当前位置:文档之家› 2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

一、选择题

1.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数 0 1 2 3 4 人数

4

12

16

17

1

关于这组数据,下列说法正确的是( ) A .中位数是2

B .众数是17

C .平均数是2

D .方差是2

2.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( )

2020年吉林市中考数学一模试题及答案

A .

B .

C .

D .

3.函数21y x =-中的自变量x 的取值范围是( )

A .x ≠

12 B .x ≥1

C .x >

12

D .x ≥

12

4.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )

2020年吉林市中考数学一模试题及答案

A .3.5

B .3

C .4

D .4.5

5.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()

A .

()1

1362

x x -= B .

()1

1362

x x += C .()136x x -= D .()136x x +=

6.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )

2020年吉林市中考数学一模试题及答案

A .2x 2-25x+16=0

B .x 2-25x+32=0

C .x 2-17x+16=0

D .x 2-17x-16=0

7.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )

2020年吉林市中考数学一模试题及答案

A .2

B .3

C .4

D .

8.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )

A .(1,2,1,2,2)

B .(2,2,2,3,3)

C .(1,1,2,2,

3)

D .(1,2,1,1,2)

9.下面的几何体中,主视图为圆的是( )

A .

B .

C .

D .

10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )

2020年吉林市中考数学一模试题及答案

A.15.5,15.5B.15.5,15C.15,15.5D.15,15

11.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()

2020年吉林市中考数学一模试题及答案

A.50°B.20°C.60°D.70°

12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()

A.B.

C.D.

二、填空题

13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:

抽取的体检表

数n

501002004005008001000120015002000色盲患者的频

数m

37132937556985105138色盲患者的频

率m/n

0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).

14.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=4

3

,则CD=

_____.

2020年吉林市中考数学一模试题及答案

15.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36

387

2019

4009

19970

40008

“摸出黑球”的频率 (结果保留小数点后三位)

0.360

0.387

0.404

0.401

0.399

0.400

根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 16.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =

k

x

的图象上,则k 的值为________.

2020年吉林市中考数学一模试题及答案

17.已知62x =

,那么222x x -的值是_____.

18.不等式组0

125x a x x ->??->-?

有3个整数解,则a 的取值范围是_____.

19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量

100 200 500 1000 2000 A

出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B

出芽种子数 96 192 486 977 1946 发芽率

0.96

0.96

0.97

0.98

0.97

下面有三个推断:

①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;

②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;

③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是

__________(只填序号).

20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是

三、解答题

21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.

(1)每台A,B两种型号的机器每小时分别加工多少个零件?

(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?

22.如图,在平面直角坐标系中,直线AB与函数y=k

x

(x>0)的图象交于点A(m,

2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使

OD=1

2

OC,且△ACD的面积是6,连接BC.

(1)求m,k,n的值;

(2)求△ABC的面积.

2020年吉林市中考数学一模试题及答案

23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.

2020年吉林市中考数学一模试题及答案

(1)求证:BC是半圆O的切线;

(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.

24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.

2020年吉林市中考数学一模试题及答案

(1)求y与x之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

2020年吉林市中考数学一模试题及答案

(1)这次被调查的同学共有人;

(2)补全条形统计图,并在图上标明相应的数据;

(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.A

解析:A

【解析】

试题解析:察表格,可知这组样本数据的平均数为:

(0×4+1×12+2×16+3×17+4×1)÷50=;

∵这组样本数据中,3出现了17次,出现的次数最多,

∴这组数据的众数是3;

∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,

∴这组数据的中位数为2,

故选A.

考点:1.方差;2.加权平均数;3.中位数;4.众数.

2.D

解析:D

【解析】

试题分析:

2020年吉林市中考数学一模试题及答案

如图,过点C作CD⊥AB于点D.

∵在△ABC中,AC=BC,∴AD=BD.

①点P在边AC上时,s随t的增大而减小.故A、B错误;

②当点P在边BC上时,s随t的增大而增大;

③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;

④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.

考点:等腰三角形的性质,函数的图象;分段函数.

3.D

解析:D

【解析】

【分析】

由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.

【详解】

由题意得,2x-1≥0,

解得:x≥1

2

故选D.

【点睛】

本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.

4.B

解析:B

【解析】

【分析】

【详解】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,

∵BD平分∠ABC,

∴∠ABD=1

2

∠ABC=30°,

∴∠A=∠ABD,

∴BD=AD=6,

∵在Rt△BCD中,P点是BD的中点,

∴CP=1

2

BD=3.

故选B.

5.A

解析:A

【解析】

【分析】

共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.

【详解】

解:设有x个队参赛,根据题意,可列方程为:

1

2

x(x﹣1)=36,

故选:A.

【点睛】

此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 6.C

解析:C

【解析】

解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.

点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.

7.C

解析:C

【解析】

【分析】

由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即

可得出k的值.

【详解】

∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,

∴A(1,1),C(1,k),B(2,),D(2,k),

∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),

∵△OAC与△CBD的面积之和为,

∴(k-1)+ (k-1)=,

∴k=4.

故选C.

【点睛】

本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出

△OAC与△CBD的面积.

8.D

解析:D

【解析】

【分析】

根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.

【详解】

解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,

A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;

B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;

C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;

D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,

故选D.

【点睛】

本题考查规律型:数字的变化类.

9.C

解析:C 【解析】

试题解析:A 、的主视图是矩形,故A 不符合题意; B 、的主视图是正方形,故B 不符合题意; C 、的主视图是圆,故C 符合题意; D 、的主视图是三角形,故D 不符合题意; 故选C .

考点:简单几何体的三视图.

10.D

解析:D 【解析】 【分析】 【详解】

根据图中信息可知这些队员年龄的平均数为:

132146158163172181

268321

?+?+?+?+?+?+++++=15岁,

该足球队共有队员2+6+8+3+2+1=22人,

则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .

11.D

解析:D 【解析】

题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .

【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.

12.B

解析:B 【解析】 【分析】

根据轴对称图形与中心对称图形的概念求解. 【详解】

A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,

B 、是中心对称图形,也是轴对称图形,故该选项符合题意,

C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,

D 、是中心对称图形,不是轴对称图形,故该选项不符合题意.

故选B.

【点睛】

本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题

13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故

解析:07

【解析】

【分析】

随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.

【详解】

解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07

故答案为:0.07.

【点睛】

本题考查利用频率估计概率.

14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴

解析:6 5

【解析】

【分析】

延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.

【详解】

如图,延长AD、BC相交于点E,

2020年吉林市中考数学一模试题及答案

∵∠B=90°,

4 tan

3

BE

A

AB

==,

∴BE=

4

43

AB ?=,

∴CE=BE-BC=2,5=,

2020年吉林市中考数学一模试题及答案

∴3

sin 5

AB E AE =

=, 又∵∠CDE=∠CDA=90°, ∴在Rt △CDE 中,sin CD

E CE

=, ∴CD=36

sin 255

CE E ?=?

=. 15.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率

解析:4 【解析】 【分析】

大量重复试验下摸球的频率可以估计摸球的概率,据此求解. 【详解】

观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近, 故摸到白球的频率估计值为0.4; 故答案为:0.4. 【点睛】

本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.

16.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等

解析:-6 【解析】

因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x

),因此AC=-2x,OB=

2K

X

,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k

S x x

=?-?=菱形,解得 6.k =-

17.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的

运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确

解析:4

【解析】

【分析】

2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

将所给等式变形为x=

【详解】

2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

∵x=,

2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

∴x-=

2020年吉林市中考数学一模试题及答案

2020年吉林市中考数学一模试题及答案

x=,

∴(22

2020年吉林市中考数学一模试题及答案

∴226

x-+=,

2020年吉林市中考数学一模试题及答案

∴24

x-=,

故答案为:4

【点睛】

本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.

18.﹣2≤a<﹣1【解析】【分析】先解不等式组确定不等式组的解集(利用含a 的式子表示)根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解不等式x﹣a>0得

解析:﹣2≤a<﹣1.

【解析】

【分析】

先解不等式组确定不等式组的解集(利用含a的式子表示),根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.

【详解】

解不等式x﹣a>0,得:x>a,

解不等式1﹣x>2x﹣5,得:x<2,

∵不等式组有3个整数解,

∴不等式组的整数解为﹣1、 0、1,

则﹣2≤a<﹣1,

故答案为:﹣2≤a<﹣1.

【点睛】

本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确

解析:②③

【解析】分析:

根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.

详解:

(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;

(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;

(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.

故答案为:②③.

点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.

20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式

解析:k≥,且k≠0

【解析】

试题解析:∵a=k,b=2(k+1),c=k-1,

∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,

解得:k≥-,

∵原方程是一元二次方程,

∴k≠0.

考点:根的判别式.

三、解答题

21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.

【解析】

【分析】

(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;

-台,根据每小时加工零件的总量(2)设A型机器安排m台,则B型机器安排(10m)

+?型机器的数量结合每小时加工的零件不少于72件且不能超过=?型机器的数量6B

8A

76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.

【详解】

(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,

依题意,得:

8060

x2x

=

+

解得:x=6,

经检验,x=6是原方程的解,且符合题意,

x28

∴+=.

答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;

(2)设A型机器安排m台,则B型机器安排(10m)

-台,

依题意,得:

()

() 861072 861076

m

m m

π

?+-

?

?

+-

??

?,

解得:6m8

剟,

m

Q为正整数,

m678

∴=、、,

答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】

本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1) m=4,k=8,n=4;(2)△ABC的面积为4.

【解析】

试题分析:(1)由点A的纵坐标为2知OC=2,由OD=OC知OD=1、CD=3,根据△ACD 的面积为6求得m=4,将A的坐标代入函数解析式求得k,将点B坐标代入函数解析式求得n;

(2)作BE⊥AC,得BE=2,根据三角形面积公式求解可得.

试题解析:(1)∵点A的坐标为(m,2),AC平行于x轴,

∴OC=2,AC⊥y轴,

∵OD=OC,

∴OD=1,

∴CD=3,

∵△ACD的面积为6,

∴CD?AC=6,

∴AC=4,即m=4,

则点A 的坐标为(4,2),将其代入y=可得k=8,

∵点B (2,n )在y=的图象上,

∴n=4;

(2)如图,过点B 作BE ⊥AC 于点E ,则BE=2,

2020年吉林市中考数学一模试题及答案

∴S △ABC =AC?BE=×4×2=4,

即△ABC 的面积为4.

考点:反比例函数与一次函数的交点问题. 23.(1)见解析;(2)AD=4.5. 【解析】 【分析】

(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可; (2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长. 【详解】

(1)证明:∵AB 是半圆O 的直径, ∴BD ⊥AD , ∴∠DBA+∠A=90°, ∵∠DBC=∠A ,

∴∠DBA+∠DBC=90°即AB ⊥BC , ∴BC 是半圆O 的切线; (2)解:∵OC ∥AD , ∴∠BEC=∠D=90°, ∵BD ⊥AD ,BD=6, ∴BE=DE=3, ∵∠DBC=∠A , ∴△BCE ∽△BAD ,

=CE BE BD AD ,即43

6=AD

【点睛】

本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.

24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元. 【解析】 【分析】

(1)可用待定系数法来确定y 与x 之间的函数关系式;

(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;

(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围. 【详解】 (1)由题意得:4030055150k b k b +=??

+=? 10

700

k b =-???=?.

故y 与x 之间的函数关系式为:y=-10x+700, (2)由题意,得 -10x+700≥240, 解得x≤46,

设利润为w=(x-30)?y=(x-30)(-10x+700),

2020年吉林市中考数学一模试题及答案

w=-10x 2+1000x-21000=-10(x-50)2+4000, ∵-10<0,

∴x <50时,w 随x 的增大而增大, ∴x=46时,w 大=-10(46-50)2+4000=3840,

答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元; (3)w-150=-10x 2+1000x-21000-150=3600, -10(x-50)2=-250, x-50=±5, x 1=55,x 2=45, 如图所示,由图象得:

当45≤x≤55时,捐款后每天剩余利润不低于3600元.

此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.(1)1000,(2)答案见解析;(3)900.

【解析】

【分析】

(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】

解:(1)这次被调查的学生共有600÷60%=1000人,

故答案为1000;

(2)剩少量的人数为1000﹣(600+150+50)=200人,

补全条形图如下:

2020年吉林市中考数学一模试题及答案

(3),

答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.

【点睛】

考查统计知识,考查扇形图的理解,难度较容易.

相关文档
  • 吉林省中考数学试题

  • 吉林省中考数学真题

  • 吉林省中考数学

  • 吉林省中考数学试卷

  • 吉林省中考数学模拟

  • 吉林省中考数学压轴题

相关文档推荐: