当前位置:文档之家› 硕士论文--半乳糖基壳聚糖载药纳米粒子的制备及性能研究

硕士论文--半乳糖基壳聚糖载药纳米粒子的制备及性能研究

硕士论文--半乳糖基壳聚糖载药纳米粒子的制备及性能研究
硕士论文--半乳糖基壳聚糖载药纳米粒子的制备及性能研究

武汉理工大学

硕士学位论文

半乳糖基壳聚糖载药纳米粒子的制备及性能研究

姓名:郑飞

申请学位级别:硕士

专业:药剂学

指导教师:陈敬华

20071101

制备壳聚糖纳米粒的影响因素考察

制备壳聚糖纳米粒的影响因素考察 【摘要】本文主要以粒径为壳聚糖纳米粒的评价指标,通过对乳化交联法和离子凝聚法(Sodium Polyphosphate做交联剂)制备壳聚糖纳米粒的影响因素考察,确定摩尔分子量是影响制备壳聚糖纳米粒的关键因素.对于乳化交联法,分别考察了机械搅拌法和高压均质法这两种乳化的方法的各种影响因素。对于离子凝聚法,考察的影响因素包括加入顺序、不同规格壳聚糖、药物曲尼司特、多聚磷酸钠的浓度和用量等。结果证明乳化交联法只能制备出微米级的粒子,而离子交联法只能制备出粒子浓度特别低的纳米粒溶液。 【关键词】壳聚糖,纳米粒,曲尼司特,离子交联法 1仪器与材料 1.1实验仪器 高压均质机Emulsiflex—CSAvestin 微米粒度仪Zetasizer Malvern instrument Ltd. BS110S型电子天平北京赛多利斯天平公司 KQ-250超声仪中国江苏昆山超声仪 纳米粒子测定仪Zetasizer 3000HSaMalvern 1.2实验试剂及药品 戊二醛溶液(25%)国药集团化学试剂有限公司 多聚磷酸钠(Polyphosphate Sodium,TPP)国药集团化学试剂有限公司 多种规格壳聚糖Zhejiang Aoxing Biotechnology 曲尼司特原料药中国药科大学制药厂 2实验方法和结果 本实验制备壳聚糖纳米粒主要采用了两种方法,一是乳化交联法[1],另一个是离子凝聚法[2]。乳化交联法中影响壳聚糖纳米粒的主要因素有:乳化方法,搅拌方法,交联时间,交联剂的用量,壳聚糖的用量等。离子凝聚法制备壳聚糖纳米粒得主要影响因素有:壳聚糖的分子量,壳聚糖的浓度和用量,药物的浓度和用量,交联剂的浓度和用量等。

壳聚糖的制备与纯化

甲壳素是一种白色或灰白色的半透明无定形固体,通常在270℃分解。甲壳素基本上不溶解于水、乙醇、乙醚、稀酸以及稀碱等物质,它可溶于浓度较高的无机酸,但不溶于稀硫酸等稀酸。壳聚在溶液状态时,需要被放置在酸性环境中,但是,由于壳聚糖具有醛基结构,因此,壳聚糖在酸性溶液中易发生降解,从而使壳聚糖溶液粘度下降,通过加入甲醇、丙酮、乙醇等物质可以使壳聚糖的溶液粘度升高,在试验中一般常用乙醇,作用最为明显。由于甲壳质中含有羟基,壳聚糖中同时含有羟基和氨基,因此,壳聚糖和甲壳质可以通过酚化、羧基化、氰化、螫合、水解、醚化、酯化、醛亚胺化、烷化、叠氮化、羟基化、成盐、氧化、卤化、接枝与交联等反应生成不同结构和不同性能的衍生物[29]。 甲壳质通过脱乙酰反应可制得壳聚糖,通常使用质量分数为50%左右的氢氧化钠溶液处理甲壳质并加热到105℃,在该温度下保持两小时,然后将材料水洗至中性,经过抽滤、干燥即可得到白色的壳聚糖。壳聚糖的脱乙酰度和相对分子量受反应温度、反应时间以及碱液浓度的影响,使用蟹虾壳海蟹壳、对虾壳、河虾壳和蚕蛹等原料在同一方法和条件下制备壳聚糖,其中以海蟹壳的产率最高,可见海蟹壳是制备壳聚糖的最佳原料。除此之外,还以使用酶法、微波法等方法制备壳聚糖[30]。2.1.2.2 壳聚糖的纯化及脱乙酰 壳聚糖(Chitosan)的纯化: (1)用天平称取6 g chitosan 于800 ml 1%(V/V)的醋酸溶液中,磁力搅拌 溶解2h,待完全溶解后静置2h,可见烧杯底有大量沉淀; (2)将壳聚糖溶液倒入离心管,用普通天平平衡后,再用高速离心机9 000 rmp, 离心10 min 收集上清,倒入另一干净的1 L 烧杯中; (3)边用磁力搅拌器搅拌,边用5 %NaOH 溶液缓慢调pH 值到9,静置2 h, 待chitosan 完全析出; (4)再用高速离心机9 000 rmp, 离心10 min,或者使用真空泵抽滤以收集 纯化的chitosan; (5)放入-70 ℃冰箱过夜,用冻干机干燥备用[31]。 壳聚糖(Chitosan)的脱乙酰: 1)用500 ml 三口瓶配40 %(W/V) NaOH 溶液,与壳聚糖混合,然后将洗 净的磁力搅拌子放入其中; (2)打开磁力搅拌器总开关及加热开关,将反馈式温度计插入硅油中,并将温 度计导线接入仪器后座插口,调节温度计旋钮将温度设定为95℃,待温度达到预定 值时,将三口瓶架入油浴槽,装好冷凝管,打开自来水水龙头和搅拌开关,反应2 h; (3)关闭仪器各开关,将三口瓶架在空中,让瓶底的油滴到用油浴槽内,同时 让温度自然冷切; (4)加入三蒸水稀释后,倒入垫有双层定性滤纸的陶瓷漏斗中,用真空泵抽滤, 多次稀释抽滤洗涤至中性; (5)收集脱乙酰壳聚糖,放入-20 ℃冰箱过夜,用冻干机干燥[31]。 脱乙酰度测定 测定脱乙酰度的方法很多,常用的有FT-IR、NMR、紫外、元素分析等,但是 常用为双突跃电位滴定法,其步骤如下[31]: (1)配制壳聚糖溶液:用电子天平精确称量0.2 g Chitosan 于100 ml 烧杯中, 加入20 ml 0.1 M HCl 溶液,再加40 ml 三蒸水,用保鲜膜封口后磁力搅拌至充分溶解; (2)配制0.4 g/ml NaOH 标准溶液:用电子天平精确称量1.6 g NaOH 于50 ml 烧杯中,溶解后用100 ml 容量瓶定容; (3)用标准缓冲液校正酸度计; (4)边搅拌边滴定,记录数据; (5)用Excel 和Origin 处理数据,画出滴定曲线,得出取代度。 2.1.2.3 壳聚糖改性

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.doczj.com/doc/f412255687.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.doczj.com/doc/f412255687.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

壳聚糖纳米颗粒的制备及其质粒转染研究

东南大学学报(医学版)J SoutheastUniv (Med Sci Edi )  2007,Jan;26(1):426 [基金项目]国家自然科学基金资助项目(30028012,30330530,30425009);教育部基金资助项目(TRAP OY199028418,SRF DP20030284040)。 [作者简介]张昊(1981-),女,江苏苏州人,理学硕士。E 2mail:zhangh6666@yahoo https://www.doczj.com/doc/f412255687.html, [通讯作者]华子春 E 2mail:zchua@nju .edu .cn 壳聚糖纳米颗粒的制备及其质粒转染研究 张昊1 ,李淑锋 1,2 ,陈允梓1,舒娈1,华子春 1 (1.南京大学医药生物技术国家重点实验室,江苏南京 210093;2.东南大学基础医学院,江苏南京 210009) [摘要]目的:研究壳聚糖纳米颗粒在体外和体内实验中的转染能力。方法:用亚硝酸钠降解壳聚糖的方法制得低分子质量壳 聚糖,用zeta 电位仪测定粒径、多分散度、zeta 电位,并使用乌式黏度计法测定其相对分子质量;通过静电吸附复合绿色荧光蛋白表达质粒p I RES 2eGFP (报告基因),采用琼脂糖凝胶电泳分析载体与DNA 结合能力;用体外和体内基因转染实验,评价纳米颗粒的转染能力。结果:制得的壳聚糖粒径200~600n m,多分散度最好的达到01005,zeta 电位0189mV,相对分子质量717× 107 ,粒径250n m 。体外对3T3细胞的转染实验显示,该壳聚糖具有一定的转染效率;体内对Balbc57/BL6小鼠的股四头肌肌肉 的转染实验显示,肌肉组织中有大量绿色荧光蛋白的表达,并且在炎症部位尤为明显。结论:本研究制备的壳聚糖,能够在体外和体内均实现有效转染,为基因治疗提供了一种潜在的载体。 [关键词]壳聚糖;基因治疗;细胞转染;载体 [中图分类号]Q782 [文献标识码]A [文章编号]167126264(2007)0120004203 基因治疗的应用之一就是在体内由DNA 直接产 生相应的、有治疗作用的蛋白质。基因治疗可以通过控制细胞周期蛋白质或者细胞因子等蛋白质的表达,用 于肿瘤和免疫性疾病等许多获得性疾病的治疗[122] 。壳聚糖是一种氨基多糖,由几丁质经脱乙酰化后得到。几丁质是海洋产业的副产品,所以产量丰富。尤为重要的是,它具有良好的生物相容性、生物可降解性和低免疫原性。因此,它正作为一种继磷酸钙、脂质体之后 的新型非病毒载体,被人们广泛关注[324] 。壳聚糖等电点偏碱性,在生理条件下,带正电荷的壳聚糖可与带负电荷的质粒通过静电作用,形成复合物。低分子质量壳聚糖(l ow molecular weight chit osan,L MWC )比高分子壳聚糖(high molecular weight chit osan,H MWC )具有 更加优良的载体性能[5]。我们采用亚硝酸钠法[6] ,从高分子质量壳聚糖制备了低分子质量壳聚糖。本研究探讨壳聚糖作为非病毒载体在体外和体内的转染效果,为其在基因治疗中的应用作了有益的探索。 1 材料与方法 1.1 材料 质粒I RES 2eGFP 和宿主菌E .coli Top10由本实验 室保存,DME M 培养基,新生小牛血清为Hycl one 公司产品,脂质体转染试剂盒(L i pofect AM I N E )购自GI B CO 公司,壳聚糖购自青岛海普生物技术有限公司,3T3细胞株来自N I H,小鼠为Balbc57/BL6由南京大学模式动物中心提供。荧光倒置显微镜为ZE I SS 公司的 axi op lan2,zeta 电位仪为B r ookhaven I nstruments Cor po 2rati on 公司提供的90Plus Particle Size Analyzer 。1.2 方法 1.2.1 Na NO 2法降解壳聚糖 称取215g 壳聚糖,慢 慢加入到250m l 015%乙酸溶液中,保持室温搅拌,壳聚糖被浸润成棉絮状。称取75mg Na NO 2,加入到壳聚糖溶液中,不断搅拌,溶液黏度明显下降。分别在30、60、90、120m in 后,取出50m l 溶液,分别标记为A 、B 、C 、D 。使用zeta 电位仪测定A 、B 、C 、D 4份样品的 颗粒大小和zeta 电位值,再使用乌式黏度计法测定相对分子质量,以备后用。 1.2.2 细胞水平转染实验 使用壳聚糖,对细胞汇合 度约70%的3T3细胞进行转染实验,同时制备脂质体/DNA 复合物作为阳性对照,裸质粒DNA 作为阴性对照,共同培养36h,通过流式细胞仪检测绿色荧光蛋白的表达,定量检测转染效率。 1.2.3 动物体内转染实验 取Balbc57/BL6小鼠24 只,分为6组,每组4只,每组中1只为空白对照组,另 外3只为实验组,由10μg GFP 质粒(1μg ?μl -1)、30μl P BS 和20μg 壳聚糖(1μg ?μl -1)配成的复合物共60μl,孵育30m in,用注射器注入小鼠股四头肌肉 中,对照组注射10μg GFP 质粒和20μl P BS 的混合物,分别于注射1、2、3、4、5、6d 后,对6组小鼠进行解剖,取大腿股四头肌注射部位进行冰冻切片,在荧光显微镜下观察荧光表达强度。 ? 4?

水溶性壳聚糖的制备方法

水溶性壳聚糖的制备方法,其特征在于包括以下步骤:(1)、原料处理:将壳体去除肉后,清水漂洗备用;(2)、稀酸处理:用壳体重2~4倍4~10%的盐酸浸泡1~2天,再用清水漂洗;(3)、碱煮除蛋白脱脂:用2~4倍8~12%氢氧化钠煮沸2~4小时,用清水漂洗;(4)、再脱钙处理:用2~4倍10~15%盐酸浸泡,以除去碳酸钙和磷酸钙,再用清水漂洗;(5)、脱色处理:用2~4倍清水调节PH值在5左右、在酸性条件下加入1%的KMnO↓[4]至紫红色不褪为止,以除去壳体的有机色素,再用清水漂洗;(6)、还原除去MnO↓[2]:将脱色后的壳体浸泡于1~3%的NaHSO↓[3]溶液中,以除去MnO↓[2],再用1~4%的草酸漂白得到白净甲壳素;(7)、脱乙酰度:用2~4倍55~70%的浓氢氧化钠在75~95℃处理10~20小时,获得壳聚糖粗品;(8)、纯化分离:将粗品溶于8~10倍3~6%稀醋酸,慢慢加入10%左右的浓碱至出现粘液,冷却至5~25℃,静置水解2~4小时,用稀盐酸中和至PH值在8~9,并产生絮状物,不断搅拌,至絮状物不再产生,过滤,洗涤除去氯化钠获得可溶性壳聚糖精品。 壳聚糖的结构、性质及其应用 张洁 海洋药学0844130 摘要:生物相容性好、可降解、对组织和细胞无毒副作用的生物材料一直是生物医学领域研究的热点。壳聚糖(α(1-4)2-氨基2-去氧β-D葡聚糖)是甲壳素脱乙酰得到的天然多糖中惟一的碱性多糖,具有很多优良的特性。本文就壳聚糖的结构、性质及其应用进行综述。 关键词:壳聚糖,结构,性质,应用 壳聚糖(Chitosan,简称CTS),壳聚糖是由N-乙酰糖胺组成,其中糖胺的含量超过90%,具有黏多糖相似的结构特点,而黏多糖在组织中分布广泛,是细胞膜有机组成成分之一,故壳聚糖具有优异的生物相容性⑴~⑵。表现为无毒、无刺激、无免疫抗原、无热原反应、不溶血,有抗菌消炎、促进伤口愈合,抗酸、抗溃疡、降脂和降低胆固醇的作用⑶~⑸。而且具有直接抑制肿瘤细胞的作用,并可通过活化免疫系统显示抗癌活性,与现有的抗癌药合用可增强抗癌效果,近年来其作为药物微球材料的研究也受到了极大的重视⑹,是一种安全可靠的天然生物活性多糖。本文就壳聚糖的结构、性质及其应用进行综述。 一.壳聚糖的结构与性质1.壳聚糖的来源—甲壳素 壳聚糖来源于一种自然资源十分丰富的线性聚合物一甲壳素,是甲壳素经脱乙酰化反应后得到的一种生物高分子Ⅲ。甲壳素是一种天然多糖类生物高分子聚合物,在自然界中广泛存在于低等生物菌类、藻类的细胞,节支动物虾、蟹、昆虫的外壳,软体动物(如鱿鱼、乌贼)的内壳和软骨,高等植物的细胞壁等,将甲壳动物的外壳通过酸碱处理,脱去钙盐和蛋白质,即可得到甲壳素。甲壳素化学名为[(1,4)一2一乙酰胺基一2一脱氧一B—D-葡萄糖],分子式为(C8H13N05)。,单体之间以B(1-4)糖苷键连接,分子量一般在lO6左右,理论胺含量为6.9%。甲壳素的化学结构与植物中广泛存在的纤维素结构非常相似(见图l),故又称为动物纤维素。

壳聚糖的制备

壳聚糖及其衍生物的制备 甲壳素(chitin)在自然不仅含量十分丰富,而且可生物降解,是环境友好产品,利用沿海地区丰富的虾蟹壳为原料,可生产出甲壳素,变废为宝,净化环境。甲壳素经浓碱处理去掉乙酰其后得壳聚糖(chitosan),分子结构如下: O O CH2OH OH NH2n O 壳聚糖经化学改性可得系列的衍生物,如:羧甲基壳聚糖、低聚壳聚糖等。这些系列产品在许多方面有着极其广泛的用途。如在医学方面可作为抗癌制剂、手术缝线、人造皮肤、药物载体等;在轻工业上可作为化妆品填料、增白剂、固发剂或增强纸张的光洁度;在环保方面可作为絮凝剂、吸附剂,用于污水处理,还可用作饮料的澄清剂、无毒包装材料等;在农业方面是一种新型植物生长调节剂,促进植物生长、增加产量、提高品质、诱导植物的广谱抗病性,还可用于生产生物农药,用于果蔬保鲜。因此壳聚糖及其衍生物系列产品有很好的潜在需求和市场前景。 一、实验目的 1.了解壳聚糖及其衍生物的应用概况; 2.学习壳聚糖及其衍生物的制备原理和方法; 3.强化学生环保意识,变废为宝; 4.制备2~5g的产品。 二、实验内容 1.利用强碱制备壳聚糖; 2.测定壳聚糖的脱乙酰度。 三、实验原理

甲壳素是酰胺类多糖,壳聚糖的制备过程,就是酰胺的水解过程。酰胺有如下几种结构: 酰胺可在强酸或强碱条件下水解,对于低分子的酰胺,水解可以进行得比较 完全,但对于多糖来说,强酸更容易水解糖苷键,所以甲壳素的脱乙酰基,一般 情况下不采用强酸水解;相对说来,强碱造成糖苷键的断裂不像强酸那么严重, 所以都用强碱来脱乙酰基。 酸碱滴定法的原理是壳聚糖的自由氨基呈碱性,可与酸定量地发生质子化反应,形成壳聚糖地胶体溶液: 溶液中游离的H+用碱反滴定,这样,从用于溶解壳聚糖的酸量与滴定用去的碱量 之差,即可推算出壳聚糖自由氨基结合酸的量,从而计算出壳聚糖中自由氨基的 含量。 四、实验材料与设备 1.实验设备与仪器 水浴锅,电炉,烧杯,三角瓶,碱式滴定管,电子天平。 2.实验材料与试剂 甲壳素,NaOH,HCl,甲基橙指示剂,乙醇、丙酮。 五、实验步骤 1.壳聚糖的制备 (1)取三个烧杯,编号1﹟、2﹟、3﹟,于每个烧杯中加入甲壳素5g,于1﹟ 烧杯中加入40%NaOH 100mL,2﹟烧杯中加入50%NaOH 100mL, 3﹟烧杯中加入 60%NaOH 100mL,100℃煮沸2h,脱乙酰基。 (2)反应完毕取出,用蒸馏水洗至中性,再用乙醇、丙酮洗涤后,干燥,即得 白色壳聚糖。 2.脱乙酰度的测定 准确称取上述方法制备的三种壳聚糖各0.5g,分别置于250mL三角瓶中,加入

铂纳米微粒制备方法的研究

铂纳米微粒制备方法的研究 李明元1,毛立群2,郭建辉2,黄在银1 (1.广西大学化学化工学院,广西,南宁 530004;2.河南大学化学化工学院,河南,开封 475001) 摘 要:分散型铂纳米微粒和负载型铂纳米微粒都是重要的催化剂。制备尺度可控、粒度分布均一的铂纳米微粒,对提高其催化活性和选择性,以及延长其使用寿命具有重要的意义。本文介绍了分散型和负载型铂纳米微粒常用的制备方法,讨论了各方法的制备原理及其优缺点。 关键词:纳米铂;制备方法;分散型;负载型 1 前言 铂及其合金在石油和化学工业中主要用作催化剂,对加氢反应,氧化反应具有较好的催化性能[1-2]。近年来随着纳米科学与技术研究的不断深入,研究工作者发现纳米铂由于具有比表面积高和因而显示出的更高的催化活性,使得关于纳米铂的制备及催化性能研究成为热点[3-5]。铂纳米微粒的制备方法大致分为两类,即化学法(化学还原法、微乳液法等)和物理方法(真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米微粒的催化性能与其制备方法密切相关,微粒的尺度、形貌、化合价等对其催化性能起着至关重要的作用[6],此外,对于载体型纳米铂催化剂而言,载体的性质也同样对纳米铂的催化性能也会产生影响。本文简述了铂纳米微粒的制备方法,主要介绍各种制备方法的原理及其优缺点,以及运用这些方法制备*铂纳米微粒所取得的进展。 2 分散型铂纳米微粒的制备 分散型铂纳米微粒的制备方法主要有化学还原法、微乳液法、吸氢多次还原法等。目前关于负载型铂纳米微粒的制备研究较多,而分散型铂纳米微粒的制备研究相对较少。 2.1 化学还原法 化学还原法制备纳米铂微粒,一般是在含有金属铂的盐或者酸里面加入还原剂还原高价铂到铂单质,然后经过洗涤、过滤、干燥、煅烧等处理后得到催化剂铂纳米粉体。常用的还原剂有甲醛[7]、多聚甲醛[8]、硼氢化钠[9]、硫代硫酸钠、连二亚硫酸钠、乙醇、乙二醇、柠檬酸、葡萄糖、水合肼等。化学还原法具有操作简单,反应条件温和,对仪器的要求低等优点。但是用化学还原法制备铂纳米微粒需要加入还原剂、保护剂等,在后处理过程中需采用高温焙烧的方法将它们除去。而在焙烧过程中容易造成保护剂的碳化和铂纳米微粒的团聚[10],因此化学还原法不容易得到小尺度,且粒度均一的铂纳米微粒。保护剂主要有聚合物、有机配合物、壳聚糖、表面活性剂等[11]。通常,保护剂的加入量对铂纳米微粒尺度有重要影响,铂纳米微粒的团聚程度随着保护剂的加入量的增加而减小。 唐浩林等[12]在碱性条件下(pH=8.5)用无水乙醇还原氯铂酸,并采用Nafion聚离子对生成的铂纳米微粒进行表面修饰,得到平均粒径为4nm的铂纳米微粒。Nafio n憎水性极强的高分子主链和亲水性的磺酸基团对铂纳米微粒具有良好的化学修饰作用,且Nafion聚离子对铂存在位阻作用,使铂纳米微粒稳定吸附在Nafion聚离子上而彼此分散开。陈卫等[13-14]在碱性条件下用甲醇做还原剂还原氯铂酸,分别在加入保护剂聚乙烯吡咯烷酮(PVP)和没有加入保护剂的条件下制得了平均粒径为2.5nm 的球状铂纳米微粒。杨玉琴等[15]在加入保护剂PVP 下,用两种还原剂乙醇和硼氢化钠还原氯铂酸制得铂纳米微粒。他们的研究表明,加入的保护剂越多,得到的铂纳米微粒就越小,分散性也越好,但是保护剂加入的越多,制备的铂纳米颗粒的催化性能就越低。他们还发现,用硼氢化钠做为还原剂制备的铂纳米微粒较小并且很少有团聚现象。吕高孟等[16]以吡啶为保护剂,在室温条件下以硼氢化钾为还原剂制得了粒径在2.0~3.0nm的铂纳米微粒。用吡啶作保护剂解决了空气对保护剂的破坏从而使胶体纳米铂可以较长时间地存在。但胶体纳米铂难以分离,因此他们所制备的铂纳米粒子并没有从胶体中分离出来。由Fox研究小组[17]用聚芳醚二硫树枝状分子作保护剂得到启发,张伟等[18]用聚芳醚三乙酸铵树枝分子作为保护剂制得了平均粒径为2.5nm的铂纳米微粒。聚芳醚三乙酸铵树枝分子上的羟基与铂纳米微粒之间有较强的相互作用,使其具有较好的稳定性,不宜发生团聚。 2.2 微乳液法 微乳液中油包水型(W/O)的水核尺寸小且彼此分离,不同水核内不能进行物质交换,因此适当的微乳液可以制备出尺寸和大小都比较均一且分散性好的纳米微粒[19]。微乳液中组分的比例对纳米微粒 5  2007年第12期 内蒙古石油化工 收稿日期:2007-08-14 基金项目:河南省教育厅资助项目(2007150007)

水稻原生质体分离及转化

水稻原生质体分离及转化 作者:植物逆境与光合实验室|发表日期:2014-04-11 实验目的:用于做荧光定位、BIFC、Co-IP实验 实验材料和试剂: 生长8-10 d的水稻组培幼苗、酶解液、mmg溶液、PEG-CaCl2溶液、W5溶液、5 mL移液枪、5 mL枪头、12 mL BD管、1.5 mL EP管、100 mL锥形瓶、圆形培养皿、滤网(20 mm×20 mm)、离心机、摇床等。 溶液的配制: 母液的配制: 1、0.2 M MES(pH 5.7) 2、0.8 M Mannitol(甘露醇) 3、1 M CaCl2 4、2 M KCl 5、2 M MgCl2 6、10% BSA [Fluka PEG 4000 81240] 以下如有上述母液,则都是使用的母液 酶解液:20 mL ×2 MES 0.5

mL 1 mL Mannitol 7.5 mL 15 mL Cellucose(纤维素酶)0.15 g 0.3 g Macerozyme(离析酶)0.075 g 0.15 g ddH2O 1.8 mL 3.6 mL 55℃10 min 冷却至RT后加入200 uL CaCl2 加入200 uL 10% BSA Mmg: 20 mL ×2 MES 0.2 mL 0.4 mL Mannitol 5 mL 10 mL MgCl2 0.075 mL 0.15 mL ddH2O 4.725 mL 9.45 mL

PEG-CaCl2: 20 mL ×2 Mannitol 2.5 mL 5 mL CaCl2 1 mL 2 mL PEG4000 4 g 8 g ddH2O 3 mL 6 mL W5: 200 mL MES 2 mL NaCl 1.8 g CaCl2?2H2O 3.67525 g KCl 0.5 mL ddH2O 197.5 mL 具体实验步骤: 1、从培养基上切取培养8-10 d的水稻幼苗,去除幼苗外层包裹的叶子。 2、用干净的刀片将幼苗切成很细的粉末状碎片(越细越好,有利于酶解),大概切到水稻幼苗茎秆的中间段即可(剩余未切割的部分可以扔掉)。

离子凝胶法制备壳聚糖纳米粒的研究进展

离子凝胶法制备壳聚糖纳米粒的研究进展 【关键词】离子凝胶法;壳聚糖纳米粒 近年来随着科学技术的发展,制药技术和药物剂型也有了很大的发展,出现了很多新剂型和新技术。其中载药纳米微粒作为药物、基因传递和控释的载体。是近年来出现的药物控释和缓释的新剂型。引起了国内外的极大关注和兴趣。纳米粒是由高分子物质组成,粒径在10-100nm范围,药物可以溶解、包裹于其中或吸附在表面上。20世纪70年代,Narty等人首先将纳米囊与纳米球作为药物载体,30多年来在药剂学领域得到广泛的推广。壳聚糖作为一种天然的生物大分子,是自然界中唯一的碱性多糖,它具有生物可降解性、生物相容性、低毒性、良好的粘附性和成膜能力,且价格低廉。因而被广泛应用于生物医学、制药工业和医疗卫生中。 壳聚糖纳米粒的制备方法有很多种,包括:共价交联法、离子凝胶法、大分子复合法、去溶剂化法、自组装法等。其中离子凝胶法是制备壳聚糖纳米微球的一种简单、迅速的方法,该方法反应条件温和,无需使用有机溶剂,能得到坚固、稳定性好、粒径均匀的壳聚糖纳米微球[1]。本文就离子凝胶法制备壳聚糖纳米粒的原理、质量评价以及体外释放性等做简单介绍。 1 离子凝胶法制备壳聚糖纳米粒的原理 离子凝胶法是利用无毒副作用的三聚磷酸钠(TPP)对壳聚糖进行离子诱导凝胶化而制备纳米粒。由于TPP中含有多个PO-Na十基团,而溶解于醋酸的壳聚糖分子链中又含有NH3+结构,类似于壳聚糖-TPP聚离子复合膜的成膜原理,二者发生反应:Chitosan-NH3++TPP-PO-→ Chitosan-NH+—OP-PP[2]。壳聚糖载药纳米粒的形成主要是靠正负电荷之间的吸引作用,壳聚糖的伯氨基带有阳离子,它与带有阴离子的三聚磷酸钠在适宜的条件下交联并把药物包裹在其中形成载药纳米粒。 2 离子凝胶法制备壳聚糖纳米粒的工艺研究及其质量评价 离子凝胶化法制备纳米粒有两种方法,即一步法和二步吸附法。一步法是在纳米粒制备过程中直接加入药物,载体形成的同时将药物包裹进去,形成纳米粒;二步吸附法是先制得空白纳米粒,再将药物溶液与纳米粒混合吸附制得含药纳米粒。用的比较多的方法是二步法。 在该实验中,称取适量壳聚糖粉末,室温下溶于0.1 mol/L乙酸溶液,使壳聚糖终浓度为2.5 g/L。通过磁力搅拌使壳聚糖完全溶于乙酸后,用NaOH溶液调节壳聚糖乙酸溶液的pH为5。磁力搅拌状态下,将1%的三聚磷酸钠滴加到壳聚糖乙酸溶液中,使壳聚糖/三聚磷酸的质量比为6/1,通过阴阳离子的静电作用交联成CS空白纳米粒。

壳聚糖的制备

壳聚糖的制备 甲壳素是许多甲壳类动物(如虾、蟹)及昆虫等外壳的重要组成成分,同时也存在于菌类的细胞壁中,还可来源于有机酸类,抗生素与酶酿造副产物。甲壳素是一种十分丰富的天然资源,在自然界蕴藏量仅次于纤维素。它不溶于水和酸性介质,甲壳素脱乙酰后形成壳聚糖(CTS)。其溶解性较甲壳素大。它是生物合成的天然高 分子, 葡聚糖,酰度 ( 滴定法、热分析法、气相色谱法、元素分析法、紫外光谱一阶导数、苦味酸分光光度法等。常用的有酸碱滴定法、红外光谱法、紫外光谱法、电位滴定法等。 一、壳聚糖的制备 将虾壳去腿去杂质后,流水冲洗,洗净残余的虾肉,于60℃烘箱中烘干,用研钵

磨碎.称取10g虾壳3份,于100mL5%HCl中浸泡4h至无气泡冒出,再补加50mL5%HCl,浸泡2h,除去虾壳中的钙质和无机盐,抽滤用去离子水洗至中性,加100mL10%NaOH于50℃水浴中加热2h,除去蛋白,过滤,用去离子水80℃水浴中反应4h,水洗至中性,抽滤,烘干后得白色粉末状甲壳素分别为2.08,2.00,2,12g,平均产率为20.6%。 二、壳聚糖制备工艺的设计 30%以下,,但是 ℃进行 , ,真空干燥, 1. ,可与酸定量反应生成盐,且胺基特别稳定,即使在50%氢氧化钠溶液中,在150℃也不会分解,基于上述特性来测定脱乙酰度。准确称取0.2g样品置于250ml三角烧瓶中,加入0.2mol/L盐酸标准溶液25ml,搅拌0.5~1h完全溶解,以甲基橙作指示剂,0.2mol/L氢氧化钠标准溶液滴定过量的盐酸至终点,另取1份样品于105烘箱中

至恒重,测定样品含水量。 这种方法简单,但由于达到终点时,壳聚糖析出沉淀,使终点判定容易产生误差,尤其在样品摩尔质量较大情况下更是如此,从而导致实验的重复性差。而且样品受溶解度影响较大,有时需加热才能使样品完全溶解,这样使盐酸挥发,测定结果受到影响。但这种方法不需大型仪器,操作简便易行,经常操作,积累一定操作经验,会改 2. ,作 单,,应 3. , , 红88与壳聚糖的作用。酸性红88这种带负电荷的染料与壳聚糖大分子上质子化的氨基以1∶1的化学计量形成络和物,此时酸性红88的最大吸收波长为505nm,吸光度达到最低点,可以定量利用这一变色作用。本文用酸性红143,与已知含量壳聚糖作用,测定未知含量壳聚糖。

纳米功能材料纳米功能材料思考题

《纳米功能材料》—思考题 第一章、概论 1.纳米材料定义及分类。 2.功能材料定义及分类。 3.按照产物类型,纳米材料如何划分类别。 4.纳米结构和材料的生长介质类型? 5.纳米技术的定义? 6.制备纳米结构和材料的2大途径是什么?各自的特点或有缺点? 7.什么是描述小尺寸化的“摩尔定律”? 8.根据自己的理解,说明促进纳米材料相关科学与技术发展的意义。 9.说明表面能随粒子尺寸变化的规律,带来的性能变化主要体现在哪些方面? 10.降低表面能的途径和方法是什么?说明其中的原理。 11.说明Ostwald 熟化机理。 12.曲率与化学势、平衡蒸汽压、溶解度的关系是什么? 13.材料研究的四要素及其相互关系。 第二章、纳米材料制备方法 1、零维纳米粒子的合成方法分类 2、纳米粒子的基本特征及要求。 3、纳米粒子合成中的均匀、非均匀形核过程?以及两种过程的异同? 4、晶核生长过程及机制?如何控制晶核的生长? 5、针对金属、半导体及氧化物纳米粒子的不同特点,举例说明在制备方法上的 区别(或侧重点)? 6、举例说明纳米材料溶胶-凝胶方法。 7、举例说明纳米材料气相制备方法 8、什么是纳米粒子的动力学限制生长法?其特点及分类? 9、什么是一维纳米结构?其制备技术可以分为几类? 10、简要说明一维纳米结构各向异性生长的几种机制。 11、简述蒸发-冷凝(VS)、溶解-冷凝(LS)、以及气-液-固(VLS)生长机 制。

12、纳米线的自发生长和模板辅助生长有何区别? 13、模板辅助纳米线生长中,电化学沉积和电泳沉积有何相同点和不同点? 14、碳富勒烯的定义是什么?举例说明碳的几种低维纳米结构。 15、碳纳米管的制备途径有几种?简要说明碳纳米管催化生长机制及结构特 点。 16、举例说明多孔材料的分类及特点。 17、说明以胶束为模板制备有序介孔材料的具体途径? 18、简要说明溶胶-凝胶法制备无序介孔材料的2种方法。 19、什么是嵌入式化合物? 20、纳米复合材料、纳米晶材料的主要区别是什么? 21、气相、液相中制备薄膜的技术大体包括哪几种? 22、薄膜生长的3个基本形核模式?与一维纳米结构的形核相比较,主要区 别是什么? 23、沉积温度和生长物质供应(多少、快慢)对薄膜生长有什么样的影响? 24、什么是薄膜的外延生长? 25、物理气相沉积和化学气相沉积方法,各自的特点是什么? 26、简要说明原子层沉积、模板辅助纳米线生长。 27、电化学沉积和电泳沉积有何相同点和不同点? 第三章纳米电功能材料 1.电接触复合材料类型、性能要求、应用领域。 2.导电复合材料定义、成型加工方法。举例说明其应用。 3.压电复合材料定义。 4.正压电效应、逆压电效应。举例说明压电材料及其应用。 5.超导材料定义。 6.超导材料基本特征。 7.什么是迈斯纳效应。 8.什么是约瑟夫森效应。 9.第一类超导体、第二类超导体。 10.超导BCS理论的三个观点。

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

相关主题
文本预览
相关文档 最新文档