当前位置:文档之家› 智能控制实验大作业

智能控制实验大作业

智能控制实验大作业
智能控制实验大作业

智能控制技术作业

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。

{模糊控制器采用数字计算机。它具有三个重要功能: 1)把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2)对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。} 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法 设计步骤如下: 1、确定模糊控制器的输入、输出变量 2、确定各输入、输出变量的变化范围、量化等级和量化因子 3、在各输入和输出语言变量的量化域内定义模糊子集。 4、模糊控制规则的确定 5、求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为:0.30.810.50.112345 C = ++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ=??

智能控制理论基础实验报告

北京科技大学 智能控制理论基础实验报告 学院 专业班级 姓名 学号 指导教师 成绩 2014 年4月17日

实验一采用SIMULINK的系统仿真 一、实验目的及要求: 1.熟悉SIMULINK 工作环境及特点 2.掌握线性系统仿真常用基本模块的用法 3.掌握SIMULINK 的建模与仿真方法 二、实验内容: 1.了解SIMULINK模块库中各子模块基本功能 微分 积分 积分步长延时 状态空间模型 传递函数模型 传输延迟 可变传输延迟 零极点模型

直接查询表 函数功能块MATLAB函数 S函数(系统函数) 绝对值 点乘 增益 逻辑运算 符号函数 相加点 死区特性 手动开关 继电器特性 饱和特性 开关模块 信号分离模块 信号复合模块 输出端口 示波器模块 输出仿真数据到文件

通过实验熟悉以上模块的使用。 2. SIMULINK 的建模与仿真方法 (1)打开模块库,找出相应的模块。鼠标左键点击相应模块,拖拽到模型窗口中即可。 (2)创建子系统:当模型大而复杂时,可创建子系统。 (3)模块的封装: (4)设置仿真控制参数。 3.SIMULINK仿真实际应用 PID控制器的仿真实现。 控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。 三、实验报告要求: 1.针对具体实例写出上机的结果,体会其使用方法,并作出总结。

控制对象的开环传递函数如下图: 加入PID控制器,求系统单位负反馈闭环单位阶跃响应,要求通过调节器的作用使系统满足超调量20%,上升时间3s,调节时间10s的要求。使输出曲线如下图。要求加入的PID控制器封装成一个模块使用。PID如下: 图1-PID控制器仿真 设计的PID控制器参数为,P-0.3,I-0.5,D-0.4,尽可能的达到超调量20%,上升时间3s,调节时间10s的要求,仿真曲线图如下: 图2-PID控制器仿真曲线图 才实验开始的初期,我觉得这个实验过于简单,但是上手之后,我发现它是

智能控制指导作业

语言变量X ,Y ,Z 的隶属度函数. 设计带有纯延迟的一阶惯性环节(假设T=6,=0.02): G(s)=s e s 6102.0+ 的模糊控制器,观察仿真结果。 编程如下: %被控系统建模 num=1; den=[6,1]; [a1,b,c,d]=tf2ss(num,den);%传递函数转换到状态空间 x=[0]; %系统参数 T=0.01;h=T;td=0.02;N=1000; nd=td/T;%系统纯延迟 R=ones(1,N);%参考输入 %定义输入和输出变量及隶属度函数

a=newfis('Simple'); a=addvar(a,'input','e',[-4 4]); a=addmf(a,'input',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trimf',[0,2,4]); a=addmf(a,'input',1,'PB','trimf',[2,4,4]); a=addvar(a,'input','de',[-4 4]); a=addmf(a,'input',2,'NB','trimf',[-4,-4,-2]); a=addmf(a,'input',2,'NS','trimf',[-4,-2,0]); a=addmf(a,'input',2,'ZO','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trimf',[0,2,4]); a=addmf(a,'input',2,'PB','trimf',[2,4,4]); a=addvar(a,'output','u',[-4 4]); a=addmf(a,'output',1,'NB','trimf',[-4,-4,-2]); a=addmf(a,'output',1,'NS','trimf',[-4,-2,0]); a=addmf(a,'output',1,'ZO','trimf',[-2,0,2]); a=addmf(a,'output',1,'PS','trimf',[0,2,4]); a=addmf(a,'output',1,'PB','trimf',[2,4,4]); %模糊规则矩阵 rr=[5 5 4 4 3 5 4 4 3 3 4 4 3 3 2 4 3 3 2 2 3 3 2 2 1]; r1=zeros(prod(size(rr)),3);k=1; for i=1:size(rr,1) for j=1:size(rr,2) r1(k,:)=[i,j,rr(i,j)]; k=k+1; end end [r,s]=size(r1); r2=ones(r,2); rulelist=[r1,r2]; a=addrule(a,rulelist); %采用模糊控制器的二阶系统仿真 e=0;de=0; ke=30;kd=5;ku=1; for k=1:N %输入变量变换至论域 e1=ke*e; de1=kd*de; if e1>=4

智能控制翻译

智能控制导论大作业 学号:021151** 姓名:** 任课教师:吴**

目录 一、说明………………………………………………………………… I.文章出处………………………………………………………… 二、论文翻译…………………………………………………………… I.摘要……………………………………………………………… II.引言……………………………………………………………… III.背景信息…………………………………………………………… IV.神经网络整体结构……………………………………………… V.神经网络的整体的标定中的应用……………………………… VI.总结……………………………………………………………… 三、课程与论文关系…………………………………………………… 四、智能导论课程总结…………………………………………………

一、说明 本次大作业针对“Improved Calibration of Near-Infrared Spectra by Using Ensembles of Neural Network Models”文章进行翻译。这篇文章摘自IEEE SENSORS JOURNAL, VOL. 10, NO. 3, MARCH 2010。作者是Abhisek Ukil, Member, IEEE, Jakob Bernasconi, Hubert Braendle, Henry Buijs, and Sacha Bonenfant。 二、论文翻译 利用神经网络模型整体对近红外光谱校正改进 摘要: 红外(IR)或近红外(NIR)光谱技术是用来识别一种混合物或来分析材料的组成的方法。NIR光谱的校准是指利用光谱的多变量描述来预测各组分的浓度。建立一个校正模型,最先进的软件主要使用线性回归技术。对于非线性校正问题,基于神经网络的模型已经被证明是一个有意义的选择。在本文中,我们提出了一个新的基于神经网络的扩展传统的方法,利用神经网络模型整体。个别神经网络是从重采样与引导或交叉验证技术训练信息数据中获得。在一个现实的校准实施例中得到的结果表明,该集合为基础的方法,会产生一个比传统的回归方法更显著更精确和鲁棒性强的校准模型。 关键词: 自举,校准,计量学,交叉验证,傅立叶变换,近红外(NIR),近红外光谱仪,神经网络,光谱。 I.引言: 红外(IR)或近红外(NIR)光谱技术是用来识别一种混合物或来分析材料的组成的方法。这是通过学习物质与红外光间相互作用而完成的。红外/近红外光谱是指红外光的吸收为波长的函数。在红外光谱中,考虑的频率范围通常是14000和10厘米分之一。注意,所施加的频率刻度是波数(以厘米倒数为单位),而不是波长(以微米为单位)。该材料在不同频率下的吸收测定中的百分比。“化学计量学”是数学和统计方法的应用,以化学数据的分析,例如,多元校正,信号处理/调节,模式识别,实验设计等。 在化学计量学,校准是通过使用光谱多变量描述符来预测不同成分的浓度来实现。在本文中,我们提出并分析采用基于神经网络的校正模型整体。整体的个别型通过重新取样与引导或交叉验证技术的原始训练数据的实现。该集成模型被示为导致显著改善预测精度和鲁棒性,当与常规的校准方法相比。 在本文的其余部分安排如下。在第二节中,提供有关工作的背景信息。这包括使用的光谱仪,数据采样,目前最先进的校准方法和基于神经网络的校准模型的信息。第三节介绍了

智能控制系统matlab仿真

智能控制系统实验报告 ARMA 模型 ARMA(p,q)是一个线性时间序列预测模型,适用于平稳的时间序列,即对于任何时刻t ,都有()t E Z μ=,E(a t )=0.协方差矩阵(')t t E a a ∑=,对于任意0l ≠有(')0t t l E a a +=。 AR 模型 11t t p t p t Z Z Z νφφε--=++++ (0.1) 当误差项t ε自相关时,可以被有限阶滑动平均表示 11t t t q t q a a a ε--=+Θ++Θ (0.2) 这里t a 是零均白噪声,协方差矩阵a ∑非奇异。结合AR 过程和MA 误差项,得到ARMA 过程: 111111t t p t p t t p t p t t q t q Z Z Z Z Z a a a νφφενφφ------=++++=+++++Θ++Θ (0.3) 对于一个很大的阶数n ,AR(n)接近ARMA(p,q) 1 ()()n t t i t i i Z n Z a n -==+∑∏ (0.4) 从(0.4)得到残差的估计值 1??()()n t t i t i i a n Z n Z -==-∏∑ (0.5) 其中?()i n ∏利用多变量最小二乘法求解,然后使用估计值?()t a n 建立多变量回归模型 1111??t t p t p t t q t q Z Z Z a a a φφ----=++++Θ++Θ (0.6) 1111[,,:,.]()?()?()t t p t p q t t t q Z Z Z a n a n a n φφ----?? ?????? =ΘΘ+??????????? ? (0.7) (1:)0[,]T Z Y A =ΦΘ+ (0.8) 01[,,]T A a a = (0.9) 000'???()a A A n T ∑= (0.10) 最小二乘法求解公式,以AR(p)为例。

19春北理工《智能控制基础》在线作业答案

(单选题)1: 一般认为,人工神经网络适用于() A: 线性系统 B: 多变量系统 C: 多输入多输出系统 D: 非线性系统 正确答案: (单选题)2: 递阶控制系统的结构是根据下列原理设计的() A: 精度随智能降低而提高 B: 精度随智能提高而提高 C: 精度随智能降低而降低 D: 精度与智能无关 正确答案: (单选题)3: 智能控制成为国际上独立新学科的时间为20世纪() A: 60年代 B: 70年代 C: 80年代 D: 90年代 正确答案: (单选题)4: 基于模式识别的控制系统属于() A: 学习控制系统 B: 专家控制系统 C: 进化控制系统 D: 模糊控制系统 正确答案: (单选题)5: 能够在系统运行过程中估计未知信息,并据之进行优化与控制,以便逐步改进系统性能的控制叫做() A: 最优控制 B: 反馈控制 C: 随机控制 D: 学习控制 正确答案: (单选题)6: 最早提出人工神经网络思想的学者是() A: McCulloch-Pitts B: Hebb C: Widrow-Hoff D: Rosenblatt 正确答案: (单选题)7: 解决自动控制面临问题的一条有效途径就是把人工智能等技术用于自动控制系统,其核心是() A: 控制算法 B: 控制结构 C: 控制器智能化 D: 控制系统仿真 正确答案: (单选题)8: 智能控制的“四元交集结构”的四元,指的是() A: 计算机科学、自动控制、人工智能、神经网络 B: 人工智能、自动控制、信息论、系统论 C: 人工智能、自动控制、信息论、机器学习 D: 自动控制、人工智能、信息论、运筹学 正确答案: (单选题)9: 模糊控制是以模糊集合为基础的,提出模糊集合的科学家是()

智能控制技术实验报告

《智能控制技术》实验报告书 学院: 专业: 学号: 姓名:

实验一:模糊控制与传统PID控制的性能比较 一、实验目的 通过本实验的学习,使学生了解传统PID控制、模糊控制等基本知识,掌握传统PID控制器设计、模糊控制器设计等知识,训练学生设计控制器的能力,培养他们利用MATLAB进行仿真的技能,为今后继续模糊控制理论研究以及控制仿真等学习奠定基础。 二、实验内容 本实验主要是设计一个典型环节的传统PID控制器以及模糊控制器,并对他们的控制性能进行比较。主要涉及自控原理、计算机仿真、智能控制、模糊控制等知识。 通常的工业过程可以等效成二阶系统加上一些典型的非线性环节,如死区、饱和、纯延迟等。这里,我们假设系统为:H(s)=20e0.02s/(1.6s2+4.4s+1) 控制执行机构具有0.07的死区和0.7的饱和区,取样时间间隔T=0.01。 设计系统的模糊控制,并与传统的PID控制的性能进行比较。 三、实验原理、方法和手段 1.实验原理: 1)对典型二阶环节,根据传统PID控制,设计PID控制器,选择合适的PID 控制器参数k p、k i、k d; 2)根据模糊控制规则,编写模糊控制器。 2.实验方法和手段: 1)在PID控制仿真中,经过仔细选择,我们取k p=5,k i=0.1,k d=0.001; 2)在模糊控制仿真中,我们取k e=60,k i=0.01,k d=2.5,k u=0.8; 3)模糊控制器的输出为:u= k u×fuzzy(k e×e, k d×e’)-k i×∫edt 其中积分项用于消除控制系统的稳态误差。 4)模糊控制规则如表1-1所示: 在MATLAB程序中,Nd用于表示系统的纯延迟(Nd=t d/T),umin用于表示控制的死区电平,umax用于表示饱和电平。当Nd=0时,表示系统不存在纯延迟。 5)根据上述给定内容,编写PID控制器、模糊控制器的MATLAB仿真程序,

专家控制系统课后大作业

5-1 什么是专家系统?它具有哪些特点和优点? 专家系统(Expert System) 是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的特点如下: (1)启发性。不仅能使用逻辑知识,也能使用启发性知识,它运用规范的专门知识和直觉的评判知识进行判断、推理和联想,实现问题求解; (2)透明性。它使用户在对专家系统结构不了解的情况下,可以进行相互交往,并了解知识的内容和推理思路,系统还能回答用户的一些有关系统自身行为的问题; (3)灵活性。专家系统的知识与推理机构的分离,使系统不断接纳新的知识,从而确保系统内知识不断增长以满足商业和研究的需要; (4)实用性。可长期保存人类专家的知识与经验,且工作效率高、可靠性好、能汇集众多专家的特长,达到高于任何单个专家的水平,是保存、传播、使用及提高专家知识与经验的有效工具; (5)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作。使用符号表示知识,用符号集合表示问题的概念,一个符号是一串程序设计,并可用于表示现实世界中的概念; (6)不确定性推理。领域专家求解问题的方法大多数是经验性的,经验知识一般用于表示不精确性且存在一定概率的问题。此外,其提供的有关信息往往是不确定的。而专家系统能够综合应用模糊和不确定的信息与知识进行推理; 专家系统的优点如下: (1)专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作; (2)专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记; (3)军事专家系统的水平是一个国家国防现代化的重要标志之一;

智能控制实验指导书

智能控制理论及应用 (实验指导书) 实验一模糊控制的理论基础实验 实验目的: 学习隶属函数编程;模糊矩阵合成运算编程;模糊推理运算编程。 1隶属函数编程 学习P39 例2-12 (以下为例程) 完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出“非常老,很老,比较老,有点老”的四个隶属度函数仿真后的曲线。 %Membership function for old People clear all; close all; for k=1:1:1001 x(k)=(k-1)*0.10; if x(k)>=0&x(k)<50 y(k)=0; else y(k)=1/(1+(1/((x(k)-50)/5)^2)); end end plot(x,y,'k'); xlabel('X Years');ylabel('Degree of membership'); 2 模糊矩阵合成仿真程序 学习P31例2-10,仿真程序如下。 完成思考题P81 2-5,并对比手算结果。 clear all; close all; A=[0.2,0.8; 0.6,0.1]; B=[0.5,0.7; 0.1,0]; %Compound of A and B for i=1:2 for j=1:2 AB(i,j)=max(min(A(i,:),B(:,j)')) end end

3 模糊推理仿真程序 学习P47 例2-16,仿真程序如下。 完成思考题2-9,并对比手算结果。 clear all close all a=[1;0.5] b=[0.1;0.5;1] c=[0.2;1] for i=1:2 for j=1:3 ab(i,j)=min(a(i),b(j));%求出D end end t1=[]; for i=1:2 t1=[t1;ab(i,:)']; end %准备好DT; for i=1:6 for j=1:2 r(i,j)=min(t1(i),c(j)); end end %求出R a1=[0.8;0.1] b1=[0.5;0.2;0] for i=1:2 for j=1:3 ab1(i,j)=min(a1(i),b1(j)); %求出D1 end end t2=[]; for i=1:2 t2=[t2;ab1(i,:)']; end for i=1:6 for j=1:2 d(i,j)=min(t2(i),r(i,j)); c1(j)=max(d(:,j)); end end

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600 度恒定。 针对该控制系统有以下控制经验: (1)若炉温低于600 度,则升压;低的越多升压越高。 (2)若炉温高于600 度,则降压;高的越多降压越低。 (3)若炉温等于600 度,则保持电压不变。设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7 级,取5 个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600 C,实际温度为T,则温度误差为 E=600-T。 将温度误差E 作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E 的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1 所示。

表1温度变化E划分表 控制电压也分为个模糊集:、、、、,分 别为负小、负大、零、正小、正大。将电压u的变化分为7 个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB Edit or: Un+ it 1 e J. 歼cw OptigT

叮叮小文库

叮叮小文库 2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态 误差为 零,超调量不大于 1%,输出上升时间w 0.3s 。假定被 控对象的传递函数分别为: Gg e 0亦 (s 1)2 G2(S ) 4.228 (s 0.5)( s 2 1.64 s 8.456) 解: 在matlab 窗口命令中键入 fuzzy ,得到如下键面: 设e 的论域范围为[-1 1] , de 的论域范围为[-0.1 0.1] , u 的论 域范围为[ 0 2]。 将e 分为8个模糊集,分别为 NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为 NB ,NM ,NS, Z ,PS ,PM ,PB;

推理方法综述

智能控制导论大作业 学院:电子工程学院 专业:智能科学与技术

推理方法综述 一、推理的定义: 推理是人类求解问题的主要思维方法。所谓推理就是按照某种策略从已有事实和知识推出结论的过程。通过一个或几个被认为是正确的陈述、声明或判断达到另一真理的行动,而这真理被相信是从前面的陈述、声明或判断中得出的直接推理。 二、推理方式及其分类: 1.演绎推理、归纳推理、默认推理 (1). 演绎推理:一般→个别 演绎推理是从全称判断推出特称判断或单称判断的过程,即从一般到个别的推理。最常用的形式是三段论法。 例如: 1)所有的推理系统都是智能系统; 2)专家系统是推理系统; 3)所以,专家系统是智能系统。 (2). 归纳推理: 个别→一般 是从足够多的事例中归纳出一般性结论的推理过程,是一种从个别到一般的推理过程,分为完全归纳推理,又称为必然性推理,不完全归纳推理,又称为非必然性推理。 例如:

(3). 默认推理: 默认推理又称缺省推理,它是在知识不完全的情况下假设某些条件已经具备所进行的推理。 例如: 2.确定性推理、不确定性推理 如果按推理时所用的知识的确定性来分,推理可分为确定性推理与不确定性推理。 (1)确定性推理(精确推理)。 如果在推理中所用的知识都是精确的,即可以把知识表示成必然的因果关系,然后进行逻辑推理,推理的结论或者为真,或者为假,这种推理就称为确定性推理。(如归结反演、基于规则的演绎系统等) (2)不确定性推理(不精确推理)。 在人类知识中,有相当一部分属于人们的主观判断,是不精确的和含糊的。由这些知识归纳出来的推理规则往往是不确定的。基于这种不确定的推理规则进行推理,形成的结论也是不确定的,这种推理称为不确定推理。(在专家系统中主要使用的方法)。 例如: 3.单调推理、非单调推理 如果按推理过程中推出的结论是否单调增加,或者说推出的结论是否越来越接近最终目标来划分,推理又可分为单调推理与非单调推理。 (1)单调推理。(基于经典逻辑的演绎推理) 是指在推理过程中随着推理的向前推进及新知识的加入,推出的结论呈单调增加的趋势,并且越来越接近最终目标。(演绎推理是单调推理。)

智能控制实验

智能控制实验 姓名: 学号: 专业:控制理论与控制工程 代课老师: 日期:

实验目的: 1、通过实验进一步了解MATLAB软件的编程环境,学习编程技巧。 2、学习搜索相关论文,提高分析论文,找寻切入点的能力。 3、学习并掌握与计算机控制系统相关的控制算法。 实验内容: 1、专家PID控制系统Matlab仿真 2、模糊PID控制系统Matlab仿真 3、神经网络PID控制系统MATLAB仿真 前言 PID控制是最早发展起来的控制策略之一,在经典控制论证扮演重要角色,尽管当下各种智能控制层出不穷,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。而实际工业生产过程中往往具有非线性,时变不确定性,因而难以建立精确的数学模型,应用常规PID控制器不能达到到理想的控制效果,在实际生产过程中,由于受到参数整定方法繁杂的困扰,常规PID控制器参数往往整定不良,性能欠佳,对运行工况的适应性很差。因此常规PID控制的应用受到很大的限制和挑战。人们对PID应用的同时,也对其进行各种改进,主要体现在两个方面:一是对常规PID本身结构的改进,即变结构PID控制。另一方面,与模糊控制、神经网络控制和专家控制相结合,扬长避短,发挥各自的优势,形成所谓智能PID控制。使其具有不依赖系统精确数学模型的特点,对系统参数变化具有较好的鲁棒性。主要算法有:

基于规则的智能PID 自学习控制算法、加辨识信号的智能自整定PID 控制算法、专家式智能自整定PID 控制算法、模糊PID 控制算法、基于神经网络的PID 控制算法、自适应PID 预测智能控制算法和单神经元自适应PID 智能控制等多种控制算法。 结合具体实例,借助MATLAB 软件将专家PID 、模糊PID 以及神经网络PID 的设计程序M 文件自定义为一个函数,然后设计一个GUI 图形用户界面分别调用各自函数便于对比比较,易于操作。观察各自控制效果,并作分析。 假设一个速度控制器的传递函数为: 32523500 ()87.3510470G s s s s = ++ 输入信号为阶跃信号,取采样时间为1ms ,分别采用专家PID 、模糊PID 、神经网络PID 算法绘制阶跃响应曲线以及误差响应曲线。 一、实验原理: (一)、专家控制(Expert Control)的实质是基于受控对象和控制规律的各种知识,并以智能的方式利用这些知识来设计控制器。利用专家经验来设计PID 参数便构成专家PID 控制。基于模式识别的专家式PID 参数自整定控制器,不必要精确的辨识被控对象的数学模型,也不必要对被控过程加任何的激励信号就可以对PID 参数进行自整定。由它构成的控制系统运行稳定、有效、可靠。一般地,专家系统由专家知识库、数据库和逻辑推理机三个部分构成。专家知识库中己经把熟练操作工和专家的经验和知识,构成PID 参数选择手册,它记录了各种工况下被控对象特性所对应的P 、I 、D 参数,数据库根据被控对象的

同济智能控制实验报告 基于BP神经网络的自整定PID控制仿真

同济大学电子与信息工程学院实验报告 姓名:学号: 学院:专业: 实验课程名称: 任课教师: 实验项目名称:基于BP神经网络的自整定PID控制仿真实验日期:

一、实验内容: 1.熟悉神经网络的特征、结构及学习算法。 2.通过实验掌握神经网络自整定PID的工作原理。 3.了解神经网络的结构对控制结果的影响。 4.掌握用MATLAB实现实现神经网络控制系统仿真的方法。 二、实验步骤及结果演示 1.实验步骤: (1)被控对象为一时变非线性对象,数学模型可表示为 式中系数a(k)是慢时变的, (2)如图5所示确定BP网络的结构,选4-5-3型的BP网络,各层加权系数的初值取区间[-0.5,0.5]上的随机数,选定学习率η=0.25和惯性系数α=0.05. (3)在MATLAB下依据整定原理编写仿真程序并调试。 (4)给定输入为阶跃信号,运行程序,记录实验数据和控制曲线。 (5)修改神经网络参数,如学习速率、隐含层神经元个数等,重复步骤(4)。 (6)分析数据和控制曲线。 图5 BP神经网络结构

2.结果展示: (1)实验代码: xite=0.25; alfa=0.02; IN=4; H=10; Out=3; wi=[ 0.4634 -0.4173 0.3190 0.4563; 0.1839 0.3021 0.1112 0.3395; -0.3182 0.0470 0.0850 -0.0722; -0.6266 0.0846 0.3751 -0.6900; -0.3224 0.1440 -0.2873 -0.0193; -0.0232 -0.0992 0.2636 0.2011; -0.4502 -0.2928 0.0062 -0.5640; -0.1975 -0.1332 0.1981 0.0422; 0.0521 0.0673 -0.5546 -0.4830; -0.6016 -0.4097 0.0338 -0.1503]; wi_1=wi;wi_2=wi;wi_3=wi; wo=[ -0.1620 0.3674 0.1959; -0.0337 -0.1563 -0.1454; 0.0898 0.7239 0.7605; 0.3349 0.7683 0.4714; 0.0215 0.5896 0.7143; -0.0914 0.4666 0.0771; 0.4270 0.2436 0.7026; 0.0215 0.4400 0.1121; 0.2566 0.2486 0.4857; 0.0198 0.4970 0.6450 ]'; wo_1=wo;wo_2=wo;wo_3=wo; x=[0,0,0]; u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; oh=zeros(H,1); I=oh; error_2=0; error_1=0; ts=0.001; for k=1:1:6000 time(k)=k*ts; rin(k)=1; a(k)=1.2*(1-0.8*exp(-0.1*k));

华南理工大学智能科学与技术专业培养计划

华南理工大学智能科学与技术专业培养计划标准化管理部编码-[99968T-6889628-J68568-1689N]

智能科学与技术 Intelligent Science and Technology 专业代码:080907T学制:4年 培养目标: 本专业培养具备良好的科学素质,系统地掌握智能科学与技术的基本理论、基本知识和基本技能与方法,在智能科学与工程领域具有较强的知识获取能力、知识工程能力和创新创业能力的宽口径复合型高质量以及具有计算机、自动化、电子等交叉学科基础的人才,能在企业、事业、科研部门、教育单位和行政部门等单位从事智能系统、智能信息处理、智能行为决策等方面的科学研究、开发设计、工程应用、决策管理和教学等工作。 目标1:(扎实的基础知识)具有扎实的自然科学基础知识、人文社会科学基础、外语综合应用、管理的基础知识,掌握本专业领域必需的科学技术基础理论知识,主要包括电路理论、模拟电子技术、数字电子技术、现代信号处理、经典控制理论与应用、计算机控制、智能控制导论、微机原理与接口技术、嵌入式系统、人工智能、机器人学导论、模式识别、图像处理、脑机接口与认知科学导论等,为将所学基础知识应用到本专业工程实践中去做好准备。 目标2:(解决问题能力)能够较好的掌握智能系统、智能信息处理等方面的专业知识,具有本专业领域1~2个方向的专业知识和技能,了解本专业学科的前沿和发展趋势,获得较好的工程实践训练,具有熟练的计算机应用能力。具有本专业的科学研究、科技开发和组织决策管理能力,具有较强的工作适应能力。能将智能技术与计算机技术、信息处理、控制技术有机结合应用于工程实践,具有创新意识和一定的创新能力。 目标3:(团队合作与领导能力)具有一定的组织管理能力、较强的表达能力和人际交往能力以及在团队中发挥作用的能力。 目标4:(工程系统认知能力)掌握智能科学与技术领域系统设计、集成、开发及工程应用的基本技能与实践方法,了解相关的工程应用技术。 目标5:(专业的社会影响评价能力)培养学生正确看待和认识智能科学与技术的发展及应用对人们日常生活、社会经济结构所产生的潜在影响。 目标6:(全球意识能力)具有国际化视野和良好的全球竞争意识,具有跨文化交流、竞争与合作能力。 目标7:(终身学习能力)具有适应发展的能力以及对终身学习的正确认识和较强的自学能力。 专业特色:

智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。针对该控制系统有以下控制经验: (1)若炉温低于600度,则升压;低的越多升压越高。(2)若炉温高于600度,则降压;高的越多降压越低。(3)若炉温等于600度,则保持电压不变。 设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。 解:1)确定变量 定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。 将温度误差E作为输入变量 2)输入量和输出量的模糊化 将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。

表1 温度变化E划分表 控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。 表2 电压变化u划分表

表3 模糊控制规则表 E PB PS ZO NS NB u PB PS ZO NS NB

2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。假定被控对象的传递函数分别为: 2 55 .01)1()(+=-s e s G s ) 456.864.1)(5.0(228 .4)(22+++= s s s s G 解: 在matlab 窗口命令中键入fuzzy ,得到如下键面: 设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。 将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; u 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

智能控制导论大作业3

智能控制导论 姓名***** 学号****** 学院自动化与电气工程学院 专业控制科学与工程 班级***** 指导老师******

粒子群算法的小波神经网络在变压器故障诊断中的应用与改进 摘要:针对变压器故障征兆和故障类型的非线性特性,结合油中气体分析法,设计了一种改进粒子群算法的小波神经网络故障诊断模型。模型采用3层小波神经网络,并用一种改进粒子群算法对其进行训练。该算法在标准粒子群算法的基础上,通过引入遗传算法中的变异算子、惯性权重因子和高斯加权的全局极值,加快了小波神经网络训练速度,提高了其训练的精度。仿真实验证明这种改进粒子群算法的小波神经网络可以有效地运用到变压器故障诊断中,为变压器故障诊断提供了一条新途径。 引言:本文在变压器故障诊断智能方法的基础上,首先构造了3层小波神经网络模型,然后通过在标准粒子群算法中加入变异算子、惯性权重因子和高斯加权的全局极值,构成一种改进的粒子群优化算法,并将其运用于小波神经网络参数优化,通过变压器故障诊断结果表明这种改进的粒子群算法比相同条件下的BP 算法和标准粒子群算法具有更好的收敛性。 1 小波神经网络构建 小波神经网络是一种基于小波变换理论而构造的前馈神经网络,其充分利用了小波变换的局部化性质和神经网络的大规模数据并行处理、自学习能力,因而具有较强的逼近能力和较快的收敛速度,其主要可分为松散型和紧密型两种类型。本文采用紧密型结构来构造小波神经网络,构造出来的3层小波神经网络如图1 所示。 设输入层节点个数为m,隐含层小波元个数为n,输出层节点个数为N,输入层的第k 个输入样本为x k,输出层的第i 个节点实际输出值为y i,输出层的第i 个节点期望输出值为y?i,输入层节点k 与隐含层节点j 之间的连接权值为kj ,输出层节点i 与隐含层节点j 之间的连接权值 为ji ,第j 个隐层节点的伸缩平移系数分别为j a 和j b ,隐层小波神经元采用Mexican Hat 小波函数,输出层节点采用Sigmoid 函数。 通过前向计算得到隐含层第j 个小波元的输入为: 通过小波基伸缩平移系作用,隐含层第j 个小波元的输出为: 则网络输出层第i 个节点输出为:

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

相关主题
文本预览
相关文档 最新文档