流与待测物电解时不得搅拌,使电解质保持静止

C、有定量关系,必须消除迁移电流和对流电流的影响.

五、干扰电流极消除方法

1、残余电流

2、迁移电流:加入大量支持电解质(如KCl、NH4Cl、KNO3等

3、极谱极大:可采用加入少量表面活性物质,称为极大抑制剂,常用的明胶等。

4、氧波:除氧方法:通气法;亚硫酸钠法

5、叠波、前波和氢波:使用合适的配位剂, 改变两种物质的半波电位φ1/2使其分开。

在上述各种干扰电流中,除了残余电流可用作图法扣除外,其它干扰电流都要在实验中加入适当的试剂后分别予以消除.

另外,为了改善波形,控制试液的酸度,还需加入其它一些辅助试剂,这种适当试剂称为极谱分析的底液——含有支持电解质,除氧剂,配位剂及极大抑制剂等。

第十一章电解及库仑分析

一、概念

1.电解分析法

应用外加电源电解试液,通过电极反应将试液中的待测组分转变为固相析出,然后称量电极上析出物的质量而求得待测物含量的分析方法。

2.库仑分析法

基本原理与电解法相似,根据电解过程中所消耗的电量求出待测物含量的分析方法。它分为:

控制电流库仑滴定法—控制电流电解。

控制电位库仑分析法—控制电位电解。

(一)法拉第电解定律

1. 先决条件

(1) 工作电极上除待测物质外,无其它任何电极反应发生(无

副反应)。

(2) 电流效率必须100%。

(二)库仑滴定法的特点及应用

1. 由于库仑滴定法所用的滴定剂是由电解产生的,边产生边滴定,有可能使用不稳定的滴定剂。如:Cl2、Br2、Cu+等,扩大了容量分析的应用范围。

2. 能用于常量组分及微量物质的分析。准确度高,灵敏度高。

3. 不需标准物质。

4. 分析速度快,仪器设备简单,价格便宜。

第十二(1)章色谱分析法导论

一、概念

1、色谱法:混合物在流动相的携带下通过色谱柱分离出几种组分的方法。

A.色谱分离法一定是先分离,后分析。一定具有两相;固定相和流动相。

B.分离:利用组分在两相中分配系数或吸附能力的差异进行分离。

二、常用名词

1、色谱图:组分从色谱柱流出时,各个组分在检测器上所产生的信号随时间变化,所形成的曲线叫色谱图。

从色谱流出曲线中,可得许多重要信息:

(1) 根据色谱峰的个数,可以判断样品中所含组分的最少个数;

(2) 根据色谱峰的保留值,可以进行定性分析;

(3) 根据色谱峰的面积或峰高,可以进行定量分析;

(4) 色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据;

(5) 色谱峰两峰间的距离,是评价固定相(或流动相)选择是否合适的依据。

2、色谱保留值——定性的依据;

A、保留时间t R——组分流经色谱柱时所需时间。

B、调整保留时间t’R——扣除了死时间的保留时间。

C、保留体积V R—组分从进样开始到色谱柱后出现最大值时所需流动相体积,组分通过色谱柱时所需流动相体积。

D、调整保留体积V’R—扣除了死体积的保留体积。

E、相对保留值γ2,1或γi ,s—在相同操作条件下,组分2或组分i对另一参比组分1或s调整保留值之比。

三、色谱理论

1、塔板理论

塔板理论也称平衡理论,即把色谱过程看成组分在固定液里的溶解平衡过程。可用分配系数、分配比等概念来描述组分在给定两相间的分配行为。

塔板理论把色谱柱比作一个分馏塔,假设柱内有n个塔板,每个塔板高度称为理论塔板高度,用H 表示,在每个塔板内,试样各组分在两相中分配并达到平衡,最后,挥发度大的组分和挥发度小的组分彼此分离,挥发度大的最先从塔顶(即柱后)逸出。

n =L/H 或 H=L/n

n = 5.54 (t R /W 1/2)2

=16 (t R/W b )2

N有效 = 5.54 (t′R /W 1/2)2

=16 (t ′R /W b )2

会运用该公式计算。

2、速率理论—范第姆特方程

解释解释色谱流出曲线的宽度与哪些因素有关。

3、色谱基本分离方程

会运用该公式计算。

两个峰t R 相差越大,W 越窄,R值越大,说明柱分离较能高。 R≥1.5 两个组分能完全分开。

R=1.0 两组分能分开,满足分析要求。 R<1.0 两峰有部分重叠。

4、色谱基本分离方程式

会运用该公式计算。

Cu u

B A H ++=Cu u B A H ++=2

/)(121

2b b R R W W t t R +-

=

上式将:R,n有效, 选择性r2,1联系起来,为色谱分离条件选择提供理论依据.本方程为色谱基本分离方程式。

四、色谱定性和定量分析

1、定性分析

定性分析的任务是确定色谱图上各个峰代表什么物质。

A.利用保留值与已知物对照定性

B、利用峰高增量定性

C、利用双色谱系统定性

D、与其它分析仪器联用的定性方法

2、定量分析

A、通过色谱图上的峰面积或峰高,计算样品中溶质的含量。

A) 相对校正因子

B)归一化法

试样各组分都出峰,可用归一化法定量。

五、气相色谱法

(一)、气相色谱法又可分为:气固色谱(GSC)

气液色谱(GLC):

1、气相色谱由五个部分组成

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

仪器分析复习终极版

梯度洗脱与程序升温: 梯度洗脱:梯度性地改变洗脱液的组分或pH,以期将层析柱上不同的组分洗脱出来的方法。程序升温色谱法,是指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称。 二、填空题 1、仪器分析主要分为三大类, 它们是(光学分析法)、(电化学分析法)和(色谱分析法)。 2、红外吸收光谱区为(特征频率区)和(指纹区)。 3、在液相色谱中, 常用的一种通用型检测器是(示差折光检测器)。 4、描述色谱柱效能的指标是(理论塔板数);柱的总分离效能指标是(分离度)。 5、在石墨炉原子化器中, 试液首先在其中低温(干燥),然后升温(分解(灰化 )),最后生成(原子蒸气)。 7、紫外光谱分析中吸收带有(K带)、(R带)、(B带)和(E带)。 *8、在原子吸收法中,提高空心阴极灯的灯电流可增加(发光强度)。但若灯电流过大,则(自吸)随之增大,同时会使发射线(变宽)。 四、简答题 1、仪器分析与化学分析的区别于联系 (2)、仪器分析与化学分析的联系: a.仪器分析是在化学分析的基础上发展起来的,其不少原理都涉及到化学分析的基本理论; b.仪器分析离不开化学分析,其不少过程需应用到化学分析的理论---样品前处理、标样的标定。 c. 化学分析离不开精密的分析天平等仪器 因此:仪器分析与化学分析是紧密联系、相辅相成的 2、仪器分析的优点与局限性 优点: (1)、分析速度快,适于批量试样的分析 (2)、灵敏度高,适于微量成分的测定 (3)、容易实现在线分析和遥控监测 (4)、用途广泛,能适应各种分析要求 (5)、样品用量少,且可进行不破坏样品的分析 局限性: (1)、仪器设备复杂,价格比较昂贵,对维护及环境要求较高 (2)、在进行仪器分析之前,时常要用化学方法对试样进行预处理 (3)、仪器分析方法一般都需要用标准物质进行校准,而很多标准物质需要用化学分析法来标定; (4)、相对误差较大,一般不适于常量和高含量分析 3、色谱需要解决的问题以及与之对应的色谱理论

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

仪器分析复习题

1、在反相液相色谱分离中,苯、甲苯、乙苯、联苯的流出顺序是? 乙苯、甲苯、联苯、苯 2、在AES分析中,把一些激发电位低、跃迁几率大的谱线称为? 灵敏线 3、在石墨炉原子化器中, 常采用哪几种气体作为保护气? 惰性气体(氩) 4、在原子吸收分析中,如怀疑存在化学干扰,例如采取下列一些补救措施,指出哪种措施不适当? (1)提高火焰温度(2)加入稀释剂(3)加入保护剂(4)加入基体改进剂5、 pH 玻璃电极产生的不对称电位来源于? 这是由于膜内外两个表面情况不一致(如组成不均匀、表面张力不同、水化程度不同等)而引起的。 6. 在光学分析法中,共振线的定义是? 原子受到外界能量激发时,其外层电子从基态跃迁到激发态所产生的吸收线称为共振吸收线,简称共振线。 7、电磁辐射(电磁波)按其波长可分为紫外、可见、红外等不同区域,各区域的波长范围?p8页 8、原子发射光谱分析中光源的作用是? (1)使试样蒸发、分解、原子化 (2)使气态原子激发并发射特征光谱 9、在原子发射光谱分析中,直流电弧与交流电弧比较各有什么特性? 直流电弧的特点:直流电弧放电时,电极温度高,有利于试样蒸发,分析的灵敏度很高,而且电极温度高,破坏了试样原来的结构,消除了试样组织结构的影响,但对试样的损伤大。 交流电弧的特点:交流电弧既具有电弧放电特性,又具有火花放电特性。改变电容C2与电感L2,可以改变放电特性:增大电容,减小电感,电弧放电向火花放电转变;减小电容,增大电感,电弧放电特性增强,火花放电特性减弱。 10、说说空心阴极灯的基本构造? 它是由一个阳极和一个端封闭、一端敞口的圆筒状的空心阴极组成。 11、什么是谱线的多普勒变宽、罗伦兹变宽、共振变宽、自然变宽? 多普勒变宽:是由于原子在空间作无规则热运动产生的,又称热变宽。 罗伦兹变宽:由异种原子碰撞引起的变宽。 共振变宽:在共振线上,自吸严重时的谱线变宽。 自然变宽; 没有外界影响,谱线仍有一定的宽度称为自然宽度。 12红樱桃化工网 1~%T2w"{'v O12、原子吸收分光光度计的主要部件有哪几个部分组成? 由光源、原子化器、单色器和检测器等四部分组成。 13、在原子发射光谱分析中,有哪几种光源?各有什么有点? (1)直流电弧:绝对灵敏性高、背景小、适合定量分析 (2)交流电弧:a电弧温度高、激发能力强 B电极温度稍低、蒸发能力稍低 C电弧稳定性好,使分析重现性好,适用于定量分析(3)高压火花:(1)放电瞬间能量很大,产生的温度高,激发能力强,某些难激发元素可被激发,且多为离子线;(2)放电间隔长,使得电极温度低,蒸发能力稍低,适于低熔点金属与合金的分析;(3)稳定性好、重现性好,适用于定量分析;(4)ICP:激发能力强、灵敏度高、检测限低、精密度好、干扰小、线性范围宽。

(完整版)仪器分析知识点整理..

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题

仪器分析复习内容重点

第二章气相色谱分析 1.简要说明气相色谱分析的基本原 理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录系统. 气相色谱仪具有一个让载气连续运行管路密闭的气路系统. 进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中. 3.试以塔板高度H做指标,讨论气相色谱操作条件的选择. 解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。 (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。 (3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。 (4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。 (5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大) (6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL. (7)气化温度:气化温度要高于柱温30-70℃。

仪器分析复习纲要

第2章 光学分析法的基本分类(光谱分析法) 光学分析仪器的基本部件及其作用(结合后面各个光谱分析法的仪器进行比较) 第3章原子发射光谱法 1.基本原理原子发射光谱如何产生的?原子发射光谱线中的共振线、主共振线? 谱线强度与哪些因素(如浓度)有关?为什么谱线会发生自吸和自蚀? 2.仪器构成如各种激发光源等,及特点?(重点ICP) 3.定性方法分析线如何选择? 4.定量分析方法赛伯-罗马金公式为什么要采用内标法? 分析线对的选择? 第4章原子吸收光谱法 1.原子吸收光谱的产生原理 2.导致谱线变宽的原因有哪些? 3.理解为什么要采用锐线光源? 4.仪器构成光源(空心阴极灯),原子化器(类型及应用),单色器和检测器等 5.常见的原子化方法 6.干扰及其消除办法 第5章紫外-可见吸收光谱法 1.紫外-可见吸收光谱的产生(结合红外光谱,核磁共振谱) 2.电子跃迁类型 3.仪器基本构成光源(钨灯,氘灯),样品池(比色皿),单色器(棱镜,光栅),检 测器(光电倍增管)等 4.定性分析影响吸收带的因素? 如何确定共轭体系? 5.定量分析兰伯-比尔定律误差 第6章红外光谱 1.红外光谱的产生条件(两条件) 2.振动频率、振动类型 3.影响基团频率的因素 4.仪器构成光源等 5.重要官能团的特征吸收频率 6.红外光谱解析步骤 第8章核磁共振

1.核磁共振谱如何产生的?在强磁场中,原子核发生能级分裂,当吸收外来电 磁辐射时,将发生核能级的跃迁。自旋量子数?共振条件? 2.仪器的主要部件磁铁射频振荡器射频信号接受器样品管 3.化学位移如何产生的?如何来计算化学位移值?影响因素?(诱导效应;共轭效应;磁各向异性效应;溶剂效应;氢键等;) 4. 各类有机化合物的化学位移 5.偶合裂分,峰裂分数(n+1规律),峰面积比值(氢原子数目比值) 6. 核磁共振谱解析步骤 第10章质谱 1.质谱法工作原理分子电离;电场加速;磁场分离;检测 2.质谱仪主要部件重点:离子源(EI,CI等),质量分析器等; 3.离子峰的类型分子离子峰(分子量);同位素离子峰(鉴定含氯和溴化合物);碎片 离子峰(结构鉴定);亚稳离子峰。 4.常见化合物的裂解规律;几种开裂方式?麦氏重排? 第12章 1.什么是电位分析法?基本原理?它的电极电位与溶液中给定离子活度的对数呈线性关系。如何用能斯特方程来描述这种关系的? 2.离子选择性电极的基本构造; 3.膜电位;Donnan电位;为什么会产生膜电位? 4. 离子选择性电极的主要类型; 玻璃电极(酸度计);构成;工作原理;其能斯特方程 晶体膜电极(F离子电极);组成;工作原理;其能斯特方程 流动载体电极(钙离子电极);组成;工作原理;其能斯特方程 气敏电极;组成;工作原理; 5. 离子选择性电极的特性参数 能斯特响应;检测限;线性范围;电极选择性系数定义及意义; 6.直接电位法原理; 7.电位滴定法原理; 8. 确定电位滴定终点的几种方法; 第13章 1.概念极谱波;极限扩散电流;极化电极;去极化电极;(1)理论分解电压和析出电压(2)超电位;产生原因;极化;浓差极化;电化学极化; 2. 极谱分析法的定量分析法基础 4. 尤考维奇方程(扩散电流与浓度关系) 5. 干扰电流及其消除方法(残余电流,迁移电流,极谱极大,氧波) 6.经典的直流极谱法与单扫描极谱法比较

仪器分析知识点总结

1、光分析法:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法; 光分析法的三个基本过程:(1)能源提供能量;(2)能量与被测物之间的相互作用;(3)产生信号。 光分析法的基本特点:(1)所有光分析法均包含三个基本过程;(2)选择性测量,不 涉及混合物分离(不同于色谱分析);(3)涉及大量光学元器件。 光谱仪器通常包括五个基本单元:光源;单色器;样品;检测器;显示与数据处理; 2、原子发射光谱分析法:以火焰、电弧、等离子炬等作为光源,使气态原子的外层电子受激发射出特征光谱进行定量分析的方法。 原子发射光谱分析法的特点: (1)可多元素同时检测各元素同时发射各自的特征光谱; (2)分析速度快试样不需处理,同时对几十种元素进行定量分析(光电直读仪); (3)选择性高各元素具有不同的特征光谱; (4)检出限较低(5)准确度较高10?0.1 g x g-1(—般光源);ng x g-1(ICP ) 5%?10% (一般光源) ; <1% (ICP) ; (6)ICP-AES性能优越线性范围4?6数量级,可测高、中、低不同含量试样; 缺点:非金属元素不能检测或灵敏度低。 3、原子吸收光谱分析法:利用特殊光源发射出待测元素的共振线,并将溶液中离子转变成气态原子后,测定气态原子对共振线吸收而进行的定量分析方法。 特点: (1)检出限低,10-10 ?10-14 g; (2)准确度高,1%?5%; (3)选择性高,一般情况下共存元素不干扰; (4)应用广,可测定70多个元素(各种样品中) ; 局限性:难熔元素、非金属元素测定困难、不能同时多元素测量 4、多普勒效应:一个运动着的原子发出的光,如果运动方向离开观察者(接受器)则在观察者看来,其频率较静止原子所发的频率低,反之,高。 5、原子荧光分析法:气态原子吸收特征波长的辐射后,外层电子从基态或低能态跃迁到高能态,在10-8s 后跃回基态或低能态时,发射出与吸收波长相同或不同的荧光辐射,在与光源成90 度的方向上,测定荧光强度进行定量分析的方法。 6、分子荧光分析法:某些物质被紫外光照射激发后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。 特点: (1)灵敏度高 比紫外-可见分光光度法高2? 4 个数量级;为什么? 检测下限:0.1?0.1 g/cm -3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱; (3)试样量少 缺点:应用范围小。 7、分子磷光分析法:处于第一最低单重激发态分子以无辐射弛豫方式进入第一三重激发态,再跃迁返回基态发出磷光。测定磷光强度进行定量分析的方法。 8、X射线荧光分析法:原子受高能辐射,其内层电子发生能级跃迁,发射出特征X射

仪器分析复习提纲(lastversion)

仪器分析复习提纲 Chapter 1 仪器分析定义:仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法, 测定时常常需要使用比较复杂的仪器,它是分析化学的发展方向。 分类:1、光学分析法(紫外-可见光谱法、红外光谱法、分子荧光(磷光)光谱法、原子吸 收光谱法、原子发射光谱法);2、电化学分析(极谱与伏安分析法、库仑分析法、电解分析 法、电位分析法);3、色谱分析法(气相色谱法、液相色谱法) ;4、其他方法(质谱法、流 动注射分析法、热分析法) 特点:1、选择性好;2、操作简便、分析速度快、容易实现自动化;3、灵敏度高;4、相对 误差大(不宜用于大量 分析) 分析仪器的组成: Chapter 2 光分析的三个基本过程:激发信号、信号转换、输出信号 (能源提供能量;能量与被测物之间的互相作用;产生信号) 光谱分析分类:原子 光谱(线状光谱)、分子光谱(带状光谱) 吸收光谱、发射光谱 电磁辐射的基本性质(波粒二象性) 电磁辐射的频率、波长、波数、速率的基本概念以及运算关系 入=1/波数E=hc/入=h v 波速=?入 (1eV=1.602,10 "J h=6.626 切 ) 光谱法仪器五个基本单元: 光源、单色器、样品、检测器、显示与数据处理 棱镜与光栅的分辨率与色散率的计算 1、棱镜色散率=偏向角对波长求导(角色散率)=谱线距离对波长求导(线色散率) 线色散率=角色散率X 焦距/sin 光轴夹角 分辨率=平均波长/波长差=棱镜总底边长X 色散率 2、光栅色散率=光谱级次/ (光栅常数X cos 衍射角)(角色散率) =角色散率X 会聚透镜焦距 分辨率=光谱级次X 光栅总刻痕数 各种光谱中样品池的选择 发射光谱一一激发源 紫外光区一一石英比色皿 可见光区——玻璃比色皿 红外光区一一NaCI 、KBr 、KRS-5固体试样与 KBr 做成的盐窗(混合压片) 荧光分析一一低荧光物质做成的比色皿 常用检测器的检测原理 1、硒光电池(光敏半导体); 2、光电管(光电效应); 3、光电倍增管(光电效应) 光源:原子发射一一原 子化器 原子吸收一一空心阴极灯(紫外-可见区锐线光源) 紫外吸收一一氢灯、氘灯(紫外区连续光源) 可见吸收一一钨灯(可见区连续光源) 红外吸收 ----- N ernst 灯、硅碳棒(中红外区连续光源) 分子荧光(磷光)一一高压汞灯(紫外 -可见区线光源) Chapter 3紫外-可见分光光度法 分子吸收光谱形成原因:价电子和分子轨道上的电子在电子能级间跃迁,并伴随有振动和 转动能级间的跃迁 △ E=h v 梁颖 2012

仪器分析知识点复习

第一章绪论 1.解释名词:(1)灵敏度(2)检出限 (1)灵敏度:被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。(2)检出限:一定置信水平下检出分析物或组分的最小量或最小浓度。 2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的(C )。 A.1倍 B.2倍 C.3倍 D.4倍 3.书上第13页,6题,根据表里给的数据,写出标准曲线方程和相关系数。 y=5.7554x+0.1267 R2=0.9716 第二章光学分析法导论 1. 名词解释:(1)原子光谱和分子光谱;(2)发射光谱和吸收光谱;(3)线光谱和带光谱; (1)原子光谱:原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。 分子光谱:分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。 (2)吸收光谱:当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。 发射光谱:处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,

产生电磁辐射。 (3)带光谱:除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。 线光谱:物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱。其谱线的宽度约为10-3nm,称为自然宽度。 2. 在AES、AAS、AFS、UV-Vis、IR几种光谱分析法中,属于带状光谱的是UV-Vis、IR,属于线性状光谱的是AES、AAS、AFS。 第三章紫外-可见吸收光谱法 1. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?两者之间的关系是什么? 2. 有色配合物的摩尔吸收系数与下面因素有关系的是(B) A.吸收池厚度 B.入射光波长 C.吸收池材料 D.有色配合物的浓度 3. 物质的紫外-可见吸收光谱的产生是由于(B) A.分子的振动 B. 原子核外层电子的跃迁 C.分子的转动 D. 原子核内层电子的跃迁 4. 以下跃迁中那种跃迁所需能量最大(A) A. σ→σ* B. π→π* C. n→σ* D. n→π* 5. 何谓生色团和助色团?试举例说明。 从广义来说,所谓生色团,是指分子中可以吸收光子而产生电子跃迁的原子基团,人们通常将能吸收紫外,可见光的原子团或结构系统定义为生色团。此类基团为具有不

《仪器分析》复习题1

《仪器分析》复习题 第一章绪论 仪器分析主要有哪些分析方法?请分别加以简述? 光分析法 光谱法和非光谱法 非光谱法是指那些不以光的波长为特征的信号,仅通过测量电磁幅射的某些基本性质(反射,折射,干射,衍射,偏振等)。 光谱法则是以光的吸收,发射和拉曼散射等作用而建立的光谱方法。这类方法比较多,是主要的光分析方法。 电分析化学方法以电讯号作为计量关系的一类方法, 主要有五大类: 电导、电位、电解、库仑及伏安 色谱法物质在两相(流动相和固定相)中分配比的差异而进行分离和分析的方法,主要有气相色谱法和液相色谱法,色谱法与现代各种分析方法连用,是解决复杂物质中各组分连续测定的有效途径。 质谱法:根据物质质荷比(质量与电荷的比值)进行定量、定性和结构分析的方法,是研究有机化合物结构的有利工具。 ②热分析:依据物质的质量、体积、热导反应热等性质与温度之间的动态关系,该法可用于成分分析,但更 多于热力学、动力学和化学反应机理的研究,主要方法有热重量法,差热分析法、差示扫描电热法 ③放射分析:依据物质的放射性。同位素稀释法、活化分析法,放射性滴定法 第二章色谱学基础 1.色谱分析法的最大特点是什么?它有哪些类型? 色谱定性分析就是要确定各色谱峰所代表的化合物。由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可作为一种定性指标 1.用已知纯物质对照定性 2.用经验规律和文献值进行定性分析 3.根据相对保留值定性 4.根据保留指数定性 2.绘一典型的色谱图,并标出进样点t m、t R、t‘R,h、w1/2、W、σ和基线。 3.试述塔板理论与速率理论的区别和联系。 4.从色谱流出曲线上通常可以获得哪些信息? 5.在色谱峰流出曲线上,两峰之间的距离取决于相应两组分在两相间的分配系数还是扩散速率?为什么? 6.试述速率方程式中A、B、C三项的物理意义。 7.为什么可用分辨率R作为色谱柱的总分离效能指标。 8.能否根据理论塔板数来判断分离的可能性?为什么? 9.色谱定性的依据是什么,主要有哪些定性方法。 色谱定量分析是根据检测器对溶质产生的响应信号与溶质的量成正比的原理,通过色谱图上的面积或峰高,计算样品中溶质的含量。 1.峰面积测量方法 2.定量校正因子 3.常用的定量计算方法 10.色谱定量分析中为什么要用校正因子?在什么情况下可以不用? 色谱定量分析是基于峰面积与组分的量成正比关系。但由于同一检测器对不同物质具有不同的响应值,即对不同物质,检测器的灵敏度不同,所以两个相等量的物质得不出相等峰面积。或者说,相同的峰面积并不意味着相等物质的量。因此,在计算时需将面积乘上一个换算系数,使组分的面积转换成相应物质的量,即 wi=fi′Ai 式中Wi为组分i的量,它可以是质量,也可以是摩尔或体积(对气体);Ai为峰面积,fi′为换算系数,称为定量校正因子。它可表示为fi′=Wi/Ai 11.用公式分析理论塔板数n、有效塔板数n有效与选择性和分离度之间的关系。 12.样品中有a、b、c、d、e和f六个组分,它们在同一色谱柱上的分配系数分别为370、516、386、475、356和490, 请排出它们流出色谱柱的先后次序。 13.衡量色谱柱柱效能的指标是什么?衡量色谱柱选择性的指标是什么? 固然增加柱长可使理论塔板数增大,但同时使峰宽加大,分析时间延长。因此,填充柱的柱长要选择适当。过长的

仪器分析各章知识点

各章知识要点 第2章气相色谱分析 1.色谱法的分类(按两相状态) 2.何为GC法,GC定性定量的依据、定量方法及优缺点 3.GC分离原理(包括GSC法和GLC法) 4.气相色谱仪的构造 5.色谱流出曲线及其作用、色谱术语及换算关系 6.分配系数K和分配比k的定义、二者的异同点及相关计算 7.塔板理论的作用(包括H的n计算) 8.速率理论方程的作用(包括U最佳、Hmin的计算) 9.R的含义、作用 10.检测器的性能指标、四种检测器的适用特点及英文缩写 11.归一化法的使用条件、原理 12.内标法及内标物具备的条件 13.外标法的具体操作 第4章电位分析法 1.电化学分析法、电位分析法、电位滴定法的定义。 2.电位分析法的测定依据。 3.电位测定法如何测定溶液的pH值(包括计算)。 4.指示电极、参比电极。 5.电位滴定法的原理及终点确定方法(重点掌握E/V曲线法和ΔE/ΔV—V 法及相关计算)。 6.电位滴定法的优点。 第5章伏安分析法 1.极谱分析法及其特殊条件 2.极谱图及作用、极谱图上的各参数的定义及意义和作用 3.极谱分析定性定量的依据,半波电位的特性 4.极谱分析中的干扰及其消除方法 5.迁移电流 6、极谱分析的底液及其组成,各种物质的作用 7、极谱分析定量方法及其相关计算 8、单扫描极谱图的特征,单扫描极谱法定性、定量的依据(包括定性定量参数)

第8章原子吸收光谱分析 1.AAS及基本原理 2.与其它光谱分析法相比,AAS的干扰少,具有相对高选择性。为什么? 3.何为共振线?在AAS中,是否一定以共振线为分析线?选择分析线的原则是什么? 4.在AAS中,被测物质是何微粒形式? 5.原子吸收分光光度计的基本组成部件有哪些?各部件的作用,常用何种光源? 6.何为光电倍增管的疲劳现象?如何防止或消除? 7.影响空心阴极灯发射特性的因素有哪些?关系如何? 8.在火焰原子化中,影响火焰温度的因素、火焰温度与原子化效率的关系? 9.AAS法定量的基础、定量方法及相关计算 10.AAS法适宜于常量分析还是微量分析? 11.AAS分析中,需控制哪些测定条件? 12.AAS分析中,常见的干扰有哪些? 13.何为化学干扰?有哪些具体形式?如何消除? 14.何为释放剂、保护剂、消电离剂? 15.何为原子分析中的灵敏度、特征浓度、检出限?它们与仪器的检测性能有何关系? 16.干扰形式的判断 a.在进行原子吸收分析,若在试样前处理时使用了硫酸或磷酸,从而导致其对测定元素的干扰,此干扰属 于何种干扰形式? b.待测元素与试样中共存元素的分析线重叠,引起什么干扰? c.分析试液的粘度太大,使试液喷入火焰的速度不稳或降低,造成什么干扰? 第9章紫外吸收光谱分析 1.UV法的概念 2.UV吸收光谱是怎样产生的?在UV光谱分析中,物质处于何种微粒状态? 3.按物质微粒形式,紫外光谱属何种光谱?若按产生机理,紫外光谱又称何种光谱? 4.分子内价电子及其跃迁类型;哪些跃迁产生的吸收光谱在紫外可见光区?紫外可见光区的波长范围? 5.助色团、生色团、红移、蓝移 6.K吸收带、R吸收带及它们的跃迁类型、强度。 7.紫外吸收光谱法的作用及其定性、定量的依据。 8.利用紫外吸收光谱推断物质的结构,其主要信息依据有哪些? 9.顺反异构体的UV光谱有何不同? 10.溶剂效应、影响该效应的因素及其关系。 11.紫外可见分光光度计的组成部件。 12.能够根据物质结构特征指出跃迁类型;由吸收光谱特征推断物质分子中的特征官能团。

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。 灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴生光谱的物质类型不同:原子光谱、分子光谱、固体光谱; ⑵光谱的性质和形状:线光谱、带光谱、连续光谱; ⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 ⑷ 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。 发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a.若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一 致性。 b.被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c.分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线 对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d.分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合 适。 e.内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条

仪器分析复习总结

1.光谱范围:仪器能测量光谱的波长范围。 2.工作范围:仪器能按规定的准确度和精密度进行测量的吸光度或强度范围。 3.厚度:样品池的两个平行且透光的内表平面之间的距离。 4.光路长度:光通过吸收池内物质的入射面和出射面之间的路程。当垂直入射时,应与厚度相同。 5.仪器的准确度:在不考虑随机误差的情况下,仪器给出的读数与被测量的真值相一致的能力。考察系统误差。 6.仪器的重复性:在不考虑系统误差的情况下,仪器对某一测量值能给出相一致读数的能力 (短时间内) 。 7.仪器的稳定性:在一段时间内,仪器保持其精密度的能力 8.仪器的可靠性:仪器保持其所有性能(准确度、精密度和稳定性)的能力。 1 仪器分析:是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。 2 定性分析:鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析:试样中各种组分(如元素、根或官能团等)含量的操作。 4精密度:指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度:仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限:又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7动态范围:定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8选择性:一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。 9 分辨率:指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正:仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 11 电磁辐射:电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (4) 折射折射是光在两种介质中的传播速度不同;(7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。 原子光谱:是由原子中的电子在能量变化时所发射或吸收的一系列光所组成的光谱。

仪器分析知识点整理

分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶. 压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 ⑷自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。 ⑸场致变宽(field broadening):包括Stark变宽(电场)和Zeeman 变宽(磁场) ⒉火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响? ①化学计量火焰:由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。

仪器分析第五章知识点总结

第五章高效液相色谱分析法 5-3高效液相色谱分析法中常用哪些检测器?各有什么特点?哪些适合梯度淋洗? 答: 常用的检测器有: (l)紫外检测器 (2)荧光检测器 (3)示差折光率检测器 (4)电导检测器 各检测器特点 (1)紫外检测器:应用最广,对大部分有机化合物有响应。 特点:灵敏度高;线形范围高;流通池可做的很小(1mm ×10mm ,容积8μL);对流动相的流速和温度变化不敏感;波长可选,易于操作;可用于梯度洗脱。 (2)荧光检测器:高灵敏度、高选择性 对多环芳烃,维生素B、黄曲霉素、卟啉类化合物、农药、药物、氨基酸、甾类化合物等有响应. (3)示差折光率检测器:除紫外检测器之外应用最多的检测器;可连续检测参比池和样品池中流动相之间的折光指数差值。差值与浓度呈正比; 灵敏度低、对温度敏感、不能用于梯度洗脱; (4)电导检测器:电导检测器是离子色谱法应用最多的检测

器,它是根据物质在某些介质中电离后所产生的电导变化来测定电离物质的含量。其主要部件是电导池。电导检测器的响应受温度的影响较大,因此要求放在恒温箱中。电导检测器的缺点是PH>7时不够灵敏。 适合梯度淋洗的检测器有:紫外检测器、荧光检测器 5-8正相柱和反相柱是如何界定的?适合哪类物质的分离? ●正相分配色谱(柱称正相柱):采用亲水性固定液、疏水 性流动相的色谱称正相~。极性小的组分先流出,极性大的 后流出。适合极性化合物的分离。 ●反相分配色谱(柱称反相柱):采用疏水性固定液、亲 水性流动相的色谱称反相~。极性大的组分先流出,极性小 的后流出。适合非极性化合物的分离。 5-11离子色谱与离子交换色谱有什么差别? 答:离子色谱与离子交换色谱的区别是其采用了特制的、具有极低交换容量的离子交换树脂作为柱填料,并采用淋洗液本底电导抑制技术和电导检测器,是测定混合阴离子的有效方法。 5-16指出下列物质分别在正相柱和反相柱上的流出顺序: (1)乙酸乙酯、乙醚、硝基丁烷(2)正己烷、正己醇、苯5-17毛细管电泳中,电流是如何产生的?朝何方向移动?对阴离子分离是否有利? 答; 石英或玻璃毛细管内壁表面上的硅羟基在pH>3的水溶液中,可电离产生-Si-O-负离子,使毛细管内壁带上负电荷,因此,

相关主题
文本预览
相关文档 最新文档