当前位置:文档之家› 论文-Buck变换器双闭环控制仿真研究

论文-Buck变换器双闭环控制仿真研究

论文-Buck变换器双闭环控制仿真研究
论文-Buck变换器双闭环控制仿真研究

毕业设计(论文)说明书

题目:Buck变换器双闭环控制仿真研究

系名信息工程系

专业自动化

学号6011XXXXXXX

学生姓名XXX

指导教师XXX

2015年6月5日

毕业设计(论文)任务书

题目:Buck变换器双闭环控制仿真研究

系名信息工程系

专业自动化

学号6011XXXXXX

学生姓名XXX

指导教师XXX

职称副教授

2014年12月15日

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目的等。)

便携式电子产品的广泛应用,推动了开关电源技术的迅速发展。因为开关电源具有体积小、重量轻以及功率密度和输出效率高等诸多优点,已经逐渐取代了传统的线性电源,随之成为电源芯片中的主流产品。随着开关电源技术应用领域的扩大,对开关电源的要求也日益提高,高效率、高可靠性以及高功率密度成为趋势,这就对开关电源芯片设计提出了新的挑战。其中对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。其中品种最多,发展最快的当属降压式(BUCK)。

我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。因此研究BUCK变换器的控制具有重要的理论和现实意义。

二、参考文献

[1] 丘涛文. 开关电源的发展及技术趋势[J]. 电力标准化与技术经济,2008,17(6):58-60.

[2] 张乃国. 一种脉冲频率调制型稳压电路的研究[J]. 电源世界,2007,10(4):21-23.

[3] 刘树林,输出本质安全型Buck-Boost DC-DC变换器的分析与设计,中国电机工程学报,

2008,28(3): 60-65.

[4] 马丽梅,Buck-boost DC-DC变换器的控制,河北工业大学学报,2008,37(4) :101-105.

[5] 刘树林,Buck-Boost变换器的能量传输模式及输出纹波电压分析,电子学报,2007,

20(5) :838-843.

[6] 彭力,新型大功率升降压型DC-DC变换器控制研究,船电技术,1999,3(1) :26-28.

[7] 钟久明,Buck-Boost变换器的本质安全特性分析及优化设计西安科技大学硕士学位论

文 2006.

[8] 高飞,蒋赢,赵小妹等,一种新型Buck-Boost变换器,电力电子技术2010 22(4):50-52.

[9] Xu Jianping,Yu Juebang.Equivalent circuit model of switches for SPICE simulation.IEE

Electronics,Letters,1988,V ol.24,No.7,437-438.

[10] Xu Jianping,Yu Juebang,Zeng H.SPICE simulation of switched DC-DC convert.IEEE

International Symposium on Circuits and Systems,1991,V ol.24,No.5,3032-3026. [11] 王海鹏,王立志,王卓. 基于1394的数据传输电路[J]. 现代电子技术,2009,32(21):

52-54.

[12] 王久和. 电压型PWM整流器的非线性控制[M]. 第1版,北京: 机械工业出版社, 2008.

[13] 师娅,唐威. 一种电流型PWM控制芯片的设计[J]. 微电子学与计算机,2007,24(8):

145-148.

三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。)

对直流Buck变换器进行数学建模,利用Simulink研究双闭环PID控制算法,实现变换器电压的鲁棒输出。

具体内容要求如下:

1.熟悉Buck变换器双闭环控制的工作原理及电路设计

2.掌握MATLAB/Simulink软件的使用

3.掌握对Buck变换器双闭环控制的数学建模

4.验证双闭环控制的工作原理,采用Simulink对电路做仿真分析

5.完成毕业设计论文。

指导教师(签字)

年月日

审题小组组长(签字)

年月日

天津大学仁爱学院本科生毕业设计(论文)开题报告

课题名称Buck变换器双闭环控制仿真研究

系名信息工程系专业名称自动化

学生姓名XXX 指导教师XXX

一.课题的来源与意义

随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。这种传统稳压技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、可靠性高等优点。但由于调整管静态损耗大,需要安装一个很大的散热器给它散热。而且由于变压器工作在50 Hz的工频上,所以其重量较大。又因为调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间需承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右[1]。受这些缺点的限制,线性稳压电源很难满足现代电子设备发展的要求。20世纪50年代,美国宇航局以小型化、重量轻为目标,开发了开关电源。经过近半个世纪的发展,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代线性稳压电源并得到了广泛应用[2],各种电池供电的电子产品如照相机、摄像机、录像机、个人数字助理、手机、手提电脑都需要DC/DC变换器等开关电源芯片[3]。

开关电源技术于20世纪80年代引入我国,随着计算机、通讯、汽车等行业的迅速发展,我国开关电源市场不断增长,开关电源控制器芯片的研究已成为国内功率电子学领域中颇受关注的热点[4]。我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。因此研究BUCK变换器的性能具有重要的理论和现实意义[5][6]。

二.国内外发展状况

DC/DC变换器是一种强非线性系统,由于电气参数的不确定性以及负载的多变性,使得DC/DC变换器的控制变得较为复杂。传统的控制方法都是基于线性系统理论,很难实现较好的动态性能。于是,进一步的研究在于对系统建立精确的数学模型和采用先进的控制算法。随着现代控制理论的发展,出现了许多DC-DC变换器新的控制方法以提高系统性能。例如:(1) 双线性理论;(2) 鲁棒控制;(3) 滑模变结构控制;(4) 自适应控制;(5) 智能控制。这些新控制方法的提出,使DC/DC 变换器的稳态误差趋于零,动态性能获得很大改善,而且对参数的不确定性和负载的多变性也有很好的鲁棒性。

1、双线性理论

此系统为非线性系统,能够取得较好的控制效果。文献[7]应用此模型对Boost 电路进行闭环控制,不仅保证了充足的稳定裕量,而且实现了较好的瞬态响应。此方法一般适用于两个状态变量以上的DC/DC变换器拓扑。但这种控制方案的缺点是忽略了输入电压扰动,若输入电压扰动不为零,将会影响系统的性能甚至导致系统不稳定[7]。

2、鲁棒控制

鲁棒控制是处理外加扰动和不确定性模型的有力工具,基于DC/ DC变换器的线性化小信号建模。文献[8]中提出了两个自由度控制的设计思想,来实现DC/ DC 变换器的鲁棒控制。它能够对负载和输入电压的变化保证充足的鲁棒性。

虽然鲁棒控制解决了输入电压变化的问题,但其线性化小信号建模精确度不高,而且控制器结构不可变,下面介绍的滑模控制和自适应控制,这两种控制能够实现更理想的控制效果[8]。

3、滑模变结构控制

滑模变结构理论由前苏联学者欧曼尔扬诺夫( S.V. Emelyanov)、尤特金( V.

I.Utkin)于20世纪50年代提出并发展至今。滑模变结构控制与常规控制的根本区别在于控制的不连续性,它使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。因此,它特别适用于DC/DC变换器这样的非线性系统和离散系统。

4、自适应控制

20世纪50年代初提出的自适应控制方法是根据响应系统与目标系统对应变量的偏差和控制参数的偏差来调整响应系统的参数变化,最终使响应系统与目标系统同步。

文献[9]、[10]分别提出了PI自适应串级控制和自适应PID串级控制,并很好地应用于DC/ DC升压变换器中。此外,逆向自适应控制,双环自适应控制和模型参考自适应控制等均已成功用于DC/ DC变换器。

这些控制方法的优点是控制器结构灵活,能够实现精确控制,并对参数变化具有很好的鲁棒性。但由于其设计需要在线估计或辨识参数,导致实现困难,而且存在实时性问题。自适应控制与其它控制方法以及智能控制相结合可以避免这些问题并得到更好的控制效果[9][10]。

5、智能控制

智能控制是现代控制理论的发展,包括模糊控制、神经网络控制等先进控制策略。这些方法不需要建立精确的数学模型,对系统参数变化具有很好的鲁棒性,因此用于DC/DC变换器的控制中,可以简化非常复杂的建模问题而更适于实际应用。

三.研究目标

对直流Buck变换器进行数学建模,利用Simulink研究双闭环PID控制算法,实现变换器电压的鲁棒输出。

四.研究内容

1.熟悉Buck变换器双闭环控制的工作原理及电路设计。

2.掌握对Buck变换器双闭环控制的数学建模。

3.验证双闭环控制的工作原理,采用Simulink对电路做仿真分析。

五.研究方法及手段

1.通过阅读相关书籍文献,熟悉Buck变换器双闭环控制的工作原理及电路设计,并进行数学建模。

2.设计Buck电路器双闭环控制的闭环参数与不同补偿方法。

3.对Buck电路闭环仿真,并根据要求的功能和性能指标进行误差分析。

4.查阅Buck变换器双闭环控制设计实例,总结经验。

课题系统框架图

六.进度安排

2014.12.7—2015.2.28 了解课题,查阅相关文献资料,完成开题报告; 2015.3.1—2015.3.15 查阅关于BUCK 电路的相关书籍,熟悉其原理及其应用; 2015.3.16—2015.3.31 查找相关外文资料并翻译外文资料,完成中期报告; 2015.4.1—2015.4.15 熟悉MATLAB 仿真软件,进行仿真分析,调整电路结构,元件和仿真参数;

2015.4.16—2015.5.1 对仿真电路和数学模型进行测试,误差分析,整理资料; 2015.5.2—2015.6.1 按要求认真撰写毕业设计报告,准备毕业设计答辩。 七.实验方案的可行性分析

Buck 变换器应用广泛,在实际应用上有着丰富的设计经验;并且此实验只需要用MATLAB 软件仿真。因此无论从理论的成熟角度来讲,还是从实验条件的具备方面来说,这个课题都具备良好的可操作性,此方案可行。 八.参考文献

[1] 何宏,魏克新,王红军,等. 开关电源电磁兼容性[M]. 第1版,北京: 国防工业出版社,

2008:15-21.

[2] 丘涛文. 开关电源的发展及技术趋势[J]. 电力标准化与技术经济,2008,17(6):58-60. [3] T. Regan. Low dropout linear regulators improve automotive and battery-powered systems[M].

Nurnberg: Power conversion and Intelligent Motion, 1990. 65-69.

[4] 闫永亮. 浅论开关电源技术的发展趋势[J]. 中国科技信息,2009,21(16):137-138. [5] 张占松,蔡宜三. 开关电源的原理与设计[M]. 北京: 电子工业出版社,2006:56-61. [6] 刘树林,输出本质安全型Buck-Boost DC-DC 变换器的分析与设计,中国电机工程学报,

2008,28(3): 60-65.

[7] Chen F,CaiXS. Design of Feedback Control Laws for Switching Regulators Based on the Bilinear

Large Signal Model[J] . IEEE Transactions on Power Electronics. 1990,236-240.

Simulink 仿真

Buck 变换器 主电路设计

双闭环控制

电流内环设计

电压外环设计

[8] 苏彩虹,陆益民,朱学锋. DC/DC变换器的变结构控制策略[J] . 武汉科技大学学报,2003,

6:169-172.

[9] 吴忠,丑武胜. DC/DC升压变换器PI自适应串级控制[J]. 仪器仪表学报. 2003, 8: 345- 347.

[10] 吴忠,史永丽. DC/DC升压变换器自适应PID串级控制系统仿真研究[J] . 系统仿真学报.

2004, 5: 1013-1016.

选题是否合适:是□否□

课题能否实现:能□不能□

指导教师(签字)

年月日选题是否合适:是□否□

课题能否实现:能□不能□

审题小组组长(签字)

年月日

摘要

BUCK电路是一种降压斩波器,降压变换器输出电压平均值Uo总是小于输出电压U D。通常电感中的电流是否连续,取决于开关频率、滤波电感L以及电容C的数值。

简单的BUCK电路输出的电压不稳定,会受到负载和外部的干扰,加入补偿网络,可实现闭环控制。通过采样环节得到所需电压/电流信号,再与基准值进行比较,然后通过闭环控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK电路闭环控制系统。Buck电路的闭环控制有电压环控制、电流环控制以及二者结合的双闭环控制,此处采用双闭环控制:电流内环,电压外环。根据相关的电路设计适当的补偿网络对电路进行校正,提高电路系统输出性能。

本文首先概述了开关电源技术及DC/DC变换器控制方法的发展趋势,接着介绍了BUCK变换器的电路结构、工作原理及控制原理。最后进行了Buck变换器双闭环控制的仿真研究,其中首先介绍了电流内环结构和电压外环结构,然后利用Matlab进行了仿真验证。

关键词:Buck变换器;建模与仿真;双闭环控制;MATLAB

ABSTRACT

BUCK circuit is a step-down chopper, whose converter output voltage Uo is always lower than the average output voltage UD. Whether the current in the inductor is continuous depends on the value of the switching frequency, the filter inductance L and capacitance C generally.

Simple unstable BUCK circuit voltage subjects to electric burden and outside interference, adding the compensation network, thus, enabling closed-loop control. Obtained by sampling part of the required voltage/current signal , compared with a reference value again, then get the feedback signal by the closed loop controller, with the triangular wave . I compared to obtain a modulated switching waveform with the triangular wave as a switching signal to achieve a closed-loop circuit BUCK control system. The closed-loop control of Buck circuit has the voltage loop control, the current loop control and the double closed-loop control, double closed-loop control is used here: current inner loop control and voltage outer loop control. According to the relevant circuit design appropriate compensation network to correct the circuit, so as to improve the output performance of the circuit system.

This paper first summarizes the Switching Mode Power Supply technology and the development trend of DC/DC converter control method, then introduces the BUCK converter circuit structure, working principle and control principle. Finally, the simulation research on the double closed-loop control of buck converter, which first introduced the current inner loop and voltage outer loop structure, and then simulate them by MATLAB.

Keyword:Buck converter;modeling and simulation;double closed-loop control;

MATLAB

目录

第一章绪论 (1)

1.1 课题研究背景 (1)

1.2 课题发展现状 (1)

1.3 本文研究内容及结构 (3)

第二章 Buck变换器基本原理 (4)

2.1 Buck变换器工作原理 (4)

2.2 Buck变换器工作模态分析 (4)

2.3 Buck变换器外特性 (7)

第三章 Buck变换器主电路设计 (9)

3.1 占空比D (9)

3.2 滤波电感Lf (9)

3.3 滤波电容Cf (11)

3.4 开关管Q (11)

3.5 续流二极管D (12)

第四章 Buck变换器双闭环控制 (13)

4.1电路双闭环控制结构 (13)

4.2 电流内环设计 (13)

4.3 电压外环设计 (15)

第五章 Buck变换器闭环系统的仿真 (21)

5.1 开环Buck电路的建模及仿真 (21)

5.2 闭环Buck电路的建模及仿真 (22)

5.3 PI控制方法的仿真 (23)

5.4 PID控制方法的仿真 (25)

第六章总结与展望 (25)

参考文献 (29)

外文资料

中文译文

致谢

第一章绪论

1.1 课题研究背景

随着电子技术的快速发展,电子设备的种类越来越多,电子设备与人们的工作、生活的关系也日益密切。任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。这种传统稳压技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、可靠性高等优点。但由于调整管静态损耗大,需要安装一个很大的散热器给它散热。而且由于变压器工作在50 Hz 的工频上,所以其重量较大。又因为调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间需承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45 %左右[1]。受这些缺点的限制,线性稳压电源很难满足现代电子设备发展的要求。20世纪50年代,美国宇航局以小型化、重量轻为目标,开发了开关电源。经过近半个世纪的发展,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代线性稳压电源并得到了广泛应用[2],各种电池供电的电子产品如照相机、摄像机、录像机、个人数字助理、手机、手提电脑都需要DC/DC变换器等开关电源芯片[3]。

20世纪80年代,计算机全面实现开关电源化,率先完成计算机的电源换代。20世纪90年代,开关电源在电子、电气设备、家电领域得到了广泛的应用,开关电源技术进入快速发展时期。

对于非隔离的DC/DC开关电源,按照电路功能划分,有降压式(BUCK)、升压式(BOOST),还有升降压式(BUCK-BOOST)等。其中品种最多,发展最快的当属降压式(BUCK)[4]。

开关电源技术于20世纪80年代引入我国,随着计算机、通讯、汽车等行业的迅速发展,我国开关电源市场不断增长,开关电源控制器芯片的研究已成为国内功率电子学领域中颇受关注的热点。我国目前能源紧缺,而电源行业又是一个与能源消耗密切相关的行业,因此我们在设计DC/DC开关电源产品时,转换效率必须作为一个重要的指标加以考虑。尤其是随着采用3.6 V锂离子电池作为电源的消费类电子产品市场不断扩大,且功能和性能变得更多和更高,对适用于这类产品的BUCK变换器的性能提出了更高的要求。因此研究BUCK变换器的性能具有重要的理论和现实意义[5][6]。

1.2 课题发展现状

DC/DC变换器是一种强非线性系统,由于电气参数的不确定性以及负载的

多变性,使得DC/DC变换器的控制变得较为复杂。传统的控制方法都是基于线性系统理论,很难实现较好的动态性能。于是,进一步的研究在于对系统建立精确的数学模型和采用先进的控制算法。随着现代控制理论的发展,出现了许多DC/DC变换器新的控制方法以提高系统性能。例如:(1) 双线性理论;(2) 鲁棒控制;(3) 滑模变结构控制;(4) 自适应控制;(5) 智能控制。这些新控制方法的提出,使DC/DC变换器的稳态误差趋于零,动态性能获得很大改善,而且对参数的不确定性和负载的多变性也有很好的鲁棒性。

1、双线性理论

此系统为非线性系统,能够取得较好的控制效果。文献[7]应用此模型对Boost电路进行闭环控制,不仅保证了充足的稳定裕量,而且实现了较好的瞬态响应。此方法一般适用于两个状态变量以上的DC/DC变换器拓扑。但这种控制方案的缺点是忽略了输入电压扰动,若输入电压扰动不为零,将会影响系统的性能甚至导致系统不稳定[7]。

2、鲁棒控制

鲁棒控制是处理外加扰动和不确定性模型的有力工具,基于DC/ DC变换器的线性化小信号建模。文献[8]中提出了两个自由度控制的设计思想,来实现DC/ DC 变换器的鲁棒控制。它能够对负载和输入电压的变化保证充足的鲁棒性。

虽然鲁棒控制解决了输入电压变化的问题,但其线性化小信号建模精确度不高,而且控制器结构不可变,下面介绍的滑模控制和自适应控制,这两种控制能够实现更理想的控制效果[8]。

3、滑模变结构控制

滑模变结构理论由前苏联学者欧曼尔扬诺夫(S.V. Emelyanov)、尤特金(V.

I.Utkin)于20世纪50年代提出并发展至今。滑模变结构控制与常规控制的根本区别在于控制的不连续性,它使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。因此,它特别适用于DC/DC变换器这样的非线性系统和离散系统。

4、自适应控制

20世纪50年代初提出的自适应控制方法是根据响应系统与目标系统对应变量的偏差和控制参数的偏差来调整响应系统的参数变化,最终使响应系统与目标系统同步。

文献[9]、[10]分别提出了PI自适应串级控制和自适应PID串级控制,并很好地应用于DC/ DC升压变换器中。此外,逆向自适应控制,双环自适应控制和模型参考自适应控制等均已成功用于DC/ DC变换器。

这些控制方法的优点是控制器结构灵活,能够实现精确控制,并对参数变化

具有很好的鲁棒性。但由于其设计需要在线估计或辨识参数,导致实现困难,而且存在实时性问题。自适应控制与其它控制方法以及智能控制相结合可以避免这些问题并得到更好的控制效果[9][10]。

5、智能控制

智能控制是现代控制理论的发展,包括模糊控制、神经网络控制等先进控制策略。这些方法不需要建立精确的数学模型,对系统参数变化具有很好的鲁棒性,因此用于DC/ DC变换器的控制中,可以简化非常复杂的建模问题而更适于实际应用[11]。

1.3 论文结构和主要内容

第一章为绪论部分。首先阐述了课题研究的背景和意义,然后总结了当前技术发展现状,最后简要交代了本论文的内容和结构安排。

第二章介绍了Buck变换器技术,其中详细分析了Buck变换器的基本工作原理,接着分析了Buck变换器的工作模态和外特性。

第三章介绍了Buck变换器的主电路设计。

第四章分析了Buck变换器双闭环控制结构,从电流内环到电压外环,依次分析设计。

第五章利用Simulink对Buck变换器进行仿真。

第六章总结与展望。本章对这次毕业设计进行总结,提出不足和仍需完成的工作。

第二章 Buck 变换器基本原理

2.1 Buck 变换器工作原理

Buck 电路是由一个功率晶体管开关Q 与负载串联构成的,其电路如图2.1。驱动信号U b 周期地控制功率晶体管Q 的导通与截止,当晶体管导通时,若忽略其饱和压降,输出电压U o 等于输入电压;当晶体管截止时,若忽略晶体管的漏电流,输出电压为0。电路的主要工作波形如图2.2[12]。

+

-Vin

Q

f

C f

L R D

Ub

Uo

+

-A

图2.1 Buck 变换器电路

Ub

A

U 0

t

t

t

Vin

L

i L

i QON QOff

图2.2 Buck 变换器的主要工作波形

2.2 Buck 变换器工作模态分析

在分析Buck 变换器之前,做出以下假设:

① 开关管Q 、二极管D 均为理想器件; ② 电感、电容均为理想元件; ③电感电流连续;

④ 当电路进入稳态工作时,可以认为输出电压为常数。

在一个开关周期中,变换器有2种开关模态,其等效电路如图2.3和图2.4所示。

+

-

Vin

Q

f

C f

L R D

Ub

Uo

+

-A

图2.3 [t0~t1]的等效电路

+

-

Vin

Q f

C f

L R D

Ub

Uo

+

-A

图2.4 [t1~t2]的等效电路

各开关模态的工作情况描述如下 (1)开关模态0[t0~t1]

图2.5对应图2.3 [t0~t1]时刻。在t0时刻,开关管Q 恰好开通,二极管D 截止。此时:

dt

di

L

U U o i =- (2-1) 电感中的电流线性上升,式2-1可写成:

on

on on omin omax o i T Δi

L T i i L

U U =-=- (2-2)

Ub

A

U 0

0t

t

t

Vin

L

i L

i ?t0

t1

t2

QON QOff

图2.5 [t0~t1]的主要工作波形

(2)开关模态1[t1~t2]

图2.6对应图2.4 [t1~t2]时刻。在t1时刻,开关管Q 恰好关断,二极管D 导通。此时:

dt

di

L

U 0o =- (2-3) 电感中的电流线性下降,式2-3可写成:

off

off off omin omax off omax omin o T Δi L T i

i L T i i L

U =-=--= (2-4)

式中Toff 为开关管Q 的关断时间。在稳态时,Δi Δi Δi on off ==,联解式2-2与式2-4可得:

i o DU U = (2-5)

输出电流平均值:

)i (i 2

1

I omin omax o +=

(2-6)

Ub

A

U 0

0t

t

t

Vin

L

i L

i ?t0

t1

t2

QON QOff

图2.6 [t1~t2]的主要工作波形

2.3 Buck 变换器外特性

在恒定占空比下,变换器的输出电压与输出电流的关系Uo=f(io)称为变换器的外特性。式2-5表示了电感电流连续时变换器的外特性,输出电压与负载电流无关。当负载电流减小时,可能出现电感电流断续现象。图2.7为电感电流断续时电流波形图。

由式2-2与式2-4可知,当输入电压和输出电压一定时,Δi 为常数。由式2-6可见,当负载电流减少到0i omin =时,Δi i omax =,此时最小负载电流omin I ,即为电感临界连续电流G I :

2

Δi i 21I I omax omin G ==

= (2-7) 由式2-2及式2-5得Δi ,带入式2-7得: D)D(12L

T

U I i G -= (2-8)

由上式可见,临界连续电流与占空度的关系为二次函数,当D=1/2时,临界连续电流达到最大值:

multisim buck电路仿真

第一章概述 1、1 直流―直流变换的分类 直流—直流变换器(DC-DC)就是一种将直流基础电源转变为其她电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换就是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1、2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商、2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

BUCK变换器设计

BUCK变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波:0.25A

开关频率:250kHz 相位裕量:60° 幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 开关周期:T S= s f 1=4×10-6s 占空比:当输入电压为43V时,D max=0.55814 当输入电压为53V时,D min=0.45283 输出电压:V O=24V 输出电流I O=5A 纹波电流:Δi L=0.25A 纹波电压:ΔV L=100mV 电感量计算:由Δi L= 2L v- V o max - in DT S 得: L= L o max - in i 2v- V ΔD min T S= 25 .0 2 24 53 ? -×0.4528×4×10-6=1.05× 10-4H

电容量计算:由ΔV L =C i L 8ΔT S 得: C= L L V 8i ΔΔT S = 1 .0825 .0?×4×10-6=1.25×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 in ESR ESR V sC R R sL sC R R s d ) 1//() 1 //()(s V s G O vd +++==)()( ) (s )1(C 1)1(s G 2 vd C R R L R R L s V C sR ESR ESR in ESR +++++=)( in 0 2 V Q s s 11)(G 2 ωωω++ + = z vd s s ESR z CR 1 =ω

Buck变换器的设计与仿真.

S a b e r 仿真作业 Buck 变换器的设计与仿真 目录 1 Buck变换器技 术 .......................................................................................................................... - 2 - 1.1 Buck变换器基本工作原理 ................................................................................................. - 2 - 1.2 Buck变换器工作模态分 析 ................................................................................................. - 2 - 1.3 Buck变化器外特 性 ............................................................................................................ - 3 - 2 Buck变换器参数设 计 ................................................................................................................... - 5 - 2.1 Buck 变换器性能指标 . ........................................................................................................ - 5 - 2.2 Buck变换器主电路设 计 ..................................................................................................... - 5 - 2.2.1 占空比 D . ................................................................................................................. - 5 - 2.2.2 滤波电感 Lf.............................................................................................................. - 5 - 2.2.3 滤波电容 Cf ............................................................................................................. - 6 - 2.2.4 开关管 Q 的选取 ...................................................................................................... - 7 - 2.2.5 续流二极管 D 的选 取 .............................................................................................. - 7 - 3 Buck变换器开环仿 真 ................................................................................................................... - 7 - 3.1 Buck 变换器仿真参数及指标 . ............................................................................................. - 7 -

Buck电路的设计与仿真

uck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为 20V ,输出电压5V ,要求纹波电压为输出 电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的 电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 这个值是电感电流连续与否的临界值,L>L c 则电感电流连续,实际电感值 可选为1.1~1.2倍的临界电感,可选择为4 10?H ; D.根据纹波的要求和如下公式计算电容值 C=^^T s2 J =4.17 10 牛 8L^U 。 8 沃 4.5 沃 10 X0.0055 1 0000 (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 . (1—DJR T (1 —0.25)汇10,. 1 L c (1 _DJR T 2 s (1-0.25)1° 亠 2 10000 = 3.75 10* H 5 (1-0.25) 0.75 10, H 50000 这个值是电感电流连续与否的临界值, L>Lc 则电感电流连续,实际电感值

L c T s 2

可选为1.2倍的临界电感,可选择为0.9 10" H ; D.根据纹波的要求和如下公式计算电容值 分析:在其他条件不变的情况下,若开关频率提高 n 倍,则电感值减小为 1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论 2、Buck 电路仿真: 利用sim power systems 中的模块建立所设计降压变换器的仿真电路。输 入电压为20V 的直流电压源,开关管选 MOSFET 模块(参数默认),用Pulse Gen erator 模块产生脉冲驱动开关管 建模: 分别做两种开关频率下的仿真 工作频率为10kHz 时 U o (1-D c ) 8L U o T s 2 5 (1-0.25) 1 8 0.9 10J 0.005 5 500002 = 0.833 10*F matlab20120510 ?

BUCK变换器设计报告

BUCK变换器设计报告 一、BUCK主电路参数计算及器件选择 1、BUCK变换器设计方法 利用计算机设计BUCK变换器,首先要选取合适的仿真软件。本文采用MATLAB和PSIM设计软件进行BUCK变换器的综合设计。在选取好设计软件之后,先根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真。如果开环仿真结果不能满足设计要求,再考虑选取合适的闭环控制器进行闭环控制系统的设计。 设计好闭环控制器后,对其进行闭环函数的仿真,选取超调小、调节时间快的闭环控制器搭建模型进行电路仿真。 2、主电路的设计 根据设计指标,采用BUCK电路作为主电路,使用MOSFET元件作为开关元件,这是因为MOSFET的开关速度快,工作频率高,可以满足250khz的开关频率,此外,MOSFET与其他开关器件最显著的不同,是MOSFET具有正温度系数,热稳定性好,可以并联使用,其他开关器件不具有此特性。

(1)BUCK电路的主电路的拓扑图: (2)主电路的基本参数计算: 开关周期:Ts=1/f s=4?10?6s =0.5 占空比(不考虑器件管压降):D=v0 v in =0.5581 V in=43V时,Dmax=v0 v in =0.4528 V in=53V时,Dmin=v0 v in 输出电压:V o=24V; 输出电流:Io=0.25A; 额定负载:R=V o÷Io=4.8Ω 纹波电流:△I=0.25A; 纹波电压:△V=100mV 电感量理论值计算: 由: , 得: ,电容量理论值计算: 由:,得 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故取C=120uF. 由于电解电容一般都具有等效串联电阻R esr,因此在选择的过程中需要注意此电阻的大小对系统性能的影响。一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。取R esr=50mΩ。

Buck变换器实现及其调速系统设计与调试

运动控制系统 课程设计 题目:Buck变换器实现及其调速系统设计与调试 院系: 班级: 姓名: 学号: 指导老师: 日期:

摘要 (3) 第一章概述 (3) 第二章设计任务及要求 (4) 2.1实验目的 (4) 2.2实验内容 (4) 2.3设计要求 (4) 2.4课程设计基本要求 (5) 第三章BUCK变换器的工作原理和各种模型 (6) 3.1B UCK变换器介绍 (6) 3.2B UCK变换器电路拓扑 (6) 3.3PWM控制的基本原理 (7) 第四章MATLAB仿真模型的建立 (9) 4.1MATLA仿真软件介绍 (9) 4.2B UCK电路模型的搭建 (9) 4.3B UCK变换器在电机拖动控制系统中的设计与仿真 (12) 4.3.1直流电机的数学模型 (12) 4.3.2系统在开环情况下的仿真 (13) 4.3.3 系统在闭环情况下的仿真 (14) 第五章总结与体会 (18)

变压调速是直流调速系统的主要方法,调节电枢供电电压从而改变电机的转速。即需要有一个可控直流源,常用的为直流斩波或者脉宽调制器,其通过电力电子开关控制及电容、电感的充放电及二极管的续流组成直流斩波电路(DC),实现输出电压可控,即升压(BOOST)、降压(BUCK)。本实验主要针对降压斩波电路(BUCK)进行实验分析。实验采用MATLAB作为仿真软件,利用PWM 波驱动降压斩波电路为直流电动机提供驱动电压,并通过调节PWM波的占空比来调节电动机的启动电压使达到调节电动机转速的电路设计。 关键词:S-Function;PWM调制;Buck变换器;闭环控制;直流电动机 第一章概述 直流变换技术(亦称直流斩波技术,DC-DC),作为电力电子技术领域非常活跃的一个分支,在近几年里,得到了充分的发展。随着电动牵引技术的发展,特别是电子信息类产品的大量涌现,直流变换技术已经广泛应用于生产,生活的各个领域。由于其有良好的可操作性,被大量应用到电机的调速系统中,很好的解决了电动机调速的不可控性。 BUCK电路作为一种最基本的DC-DC变换电路,由于其简单、实用性在各种电源产品中均得到广泛的应用。其电路主要器件有电力电子开关(IGBT或MOSFET)、电感、电容、续流二极管。通过对开关的调节控制电压,其一般采用软开关控制方法,即采用脉宽调制技术(PWM),通过改变占空比来调节输出电压的大小。其与直流调速系统组成的脉宽调制变换器—直流电机调速系统,简称直流脉宽调速系统,即PWM直流调速系统。存在:1)主电路简单、功率器件少;2)开关频率高、电流容易连续、谐波小;3)低速性能好、稳态精度高;4)低速性能好,稳态精度高,动态抗干扰能力强等优点。 使用MATLAB等仿真分析,再做实物研究,已经逐渐成为电力电子技术研究的主要方法。 本次课程设计使用MATLAB友好的工作平台和编辑环境进行模型编辑工作,运用它的s函数编辑一个简单的脉冲发生器,要求它的占空可调;运用数学处理功能来处理仿真时的实时数据,利用传递函数构造直流电机转速的数学模型,运用它广泛的模块集合工具箱里的Simulink进行电路模型搭建和系统仿真,控制电路的占空比从而控制输出电压的大小,进而调节电机的转速,同时采用负反馈的控制方式,调节转速在一个恒定值。

BUCK变换器设计毕业设计

课程名称:电力电子技术 题目:BUCK变换器设计

9

目录 第一章概述 (5) 1.1 本课题在国内外的发展现状与趋势 (5) 第二章Buck变换器设计总思路 (6) 2.1 电路的总设计思路 (6) 2.2 电路设计总框图 (6) 2.3 总电路图 (7) 第三章BUCK主电路设计 (8) 3.1 Buck变换器主电路基本工作原理 (8) 3.2 主电路保护(过电压保护) (9) 3.3 Buck变换器工作模态分析 (10) 3.4 Buck变换器元件参数 (12) 3.4.1 占空比D (12) 3.4.2 滤波电容C f (13) 3.5 Buck变换器仿真电路及结果 (14) 第四章控制和驱动电路模块 (15) 4.1 SG3525A脉宽调制器控制电路 (15) 4.1.1.SG3525简介 (15) 4.1.2.SG3525内部结构和工作特性 (15) 4.2 SG3525构成的控制电路单元电路图 (18) 4.3 驱动电路设计 (18) 第五章课程设计总结 (19)

第六章附录 (20) 第七章参考文献 (21) 第一章概述 1.1 本课题在国内外的发展现状与趋势 从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。发热增多,体积缩小,难过高温关。因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。工程师们开始研究各种避开开关损耗的软开关技术。虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。 有源箝位技术历经三代,且都申报了专利。第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。特别是驱动损耗随工作频率的上升也大幅度增加,而且因1MHZ频率之下不易采用同步整流技术,其效率是无法再提高的。因此,其转换效率始终没有突破90%大关。 为了降低第一代有源箝位技术的成本,IPD公司申报了第二代有源箝位技术专利。它采用P沟MOSFET在变压器二次侧用于 forward电路拓朴的有源箝位。这使产品成本减低很多。但这种方法形成的MOSFET的零电压开关(ZVS)边界条件较窄,在全工作条件范围内

multisimbuck电路仿真设计

第一章概述 1.1 直流―直流变换的分类 直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1.2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

基于BUCK变换器的电源设计

电子科技大学中山学院新型电源设计实践报告 设计名称基于BUCK变换器的开关电源设计 学院机电学院 班级 14级电气A班 学号姓名 2014100500521 刘连红 指导教师余翼 机电工程学院 2017年 12月 27日

一、设计要求与内容 开关电源是20世纪60年代电源历史上的一次革命,它安装于各种家用电器、工业设备及军用电子装置中,同时作为赋能装置应用于各个领域。比如在电力系统中的应用、在通信领域中的应用、在蓄电池充电中的应用、在风能\太阳能发电中的应用。这次我们要求设计一个9-12V的情况下,通过一个开关电源得到一个稳定的5V/1A的直流输出。我们要求这个开关电源有整流的功能,同时通过反馈控制,有稳压,调压,降压的功能。从而得到稳定的一个直流输出。 二、人员分工与时间安排表 三总体方案设计与论证 3.1 设计思路和流程

1.经过题目选定,确定使用基于BUCK变换器的电源设计。 2.在方案选择过程中,因为考虑到是非隔离电源,使用集成PWM调制芯片简化电路设计。 3.在分析了UC3842,SG3525等芯片的功能与参数后,选择MC34063作为控制方案,该芯片本身也有较强的驱动能力,可直接外接滤波电路与反馈电路来进行电源设计。 4.通过外接场效应管的方式极大增强了驱动能力,该场效应管最大电流可到达17A以上,设计中仅利用不到1A,如果更换滤波电路中的元器件,输出功率可以得到数倍的提升。如果将采样电阻改为电位器,还可以灵活调节输出电压。 3.2 开关电源总电路框图 图3-1 开关电源总电路框图 四、开关电源原理图各部分说明及计算 4.1总原理图的介绍 开关电源是指调整管工作在开关方式,只有导通和截止两个状态,上图为工作过程。 基准电压为固定值,由于输入波动或负载变化导致输出电压减小,采样电压将减小,经过比较放大后,脉冲调制电路根据这个误差,提高占空比使输出电压增大。同理,当由于输入波动或负载变化导致输入电压增大时,脉冲调制电路降低占空比使输出电压减小,以此来控制输出电压的稳定。 4.2 各部分的说明与计算

Buck电路设计与MATLAB仿真

Buck电路设计与仿真 姓名:朱龙胜 班级:电气1102 学号:11291065 日期:2014年5月10日 指导老师:郭希铮 北京交通大学

计算机仿真技术作业四 题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-== 1.占空比: 负载电流: 纹波电压: 电流连续条件: 得到下列计算结果 3、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=0.25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A .建立模型: 建立仿真模型如下如所示 :

B. 记录数据: 仿真算法选择ode23tb,最大步长为0.1s ,占空比D=0.25进行仿真,记录数据如下表所 C .仿真过程: 当f s =10KHz,L=0.375mH C=500μF, 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.736V ,稳态直流电压理论值5V 计算稳态直流纹波电压的理论值 2(1D)0.025V 8s o o T V V CL -?==,通过图中得到直流纹波电压为0.0267V 当fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态时, 由(1)o S L V D T I L -?= ,得电感电流波动理论值是1A ,由图像得到电感电流波动值是 1A ,与理论计算相符合

高频同步整流BUCK变换器的设计与仿真本科毕业设计(论文)

编号 XXXX大学 毕业设计 题目高频同步整流BUCK变换器的 设计与仿真

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

转速电流双闭环直流调速系统仿真设计

转速电流双闭环直流调速系统仿真 摘要:本设计主要研究了直流调速转速电流双闭环控制系统以及对MATLAB软件的使用。系统模型由晶闸管-直流电动机组成的主电路和转速电流调节器组成的控制电路两部分组成。主电路采用三相可控晶闸管整流电路整流,用PI调节器控制,通过改变直流电动机的电枢电压从而进行调压调速。控制电路设置两个PI调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者实行嵌套连接,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,形成转速电流双闭环直流调速系统。在Simulink中建立仿真模型,设置各个模块的参数,仿真算法和仿真时间,运行得出仿真模型的波形图。通过对波形图的分析,说明直流调速转速电流双闭环控制系统具有良好的静态和动态特性。 关键词:双闭环直流调速系统,MATLAB/SIMULINK仿真,ASR,ACR。 课程概述:直流调速是现代电力拖动自动控制系统中发展较早的技术。随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。其次并基于双闭环的电气原理图的SIMULINK的仿真,分析了直流调速系统的动态抗干扰性能。采用工程设计方法

BUCK电路闭环控制系统的MATLAB仿真

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降 VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

Buck电路开题报告

毕业设计(论文)开题报告 一、课题的目的及意义(含国内外的研究现状分析或设计方案比较、选型分析等) 1. 选题背景及课题目的和意义 自第三次工业革命以来,电力电子技术飞速发展,广泛应用于电力、电子、通信、计算机等领域。其中,开关功率变换器作为一种基本的电力电子元件,国内外对于其应用和研究进行了广泛的探讨。然而随着电力工业发展,用户对电能质量的要求越来越高,各种电子元件特别是微处理器对供电模块的性能提出了极高的要求,传统的控制方法越来越不适用于现代电力工业对负载动态响应速度,稳态精度和传输效率的要求。经过半个多世纪的不断探索,开关功率变换器的控制技术有了脱胎换骨的变化,实现了从传统的模拟调制向数字调制,从单一电压调制向电压、电流、电荷以及组合调制方式的转变,有效的提高了变换器的动态性能。 本课题的目的在于综合分析比较现有调制方式,选择合理的有现实意义的调制策略,对其进行深入分析和研究,最终实现所选择方式的实验实现,为进一步的研究提供基础,实现相关领域人才和技能的培养。 2. 国内外研究现状与选型分析 按照开关变换器控制方式的发展历程,经历了从模拟控制到数字控制,从单环控制到双环控制,从线性控制到非线性控制,从单一控制量到组合控制的转变,有效的提高了开关变换器的快速响应能力,可以较好的满足现代电力工业对复杂电力环境下调制的要求。 模拟控制技术是最早应用于各个控制领域,不失为一种有效的控制手段,但随着电子信息工业的发展和微型计算机的普及,基于计算机的数字控制技术异军突起,借助于信息工业的优势,称为现代控制技术的主要发展方向。模拟控制技术是一种连续控制,通过事先计算好的电感电容参数组建电路,实现对输出量的控制。经过多年的发展,模拟控制技术已经相当成熟,然而其依然存在难以克服的固有缺陷: ①元器件比较多,控制电路复杂,不易于小型化; ②控制策略受到电路元件和电路结构的局限,控制电路成型后很难修改; ③由于模拟元件参数随工作环境变化,导致系统控制精度下降; ④调试不方便,难以实现复杂控制方案,灵活性较低。 此外,还存在没有内置的限流功能保护电路器件,对输入和输出的瞬变响缓慢等缺点,但在早期应用中不失为一种有效的控制方案。 数字控制技术是一种离散控制,通过A/D转换器将模拟量离散后输入计算机控制系统,不依赖于具体的电路元件。早期由于数字元件的成本、性能等自身问题,未能大规模应用于控制领域。近年来,随着微机工业的进步,数字控制技术也迎来了快速发展。相较于模拟控制技术,数字控制技术具有很多突出的优点:

案例5.3-转速、电流双闭环直流调速系统

案例5.3-转速、电流双闭环直流调速系统

案例5.3 转速、电流双闭环直流调速系统 一、概述 晶闸管电动机直流调速系统在工业生产中获得广 泛应用。国内外晶闸管—电动机直流调速装置品种繁多。现以ZCC1系列晶闸管—电动机直流调速装置(简称ZCC1系列)为例,来阐述晶闸管—电动机直流调速系统分析、调试的一般方法与步骤。ZCC1系列晶闸管—电动机直流调速装置为三相全控桥不可逆直流调速装置,是以Z2、Z3系列直流电动机电枢供电为主要用途的、通用的晶闸管—电动机调速装置。该装置的基本性能如下: (1)装置的负荷性质按连续工作制考核。 (2)装置在长期额定负荷下,允许150%额定负荷持续二分钟,200%额定负荷持续10秒钟,其重复周期不少于1小时。 (3)装置在交流进线端的电压为(0.9~1.05)380伏时,保证装置输出端处输出额定电压和额定电流。电网电压下降超过10%范围时输出额定电压同电源电压成正比例下降。 (4)装置在采用转速反馈情况下,调速范围为20∶1,在电动机负载从10%~100%额定电流变化时,转速偏差为最高转速的0.5%(最高转速包括电动机弱磁的转速)。转速反馈元件采用ZYS型永磁直流测速发电机。 (5)装置在采用电动势反馈(电压负反馈、电流正

(6)

(7)

由图3-1可知,控制系统主要由给定积分器(GJ)、速度(转速)调节器(ASR)、电流调节器(ACR)、触发输入及保护单元(CSR)、触发器(CF)、速度变换器(SB)、电流变换器(LB)等组成。速度(转速)调速器的输出作为电流调节器的给定电压,电流调节器的输出作为触发装置的移相控制电压,速度(转速)调节器和电流调节器采用PI调节器。 ZCC1系列晶闸管直流调速装置各单元的电气原理图如图3-2至图3-9所示。 三、直流调速系统简单工作原理 下面结合整个系统对不可逆直流调速系统停车、正向启动、减速各种运行工作过程进行分析。 (1)停车状态电动机停车时,开关S打开,给定电 压U gn =0,速度(转速)调节器单元中A 1 速度比较器输出 一个大于+8V的推β信号电压,使速度(转速)调节器 输出电压为负向限幅值-U gi ,电流调节器输出电压为正 向限幅值U Kmax ,通过触发输入单元CSR、触发器CF,使晶 闸管变流器控制角处于最小逆变角β min ,电动机处于停车状态。 (2)电动机正向启动运行当开关S闭合,给出负的 正向速度给定电压(U gn =-),当速度给定电压U g >0.2时 A 1 速度比较器迅速翻转输出为负电压,使速度(转速) 调节器迅速退出负限幅值-U gi 并开始按速度偏差信号进

buck电路设计

Buck变换器设计——作业 一.Buck主电路设计 1.占空比D计算 2.电感L计算 3.电容C计算 4.开关元件Q的选取 二. Buck变换器开环分析 三. Buck闭环控制设计 1.闭环控制原理 2.补偿环节Gc(s)的设计——K因子法 3.PSIM仿真 4. 补偿环节Gc(s)的修正——应用sisotool 5.修正后的PSIM仿真 四.标称值电路PSIM仿真 五.设计体会 Buck变换器性能指标: 输入电压:标准直流电压48V,变化范围:43V~53V

输出电压:直流电压24V ,5A 输出电压纹波:100mv 电流纹波:0.25A 开关频率:fs=250kHz 相位裕度:60 幅值裕度:10dB 一. Buck 主电路设计: 1.占空比D 计算 根据Buck 变换器输入输出电压之间的关系求出占空比D 的变化范围。 .50V 48V 24U U D .4530V 53V 24U U D 0.558 V 43V 24U U D innom o nom max in o min min in o max ========= 2.电感L 计算 uH 105f i 2)D U -(U i 2)T U -(U L s L min o inmax L on(min) o inmax =?=?= 3.电容C 计算 uF 25.1250000 *1.0*825 .0vf 8i C s L ==??= 电容耐压值:由于最大输出电压为24.1V ,则电容耐压值应大于24.1V 。 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故电容选取120uf/50V 电容。 4.开关元件Q 的选取

BUCK变换器设计

B U C K变换器设计报告 一、BUCK变换器原理 降压变换器(Buck Converter)就是将直流输入电压变换成相对低的平均直流输出电压。它的特点是输出电压比输入的电压低,但输出电流比输入电流高。它主要用于直流稳压电源。 二、BUCK主电路参数计算及器件选择 1、BUCK变换器的设计方法 利用MATLAB和PSPICE对设计电路进行设计,根据设计指标选取合适的主电路及主电路元件参数,建立仿真模型,并进行变换器开环性能的仿真,再选取合适的闭环控制器进行闭环控制系统的设计,比较开环闭环仿真模型的超调量、调节时间等,选取性能优良的模型进行电路搭建。 2、主电路的设计指标 输入电压:标称直流48V,范围43~53V 输出电压:直流24V,5A 输出电压纹波:100mV 电流纹波: 开关频率:250kHz 相位裕量:60°

幅值裕量:10dB 3、BUCK主电路 主电路的相关参数: 开关周期:T S= s f 1=4×10-6s 占空比:当输入电压为43V时,D max= 当输入电压为53V时,D min=输出电压:V O=24V 输出电流I O=5A 纹波电流:Δi L= 纹波电压:ΔV L=100mV 电感量计算:由Δi L= 2L v- V o max - in DT S得: L= L o max - in i 2v- V ΔD min T S= 25 .0 2 24 53 ? -××4×10-6=×10-4H

电容量计算:由ΔV L =C i L 8ΔT S 得: C=L L V 8i ΔΔT S =1 .0825.0 ×4×10-6=×10-6F 而实际中,考虑到能量存储以及输入和负载变化的影响,C 的取值一般要大于该计算值,故取值为120μF 。 实际中,电解电容一般都具有等效串联电阻,因此在选择的过程中要注意此电阻的大小对系统性能的影响。通常钽电容的ESR 在100毫欧姆以下,而铝电解电容则高于这个数值,有些种类电容的ESR 甚至高达数欧。ESR 的高低与电容的容量、电压、频率和温度等多因素有关,一般对于等效串联电阻过大的电容,我们可以采用电容并联的方法减小此串联电阻。此处取R ESR =50m Ω。 4、主电路的开环传递函数 取R ESR =50m Ω,R=Ω,C=120μF ,L=105μH ,V in =48V , 可得传递函数为: 在MATLAB 中根据开环传递函数画出Bode 图: >> clear >> num0=[,48]; >> den1=[,,1]; >> bode(num0,den1) >> [kg,gm,wkg,wgm]=margin(num0,den1)

Buck电路平均电流双闭环控制

Buck 电路双闭环控制 一 引言 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输出电压U D 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 以及电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,加入补偿网络,可实现闭环控制,通过采样环节得到所需电压/电流信号,再与基准值进行比较,通过闭环控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环控制系统。Buck 电路的闭环控制有电压环控制、电流环控制以及二者结合的双闭环控制,此处采用双闭环控制:电流内环,电压外环。根据相关的电路设计适当的补偿网络对电路进行校正,提高电路系统输出性能。 二 BUCK 变换器主电路参数设计 2.1 设计及内容及要求 1) 输入直流电压(in V ):50V 2) 额定输出电压(o V ):15V 3) 额定输出电流(o I ):1.67A 4) 输出电压纹波峰-峰值:mV V o 016.02≤? 5) 电感电流纹波峰峰值:A I L 42.02≤? 5) 锯齿波幅值(p V ):2.5V 6) 开关频率(s f ):100kHz 7) 输出电压采样网络传函3/1)(=s H

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 Buck 电路原理图 1)占空比计算 3.015 50=== o in V V D ,进而有S f D DT t s s on μ3/=== 2)滤波电感设计 由L L u dt di L =可知,)1(1 2D T V L I s o L -= ?,代入数值得mH L 25.0=,考虑到 电感寄生电阻,取Ωm 1。 3)滤波电容设计 由c c i dt du C =可知,L s o I T C V ????=?22112,代入数值得uF C 83.20=,考虑到 电容的等效串联电阻,Ω=01.0ESR R 。 三 Buck 变换器控制器参数设计 3.1 电路双闭环控制结构 整个系统的双闭环控制结构图如图3-1。 图3-1 系统总控制框图 图中Gv 、Gi 网络传函需根据各环传函的特性设计相应的零极点以及增益值,使系统传函达到我们的目标函数。 下面对电路进行分析,从电流内环的设计到电压外环的设计。

相关主题
文本预览
相关文档 最新文档