当前位置:文档之家› 华工信号与系统 实验四

华工信号与系统 实验四

华工信号与系统 实验四
华工信号与系统 实验四

实验四 时域抽样与频域抽样

1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

)102cos()(1t t x ?=π )502cos()(2t t x ?=π )0102cos()(3t t x ?=π

(1) 程序如下: t0 = 0:0.001:0.1; x0 =cos(2*pi*10*t0); plot(t0,x0,'r') hold on

%按50Hz 抽样得到序列。 Fs = 50; t=0:1/Fs:0.1;

x=cos(2*pi*10*t); stem(t,x); hold off

title('连续信号及其抽样信号') 结果如图:

(2)程序如下:

t0 = 0:0.001:0.1;

x0 =cos(2*pi*50*t0);

plot(t0,x0,'r')

hold on

%按50Hz抽样得到序列。Fs = 50;

t=0:1/Fs:0.1;

x=cos(2*pi*50*t);

stem(t,x);

hold off

title('连续信号及其抽样信号') 结果如图:

(3)程序如下:

t0 = 0:0.001:0.1;

x0 =cos(2*pi*100*t0);

plot(t0,x0,'r')

hold on

%按50Hz抽样得到序列。Fs = 50;

t=0:1/Fs:0.1;

x=cos(2*pi*100*t);

stem(t,x);

hold off

title('连续信号及其抽样信号') 结果如图:

2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。

x(t)频率最高为101Hz ,确定抽样频率为202Hz

程序如下:

t0 = 0:0.001:1;

x0 =cos(2*pi*t0).*cos(pi*200*t0); plot(t0,x0,'r') hold on Fs = 202; t=0:1/Fs:1;

x=cos(2*pi*t).*cos(pi*200*t); stem(t,x); hold off

title('连续信号及其抽样信号')

结果如图:

3. 对连续信号)4cos()(t t x π=进行抽样以得到离散序列,并进行重建。 (1) 生成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。

(2) 以Hz f sam 10=对信号进行抽样,画出在10≤≤t 范围内的抽样序列x [k ];利用抽样内插函数???? ?

?=???

??=sam r f T T t Sa t h 1)(,π恢复连续时间信号,画出重建信号)(t x r 的波形。)(t x r 与)(t x 是否相同,为什么?

(3) 将抽样频率改为Hz f sam 3=,重做(2)。

(1) 程序如下 t0=0:0.001:4; x0=cos(4*pi*t0); plot(t0,x0,'r') 结果如图:

(2)程序如下:

t0=0:0.001:1;

x0=cos(2*pi*2*t0);

subplot(2,1,1)

plot(t0,x0,'r')

hold on

Fs=10;

t=0:1/Fs:1;

x=cos(2*pi*2*t);

stem(t,x);

hold off

ts=1/Fs

dt=ts/50;

t1=0:dt:1;

tp=1;

n=0:tp/ts;

tmn=ones(length(n),1)*t1-n'*ts*ones(1,length(t1)); xr1=sinc(Fs*tmn);

x2=x*xr1;

subplot(2,1,2)

plot(t1,x2);

结果如图:

x(t)与xr(t)几乎相同,因为采样频率足够大,取样密集,重现出了原来的波形。

(3)程序如下:

t0=0:0.001:1;

x0=cos(2*pi*2*t0);

subplot(2,1,1)

plot(t0,x0,'r')

hold on

Fs=3

t=0:1/Fs:1;

x=cos(2*pi*2*t);

stem(t,x);

hold off

ts=1/Fs

dt=ts/50;

t1=0:dt:1;

tp=1;

n=0:tp/ts;

tmn=ones(length(n),1)*t1-n'*ts*ones(1,length(t1));

xr1=sinc(Fs*tmn);

x2=x*xr1;

subplot(2,1,2)

plot(t1,x2);

结果如图:

x(t)与xr(t)不相同,因为采样频率过小,取样疏散,无法重现原来的波形。

4. 已知序列x [k ]={1,3,2,-5;k=0, 1, 2, 3}, 分别取N=2,3,4,5对其频谱)(

j e X 进行抽样,再由频率抽样点恢复时域序列,观察时域序列是否存在混叠,有何规律?

程序如下:

x=[1,3,2,-5]; L=4; N=256; omega=[0:N-1]*2*pi/N;

X0=1+3*exp(-j*omega)+2*exp(-2*j*omega)-5*exp(-3*j*omega);

plot(omega./pi,abs(X0)); xlabel('Omega/PI'); hold on

N=2; % /3/4/5 omegam=[0:N-1]*2*pi/N;

Xk=1+3*exp(-j*omegam)+2*exp(-2*j*omegam)-5*exp(-3*j*omegam); stem(omegam./pi,abs(Xk),'r','o'); hold off 结果如图:

N=2

N=3

N=4

N=5 结论:N=2,3时发生混叠,N=4,5时没有混叠

可见:

N≤L时,恢复时域序列发生混叠;

N>L时,恢复时域序列不发生混叠情况;

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

华南理工大学信号与系统实验报告材料

Experiment Export Name: Student No: Institute:

Dec 26, 2011 Experiment Purposes 1. Be familiar with the software Environment and Programming flow in MATLAB5.3. 2. Learn how to draw the signal waveform and determine the signal properties. 3. Calculate the convolution, frequency response and system output by using the functions: conv, freqz, freqs and filter. Experiment Contents

实验项目一:MATLAB编程基础及典型实例 ①画出离散时间正弦信号并确定基波周期(注:pi 表示圆周率) 1 x1[n]=sin(pi*4/4)*cos(pi*n/4) 2 x2[n]=cos(pi*n/4)*cos(pi*n/4) 3 x3[n]=sin(pi*n/4)*cos(pi*n/8) program for matlab n=0:31; x1=sin(pi*n/4).*cos(pi*n/4); x2=cos(pi*n/4).*cos(pi*n/4); x3=sin(pi*n/4).*cos(pi*n/8); subplot(3,1,1); stem(n,x1); title('x1'); subplot(3,1,2); stem(n,x2); title('x2'); subplot(3,1,3); stem(n,x3); title('x3'); grid on;

《信号与系统》实验四

信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩

0≤n 的幅频特性曲线,由此图可以确

1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500) ()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。图1给出了)(t x a 的幅频特性曲线,由此图可以确 定对)(t x a 采用的采样频率。分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频

特性)( j e X 。并观察是否存在频谱混叠。 源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi; T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x) title('理想采样序列 fs=1000Hz') % 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k; X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X); subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图

fs=300HZ fs=200HZ

信号与系统实验2

信号与系统实验 信息学院 通信工程 20101060163 荣华杰 8.1已知描述连续时间系统的微分方程和激烈信号f (t )为y''(t)+4y'(t)+2y(t)=f''(t)+3f(t),f(t)=) (t u e t -试用MATLAB 的lsim 函数求出上述系统在0-10秒时间零状态响应y (t )的值,并绘出系统零状态响应的时域仿真波形。 y''(t)+4y'(t)+2y(t)=f''(t)+3f(t),f(t)=)(t u e t - a=[1 4 2]; b=[1 0 3]; sys=tf(b,a); t=0:1:10; f=exp(-(t)); y=lsim(sys,f,t) y = 1.0000 0.1721 0.3629 0.3138 0.2162 0.1356 0.0811 0.0472 0.0271 0.0153 0.0086 波形图: a=[1 4 2]; b=[1 3]; sys=tf(b,a); t=0:0.01:10; f=exp(-2*t); lsim(sys,f,t) 8.3已知描述系统的微分方程如下,试用MATLAB 求系统在0-10秒时间范围内冲激响应和阶跃响应的数值解,并绘出系统冲击响应和阶跃响应的时域波形。 (3)y''(t)+4y'(t)+5y(t)=f'(t) 冲激响应数值解: a=[1 4 5]; b=[1 0]; y=impulse(b,a,0:1:10) y =1.0000

-0.1546 -0.0409 -0.0032 0.0003 0.0001 0.0000 -0.0000 -0.0000 -0.0000 0.0000 阶跃响应数值解: a=[1 4 5]; b=[1 0]; y=step(b,a,0:1:10) y = 0 0.1139 0.0167 0.0003 -0.0003 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 冲激响应、阶跃响应的时域波形: a=[1 4 5]; b=[1 0]; subplot(1,2,1) step(b,a,10) subplot(1,2,2) impulse(b,a,10) 8.4已知描述离散系统的差分方程和输入系列x(n)如下,试用MATLAB的filter函数求出上述系统在0-20时间采样点范围内零状态响应y(n)的系列样值,并绘出系统零状态响应的时域波形。(2)y(n)+(1/2)y(n-1)=x(n)+2x(n-1),x(n)=2cos(n*pi/3)*u(n) 零状态响应y(n)的系列样值: a=[1 1/2]; b=[1 2];

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号与系统实验6

信号与系统实验(六) 班级11083415 章仕波(11081522) 刘贺洋(11081515) 实验内容 1离散时间傅里叶变换 (1)下面参考程序是如下序列在范围44πωπ-≤≤的离散时间傅里叶变换 ()210.6j j j e F e e ω ω ω --+=- %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi;8*pi/511;4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi ’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi ’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi ’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) xlabel(‘omega/\pi ’); ylabel(‘以弧度为单位的相位’); 修改程序,在范围0ωπ≤≤内计算如下有限长序列的离散时间傅里叶变换 h[n]=[1 2 3 4 5 6 7 8 9] (2)利用(1)的程序,通过比较结果的幅度谱和相位谱,验证离散时间傅里叶变换的时移

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

华工电信信号与系统实验报告二(杨萃老师)

实验报告(二) 姓名:陈耿涛 学号:201030271709 班级:信工五班 日期:2012年4月23号实验(二)周期信号傅里叶分析及其MATLAB实现 ———特征函数在LTI系统傅里叶分析中的应用 一、实验目的 1、掌握特征函数在系统响应分析中的作用 2、正确理解滤波的概念 二、实验内容 1、定义一个包含在区间0≤n≥10上的x[n]向量x2,并利用y2=filter(h,1,x2);计算在 这个区间内的卷积结果,利用stem([0:10],y2)画出这一结果,并确认与图2.2一致。 2、LTI系统的特征函数: 现考虑下列各输入信号: x1n=e j(π/4)n x2n=sin?(πn 8+π 16 ) x3n=(9/10)n x4n=n+1 当每个信号是由下面线性常系数差分方程: y[n]-0.25y[n-1]=x[n]+0.9x[n-1] (3.3) 描述的因果LTI的输入时,要计算输出y1[n]—y4[n]. (a)利用冒号(:)算符,创建一个包含在区间?20≤n≤100内时间序号的向量n,利用这个向量,定义x1,x2,x3和x4为包含这四个信号x1[n]—x4[n]在向量n 区间内的值。 (b)定义向量a和b用以表征由(3.3)式所表示的系统,用这两个向量和filter 计算当输入分别是x1—x4时,包含由(3.3)式表征的系统输出的向量y1,y2,y3和y4。对于每个输出,在区间0≤n≤100上画出适当标注的图。对于y1需要分别画出实部和虚部的图。将输入和输出的图作比较,指出哪些输入时这个LTI系统的特征函数。 (c)要确认哪些输入时特征函数,并计算对这些特征函数相应的特征值。利用向量H=y./x证明,它计算出在每个时间序号上输入和输出序列的比值。对每个输入/输出信号对计算H1—H2,并在区间0≤n≤100内画出适当标注的H图。 3、有下列信号: x1n=1,0≤n≤7

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

华南理工大学信号与系统实验,电信学院

实验三 利用DFT 分析连续信号频谱 一、实验目的 应用离散傅里叶变换(DFT),分析模拟信号x (t )的频谱。深刻理解利用DFT 分析模拟信号频谱的原理,分析过程中出现的现象及解决方法。 二、 实验原理 连续周期信号相对于离散周期信号,连续非周期信号相对于离散非周期信号,都可以通过时域抽样定理建立相互关系。因此,在离散信号的DFT 分析方法基础上,增加时域抽样的步骤,就可以实现连续信号的DFT 分析。 三、实验内容 1. 利用FFT 分析信号)(e )(2t u t x t -=的频谱。 (1) 确定DFT 计算的各参数(抽样间隔,截短长度,频谱分辨率等); 答:选取fm=25Hz 为近似的最高频率,则抽样间隔T=)2/(1m f =0.02s 选取6=p T s 进行分析,则截短点数为N==T T p /300 采用矩形窗,确定频域抽样点数为512点。 Matlab 函数如下:%对连续信号x=e(-2t)分析 fsam=50;Tp=6; N=512; T=1/fsam; t=0:T:Tp; x=exp(-2*t); X=T*fft(x,N); subplot(2,1,1);plot(t,x); xlabel('t');title('时域波形 N=512');legend('理论值'); w=(-N/2:N/2-1)*(2*pi/N)*fsam; y=1./(j*w+2); subplot(2,1,2);plot(w,abs(fftshift(X)),w,abs(y),'r-.'); title('幅度谱 N=512');xlabel('w'); legend('理论值','计算值',0); axis([-10,10,0,1.4])

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号与系统实验二

实验二 常用信号分类与观察 一、实验目的 1、观察常用信号的波形特点及产生方法。 2、学会使用示波器对常用波形参数的测量。 二、实验内容 1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。 2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。 三、实验仪器 1、信号与系统实验箱一台(主板)。 2、20MHz 双踪示波器一台。 四、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。 1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。其波形如下图所示: 图 1-5-1 正弦信号 2、指数信号:指数信号可表示为at Ke t f =)(。对于不同的a 取值,其波形表现为不同的形式,如下图所示:

图 1-5-2 指数信号 3、指数衰减正弦信号:其表达式为 ?? ???><=-)0()sin()0(0)(t t Ke t t f at ω 其波形如下图: 图 1-5-3 指数衰减正弦信号 4、抽样信号:其表达式为: sin ()t Sa t t = 。)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

华工信号与系统实验五信工7班

实验五 连续系统分析 一、实验目的 深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义,掌握根据系统函数的零极点设计简单的滤波器的方法。掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。 二、 实验原理 MATLAB 提供了许多可用于分析线性时不变连续系统的函数,主要包含有系统函数、系统时域响应、系统频域响应等分析函数。 1. 连续系统的时域响应 连续时间LTI 系统可用如下的线性常系数微分方程来描述: 。 已知输入信号x (t )以及系统初始状态,就可以求出系统的 响应。MATLAB 提供了微分方程的数值计算的函数,可以计算上述n 阶微分方程描述的连续系统的响应,包括系统的单位冲激响应、单位阶跃响应、零输入响应、零状态响应和完全响应。 在调用MATLAB 函数时,需要利用连续系统对应的系数函数。对微分方程进行Laplace 变换即可得系统函数: 在MATLAB 中可使用向量和向量分别保存分母多项式和分子多项式的系数: 这些系数均按s 的降幂直至s 0排列。 (1) 连续系统的单位冲激响应h (t )的计算 impulse(sys)计算并画出系统的冲激响应。参数:sys 可由函数tf(b,a)获得。其中: )()( )()(01)1(1)(t y a t y a t y a t y a n n n n ++++-- )()( )()(01)1(1)(t x b t x b t x b t x b m m m m ++++=-- )0(,),0('),0() 1(--- - n y y y 0 11 10 111)()()(a s a s a s a b s b s b s b s X s Y s H n n n n m m m m ++++++++==---- ],,,,[011a a a a a n n -=],,,,[011b b b b b m m -=

信号与系统实验

序列号:__ 信号与系统实验报告 课程名称信号与系统 学院信息工程学院 年级班别电子信息工程1班 学号 3116002166 学生姓名陈俊杰 指导教师黄国宏 2018年6月15日

目录 实验二LTI系统的响应 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容 (3) 四、程序清单及实验结果 (4) 五、实验总结 (13) 实验三连续时间信号的频域分析 一、实验目的 (14) 二、实验原理 (14) 三、实验内容 (17) 四、程序清单及实验结果 (17) 五、实验总结 (25) 实验五连续信号与系统的S域分析 一、实验目的 (26) 二、实验原理 (26) 三、实验内容 (27) 四、程序清单及实验结果 (28) 五、实验总结 (36)

实验二 LTI 系统的响应 一、实验目的 1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法 2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法 3. 熟悉应用MATLAB 实现求解系统响应的方法 二、实验原理 1.连续时间系统 对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程:() ()00()()n m i j i j i j a y t b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生的零状态响应称为系统的单位冲激响应,用h(t)表示。若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。 系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。 在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。 若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。 在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。lsim( )函数不仅能

答案-信号与系统实验报告.

大连理工大学 本科实验报告 课程名称:___信号与系统实验学院:信息与通信工程学院专业:电子信息工程 班级: 学号: 学生姓名: 2012年12月11日

信号与系统实验 项目列表 信号的频谱图 Signals Frequency Spectrum 连续时间系统分析 Analysis for Continuous-time System 信号抽样 Signal Sampling 离散时间LTI系统分析 Analysis for Discrete-time LTI System 语音信号的调制解调 Modulation and Demodulation for Audio Signals Simulink?模拟信号的调制解调 Modulation and Demodulation for Analog Signals in Simulink ?

实验1信号的频谱图 一、实验目的 1. 掌握周期信号的傅里叶级数展开; 2. 掌握周期信号的有限项傅里叶级数逼近; 3. 掌握周期信号的频谱分析; 4. 掌握连续非周期信号的傅立叶变换; 5. 掌握傅立叶变换的性质。 二、实战演练(5道题) 1.已知周期三角信号如下图1-5所示,试求出该信号的傅里叶级数,利用MA TLAB编程 实现其各次谐波的叠加,并验证其收敛性。 解: 调试程序如下: clc clear t=-2:0.001:2; omega=pi; y=-(sawtooth(pi*t,0.5)/2+0.5)+1; plot(t,y),grid on; xlabel('t'),ylabel('周期三角波信号'); axis([-2 2 -0.5 1.5]) n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2: n_max(k); c=n.^2; b=4./(pi*pi*c); x=b*cos(omega*n'*t)+0.5; figure; plot(t,y,'b'); hold on; plot(t,x,'r'); hold off; xlabel('t'),ylabel('部分和的波形'); axis([-2 2 -0.5 1.5]);grid on; title(['最大谐波数=',num2str(n_max(k))]) end 运行结果如下:

信号与系统实验四 答案

实验四 基于窗函数的FIR DF 的设计 提示: 1. Matlab 中提供了很多常用的窗函数,其中一些窗函数的调用形式为: 矩形窗:w=boxcar(N) 三角形窗:w=bartlett(N) 汉宁窗:w=hanning(N) 哈明窗:w=hamming(N) 布莱克曼窗:w=blackman(N) 其中,输入参数N 表示窗口的长度,返回的变量w 是一个长度为N 的列向量,表示窗函数在这N 点的取值。 2. b=fir1(N,Wc,'ftype',Window) fir1函数用来设计FIR 滤波器。其中N 为滤波器的阶数;Wc 是截止频率,其取值在0~1之间,它是以π为基准频率的标称值,设计低通和高通滤波器时,Wc 是标量,设计带通和带阻滤波器时,Wc 是1×2的向量;设计低通和带通滤波器时,无需 'ftype',当ftype=high 时,设计高通滤波器,当ftype=stop 时,设计带阻滤波器;Window 表示设计滤波器所采用的窗函数类型,Window 的长度为N+1,若Window 缺省,则fir1默认使用哈明窗;b 对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。 需注意)(n h 的长度与滤波器的阶数间的关系。FIR 滤波器的系统函数可表示为: ∑-=-=1 )()(N n n z n h z H )(n h 的长度为N ,而滤波器的阶数为1-N 阶。 3. 求数字滤波器的频率响应 h=freqz(b,a,w) 其中,b 和a 分别为系统函数)(z H 的分子多项式和分母多项式的系数。对于FIR 滤波器,此处的b 即为h(n),a 可看作1。 实验题目: 1. 分别用矩形窗和哈明窗设计FIR 低通滤波器,设窗宽11=N ,截止频率rad c πω 2.0=,要求绘出两种窗函数设计的滤波器幅频曲线,并进行比较。

信号与系统实验2

信号与系统实验 信息学院通信工程 20101060163 荣华杰 e t- 8.1已知描述连续时间系统的微分方程和激烈信号f(t)为y''(t)+4y'(t)+2y(t)=f''(t)+3f(t),f(t)=)(t u 试用MATLAB的lsim函数求出上述系统在0-10秒时间零状态响应y(t)的值,并绘出系统零状态响应的时域仿真波形。 e t- y''(t)+4y'(t)+2y(t)=f''(t)+3f(t),f(t)=)(t u a=[1 4 2]; b=[1 0 3]; sys=tf(b,a); t=0:1:10; f=exp(-(t)); y=lsim(sys,f,t) y = 1.0000 0.1721 0.3629 0.3138 0.2162 0.1356 0.0811 0.0472 0.0271 0.0153 0.0086 波形图: a=[1 4 2]; b=[1 3]; sys=tf(b,a); t=0:0.01:10; f=exp(-2*t); lsim(sys,f,t)

8.3已知描述系统的微分方程如下,试用MATLAB求系统在0-10秒时间范围内冲激响应和阶跃响应的数值解,并绘出系统冲击响应和阶跃响应的时域波形。 (3)y''(t)+4y'(t)+5y(t)=f'(t) 冲激响应数值解: a=[1 4 5]; b=[1 0]; y=impulse(b,a,0:1:10) y =1.0000 -0.1546 -0.0409 -0.0032 0.0003 0.0001 0.0000 -0.0000 -0.0000 -0.0000 0.0000 阶跃响应数值解: a=[1 4 5]; b=[1 0]; y=step(b,a,0:1:10) y = 0 0.1139 0.0167 0.0003 -0.0003 -0.0000 -0.0000

相关主题
文本预览
相关文档 最新文档