当前位置:文档之家› 基于BP神经网络的PID控制_s20100394_李佛垚

基于BP神经网络的PID控制_s20100394_李佛垚

基于BP神经网络的PID控制_s20100394_李佛垚
基于BP神经网络的PID控制_s20100394_李佛垚

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5

摘要 (2)

第1章绪论 (3)

1.1 选题的背景 (3)

1.2人工神经网络的研究内容 (3)

1.3 国内外研究现状 (5)

第2章神经网络概述 (6)

2.1 引言 (6)

2.2 人工神经网络的基本理论 (6)

2.2.1人工神经元的形式化描述 (6)

2.3 神经网络原理 (7)

2.3.1 MP模型 (7)

2.3.2神经网络的特点及应用 (8)

2.4 BP神经网络 (9)

2.4.1 BP神经网路概述 (9)

2.4.2 BP算法的计算公式及流程图 (9)

2.5神经网络学习规则 (12)

第3章神经网络PID控制器的设计 (14)

3.1基于BP神经网络的PID整定原理 (14)

3.2理论介绍 (14)

3.2.1 BP神经网络的PID控制 (14)

3.2.2基于BP网络的PID控制器控制的算法流程 (14)

第4章 BP神经网络PID控制在主汽温 (16)

控制系统中的应用 (16)

4.1主蒸汽温度的控制的意义与任务 (16)

4.1.1主蒸汽温度的控制的意义 (16)

4.1.2 主蒸汽温度的控制的任务 (16)

4.2火电厂的主汽温系统 (16)

4.3 主汽温的数学模型 (18)

4.3.1 减温水扰动下主汽温的数学模型 (18)

4.3.2主汽温控制方法 (19)

4.4 主汽温基于BP神经网络的PID控制仿真 (21)

4.5 结论 (23)

参考文献 (24)

网址 (25)

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5 设计题——基于BP神经网络的PID控制在主汽温控制系统

中的应用

摘要

目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。但当运行工况发生较大变化时,却很难保证控制品质。因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。

关键词:主汽温;PID;BP神经网络;MATLAB仿真

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5

第1章绪论

1.1 选题的背景

随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。

锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。

神经网络控制是一种基本上不依赖于模型的控制方法,它比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习功能,它是智能控制的一个重要分支。对于自动控制来说,神经网络有具有自适应功能,泛化功能,非线性映射功,高度并行处理功能等几方面优势,这使得神经网络成为当今一个非常热门的交叉学科, 广泛应用在电力,化工,机械等各行各业,并取得了比较好的控制效果。

1.2人工神经网络的研究内容

人工神经网络可以概括地定义为:由大量简单的高度互联的处理元素(神经元)组成的复杂网络计算系统。它是在现代神经科学研究成果上提出来的,始于19世纪末期,反映了人脑的若干基本特征,是模拟人工智能的一条重要途径。从某种意义上说,人工神经网络、并行分布处理和神经计算机是统一的概念。

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5 神经网络在两个方面与人脑相似:

1.神经网络获取的知识是从外界环境中学习得来的;

2.互联神经元的连接强度,即突触权值,用于存储获取的知识。

人工神经网络的研究和发展经历了一条曲折的道路,分为兴起、萧条、兴盛和高潮4个时期。

1986年,美国的D.E.Rumelhart和J.L.McCelland及其领导的研究小组发表了《并行分布式处理》一书的前两卷,对人工神经网络研究高潮的到来起到了推波助澜的作用。

Rumelhart等人最重要的贡献是提出了适用于多层神经网络模型的误差反向传播(Error Back-Propagation, BP),该方法将学习结果反馈到中间层的隐含节点中,解决了多层神经网络的学习问题。目前,该算法已经成为影响最大的一种人工神经网络学习方法。

人工神经网络主要应用领域:

①知识处理:神经网络可以从数据中自动获取数据(知识),把新知识结合到它的映射函数中去,使得神经网络非常适合于处理某类知识,特别是不精确的知识。

②市场管理:不同种神经网络的数据处理能力是不同的。在金融、银行、保险行业的应用主要是进行顾客群体特征分析、市场研究消费倾向分析等。

③运输及通信:运输与通信问题在国民经济中有着极为重要的现实意义。最优的调度算法是一个NP完全性问题。神经网络可以根据运输网或通信网中当前及以前的货物及信息情况,最佳地调度网中的货物源和信息源,达到货物和信息在网中的传递最为经济的目的。

④信号处理:神经网络同样也被广泛地应用于信号处理,如目标检测、畸变波形的恢复、雷达回波的多目标分类、运动目标的速度估计、多目标跟踪等。

概括地说,神经网络在信号处理领域主要应用于自适应信号处理(自适应滤波、时间序列预测、谱估计、阵列处理、消除噪声、检测等)、非线性信号处理(非线性滤波、非线性预测、非线性谱估计、非线性编码、调制、解调、中值处理等)。

⑤自动控制:早在1 962年,WiCirow就提出了一个神经网络可以成功地学会平衡一个干扰抑制器的控制算法,即著名的LMS算法。

Grossberg/Kupersteirl的视觉运动控制神经网络,能够执行传感器表面的一个图像传感器的反馈控制和图像平面的非线性关系的计算,并能把图像传感器瞄准到正在运动的指定

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5 客体上。显然,这可以用到机器人的摄像机控制上,而且还可以应用到诸如火炮之类的武器系统中去。

除上述几个应用领域之外,神经网络在娱乐、零售分析、信用分析、航空航天等方面也有广泛的应用前景。

1.3 国内外研究现状

随着现代工业过程的日益复杂,经典现代控制理论面临严峻挑战,例如被控系统越来越巨大,存在多种不确定因素,存在难以确定描述的非线性特性,而控制的要求越来越高(如控制精度、稳定性、容错、实时性等),因此人们一直在探索如何使控制系统具有更高的智能,使之能够适应各种控制环境。而神经网络源于对人脑神经功能的模拟,它的某些类似人的智能特性有可能被用于解决现代控制面临的一些难题。因此,从20世纪60年代起,人们就开始研究神经网络在控制中的应用了,取得了一定效果。

从神经网络的基本模式看,主要有:前馈型、反馈型、自组织型及随机型神经网络。这四种类型各自具有不同的网络模型:前馈网络中主要有Adaline、BP网络及RBF网络;反馈网络主要有Hopfield网络;自组织网络主要有ART网,当前,已经比较成熟的神经网络控制模型主要有神经自校正控制,神经PID控制,神经模型参考自适应控制,神经内膜控制等等。

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

第2章 神经网络概述

2.1 引言

简单地讲,人工神经网络是指用大量的简单计算单元(即神经元)构成的非线性系统,它在一定程度和层次上模仿了人脑神经系统的信息处理、存储及检索功能,因而具有学习、记忆和计算等智能处理功能。

神经网络具有一些显著的特点:如具有非线性映射能力,不需要精确的数学模型,擅长从输入输出数据中学习有用知识,容易实现并行计算等。由于神经网络由大量简单计算单元组成,因而易于用软硬件来实现[5]。正因为神经网络是一种模仿生物神经系统构成的新的信息处理模型,并且具有独特的结构,所以人们期望它能解决一些用传统方法难以解决的问题。

2.2 人工神经网络的基本理论

2.2.1人工神经元的形式化描述

模拟生物神经网络时应该首先模拟生物神经元。人工神经元是对生物神经元结构和功能的模拟,是对生物神经元的形式化描述,是对生物生物神经元的信息处理过程的抽象。 人工神经元一般是一个多输入/单输出的非线性器件,其结构模型如图2-1所示。

X 1X 2 . .

图2-1 人工神经元结构

其数学形式为:

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

∑=-=n

j k j jk k b x w f y 1)( (2-1)

其中,1x ,2x ,···,n x 为神经元输入信号,k

w 1,k w 2,···,nk w 为神经元k 的连

接权值,k b 为阀值,k y 为神经元k 的输出。)·

(f 为神经元转换函数,神经元的输出都是由它得来。通过转换函数实现输入信号到输出信号的映射,称为激活函数。激活函数可以是线性的也可以是非线性的。

2.3 神经网络原理

2.3.1 MP 模型

人工神经网络的首个数学模型是由McCulloch 和Pitts 建立的。该模型的基本思想是:神经细胞的工作方式是或者兴奋或者抑制。

基于这个思想,McCulloch 和Pitts 在神经元模型中引入了硬极限函数,该函数形式后来被其他神经网络(多层感知器、离散Hopfield 网络)所采用。MP 模型是一个多输入单输出的非线性处理单元,示意图如图2-2所示。

1

图2-2 MP 模型示意图

其中:

i y ,神经元的输出信号,可与其它多个神经元连接;

i x ,神经元的输入信号;

i w :神经元的连接权值;

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

i θ:神经元的阀值:

)(i u f :神经元的非线性作用函数。

神经元输出i y 可用下式描述:

)(1∑=-=n

i j ij i j w x f y θ (2-2)

∑=-=n

i j ij i j w x u 1? (2-3)

)(j j u f y = (2-4) )(x f 是作用函数,即激发函数。

MP 神经元模型是人工神经元模型的基础,也是神经网络理论的基础。

2.3.2神经网络的特点及应用

神经网络具有以下特点:

1、分布式存贮信息

神经网络使用大量的神经元之间的连接及对各连接权值的分布来表示特定的信息,从而使网络在局部网络受损或输入信号因各种原因发生部分畸变时,仍能够保证网络的正确输出,提高网络的容错性和鲁棒性。

2、并行协同处理信息

神经网络中的每个神经元都可以根据接收到的信息进行独立的运算和处理,并输出结果,同一层中的各个神经元的输出结果可被同时计算出来,然后传输给下一层做进一步处理,这体现了神经网络并行计算的特点,这一特点使网络具有非常强大的实时性。

3、信息处理与存储和二为一

神经网络的每个神经元都兼有信息处理和存储功能,神经元之间连接强度的变化,既反映了对信息的记忆,同时又和神经元对激励的响应一起反映了对信息的处理。

4、对信息的处理具有自组织、自学习的特点,便于联想、综合和推广。

神经网络的神经元之间的连接强度用权值大小来表示,这种权值可以通过对训练的学习而不断变化,而且随着训练样本量的增加和反复学习,这些神经元之间的连接强度会不

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5 断增加,从而提高神经元对样本特征的反映灵敏度。正是因为神经网络具有的这些特点,才使它在模式识别、人工智能、控制工程、信号处理等领域有着广泛的应用,相信随着人工神经网络研究的进一步深入,其应用领域会更广,用途会更大。

2.4 BP神经网络

2.4.1 BP神经网路概述

Rumelhart和Mc.Clelland与1986年提出了多层网络的误差反向传播算法(Error Back-Propagation Training),即BP算法,系统解决了多层网络中隐含单元的连接权问题,预示着BP网络的出现。

BP神经网络是人工神经网络的一种,它不仅具有人工神经网络的特点,而且有自己的BP算法。

BP神经网络的结构如图2-3所示,u、y为网络的输入、输出向量,每一个神经元用一个节点表示,网络有输入层、隐含层和输出层节点组成。隐含层可以是一层,也可以是多层(图示为单隐含层),前层至后层节点通过权连接。

输入层隐含层输出层

图2-3 多层前馈网络结构

2.4.2 BP算法的计算公式及流程图

设BP神经网络为三层网络,输入神经元以i编号,隐含层神经元以j编号,输出层神经元以k编号,计算公式如下:

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

隐含层第j 个神经元的输入为:

∑=i

i ij j o w net (2-6)

第j 个神经元的输出为:

)(j j n e t g o = (2-7) 输出层第k 个神经元的输入为:

∑=j

j kj k o w net (2-8)

相应的输出为:

)(k k n e t g o = (2-9) 式中,g ——s 函数,有:

)(11)(θ+-+=x e

x g (2-10) 式中,θ——阀值或偏置值, 0?θ,则使S 曲线沿横坐标左移,反之则右移。 因此,各神经元的输出应为

)))e x p (1/(1j i

i ji j o w o θ∑+-+= (2-11)

)))(exp(1/(1k i

j ji k o wk o θ∑+-+= (2-12)

BP 网络学习中的误差反向传播过程是通过使一个目标函数(实际输出与希望输出之间的误差平方和)最小化完成的,可以利用梯度下降法导出计算公式[10]。 学习过程中,设第k 个输出神经元的希望输出为pk t ,而网络输出为pk o ,则系统平均误差为:

∑∑-=k pk pk p o t p E 2)(21 (2-13)

略去下标p ,式(2-13)可写成

∑-=

k

k k o t E 2)(21 (2-14)

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5 式中,E——目标函数。

示意图如图2-4所示,梯度下降学习算法总是在寻找坡度最大的地段向下滑行,当它处于D位置时,沿最大坡度路线下降,到达局部最小点而G停止滑行。如果它是从A点开始向下滑行,则最终到达全局最小点B。

图2-4 BP网络梯度下降学习算法

BP网络的学习算法的步骤归纳如下:

①从训练样本集中取某一样本,把它的输入信息输入到网络中;

②由网络正向计算出各节点的输出;

③计算网络的实际输出与期望输出的误差;

④从输出层起始反向计算到第一个隐层,按一定原则向减小误差方向调整网络的各个连接权值;

⑤对训练样本集合中的每一个样本重复以上步骤,直到对整个训练样本集合的误差达到要求为止。

如果通过网络训练,BP网络的输出达到目标要求后,网络各节点之间的连接权值就确定下来了,我们就可以认为BP网络已经学习好了,我们就可以利用这个训练好的网络对未知样本进行识别预测了。

BP学习算法流程总结如图2-5所示:

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5

图2-5 BP学习算法流程图

2.5神经网络学习规则

神经网络的学习规则即调整神经网络连接权值的规则。学习规则可以分为两类:有监督学习和无监督学习。

有监督学习就是通过外部教师信号进行学习,即要求同时给出输入和正确的期望输出的模式对,当实际输出结果与期望输出有误差时,网络将通过自动机制调节相应的连接强度,使之向减少误差的方向改变,经过多次反复训练,最后与正确的结果相符合。

无监督学习就是不需要外部教师信号,因而不能确切知道正确的反应是什么,学习表现为自适应于输入空间的检测规则。其学习过程表现为:给系统提供动态输入信号,以使各个单元以某种方式竞争,获胜的神经元本身或相邻域得到增强,其他神经元进一步抑制,从而将信号空间划分为有用的多个区域。

常见的学习规则为:

①无监督Hebb学习规则

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

Hebb 学习规则是一类相关学习,它的基本思想是:如果两个神经元同时被激活,则它们之间的连接强度的增强与它们激励的乘积成正比。以i o 表示单元i 的激活值,j o 表示单元的激活值,ij w 表示单元i 到单元j 的激活值,则Hebb 学习规则可用下式表示:

)()()()1(k o k o k w k w w i j ij ij ij η=-+=? (2-15) 其中,η为学习速率,该公式表明两神经元之间连接权的变化量与它们的激活值相关。 ②有监督的Delta 学习规则

在Hebb 学习规则中,引入教师信号,将式(2-15)中的j o 换成目标输出j d 与实际输出j o 之差,就组成了有监督的Delta 学习规则:

)())()(()()1(k o k o k d k w k w w i j j ij ij ij -=-+=?η (2-16) 即两神经元间连接强度的变化量与教师信号)(k d j 和网络实际输出信号)(k o j 之差成正比。

③有监督的Hebb 学习规则

将无监督的Hebb 学习和有监督的Delta 学习两者结合起来就可组成有监督的Hebb 学习规则,即:

)()())()(()()1(k o k o k o k d k w k w w j i j j ij ij ij -=-+=?η (2-17) 采用Hebb 学习和有监督的Delta 学习相结合的学习策略,使神经元通过关联搜索对未知的外界作出反应,即在教师信号))()(k o k d j j -的指导下,对环境信号进行相关学习和自组织,使相应的输出增强或削弱。

BP 网络的学习过程由正向和反向传播两部分构成。

正向传播过程中,每一层神经元的状态只影响下一层神经元结构,如果输出层不能得到期望输出,即期望输出与实际输出之间存在误差时,就转向反向传播。反向传播过程将误差信号沿着原来路径返回,通过不断修正各层神经元权值,逐次地向输入层传播进行计算,修改之后的权值再经过正向传播,将期望输出与实际输出比较。这两个过程不断反复运用,直到达到所设定的误差值[14]。所以说,BP 网络是一个有导师的学习过程。

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

第3章 神经网络PID 控制器的设计

3.1基于BP 神经网络的PID 整定原理

PID 控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,而是从变化无穷的非线性组合中找出最佳的关系。神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。可以通过对系统性能的学习来实现具有最佳组合的PID 控制。采用BP 神经网络,可以建立参数p k 、i k 、d

k 自学习PID 控制。

3.2理论介绍

3.2.1 BP 神经网络的PID 控制

神经网络PID 控制,根据系统的运行状态,调节PID 控制器的参数,以其达到某种性能指标的最优化,即使输出层神经元的输出状态对应于PID 控制器的三个可调参数p k 、i k 、d k ,通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制规律下的PID 的控制器参数。基于BP 神经网络自整定PID 控制系统方框图如图3-1所示。

图3-1 BP 神经网络PID 控制系统结构图

3.2.2基于BP 网络的PID 控制器控制的算法流程

基于BP 网络的PID 控制器控制算法归纳如下:

1.确定BP 神经网络结构,即确定输入层节点及数目m 、隐含层数目q ,并给出各层权

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

系数的初值()()20ij w 和()()30li w 、选定学习率η、惯性系数α;

2.采样得到rin (k)、yout (k),计算该时刻误差()()()error k rin k yout k =-;

3.计算神经网络NN 各层神经元的输入、输出,NN 输出层的输出即为PID 控制器的三个可调参数p k 、i k 、d k ;

4.计算PID 控制器的输出u (k);

5.进行神经网络学习,在线调整加权系数(2)()ij w k 和(3)()li w k ;实现PID 控制参数的自适

应调整;

6.置k =k+1,返回到第一步。

其算法流程图如图3-2所示:

图3-2 BP 网络算法流程图

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

第4章 BP 神经网络PID 控制在主汽温

控制系统中的应用

4.1主蒸汽温度的控制的意义与任务

4.1.1主蒸汽温度的控制的意义

锅炉过热蒸汽温度是影响机组生产过程安全性和经济性的重要参数。现代锅炉的过热器是在高温、高压的条件下工作的,过热器出口的过热蒸汽温度是机组整个汽水行程中工质温度的最高点,也是金属壁温的最高处。过热器采用的是耐高温高压的合金刚材料,过热器正常运行的温度已接近材料所允许的最高温度。如果过热蒸汽温度过高,容易损坏过热器,也会使蒸汽管道、汽轮机内某些零部件产生过大的热膨胀而毁坏,影响机组的安全运行。如果过热蒸汽温度过低,将会降低机组的热效率,一般蒸汽温度降低5-10℃,热效率约降低1%,不仅增加燃料的消耗量,浪费能源,而且还将使汽轮机最后几级的蒸汽湿度增加,加速汽轮机叶片的水蚀。另外,过热汽温的降低还会导致汽轮机高压级部分蒸汽的焓值减小,引起反动度增大,轴向推力增大,也对汽轮机安全运行带来不利的影响。

4.1.2 主蒸汽温度的控制的任务

(1)维持主汽温在允许的范围之内。对于亚临界机组的主汽温为54010C C ?±?,长期运行应控制在5405C C ?±?,对于超临界及超超临界主汽温应控制在54061010C C C ??±? ,长期运行应控制在

5406105C C C ??±? 。 (2) 保护过热器,使其管壁不超过允许的工作温度。汽温过高,会烧毁过热器的高温段;汽温过低也不行,汽温每降5度,热经济性下降百分之一,汽温偏低会使汽机尾部蒸汽湿度增大甚至带水,严重影响汽机的安全运行。

4.2火电厂的主汽温系统

过热气温原理图如图4-1所示:

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5

2

过热器

过热器

图4-1 过热气温原理图

影响主汽温变化的扰动因素很多,如蒸汽负荷、烟气温度和流速、火焰中心位置、减温水量、给水温度等。主要扰动有3个:

1、蒸汽扰动下主汽温对象的动态特性

图4-2 蒸汽流量变化对主气温的影响

2、烟气量扰动下主汽温对象的动态特性

课程名称智能控制(控制类)授课教师陈泽华考试时间2013.5

图 4-3 烟气流量变化对主气温的影响

3、减温水量扰动下主汽温对象的动态特性

图4-4 减温水量变化对主气温的影响

4.3 主汽温的数学模型

4.3.1 减温水扰动下主汽温的数学模型

以减温水量作为基本扰动,来完成控制,就是用减温水量作为该系统的输入,把主汽温做为输出,管内的蒸汽和管壁可以看做是许许多多的单容对象的串联,因此对象具有分布参数特性,且该被控对象有较大的惯性和迟延。

用给水量来完成控制,减温水出口温度变化明显比过热汽温变化要快,常常把这一段作为导前区,把从减温器出口到过热蒸汽出口这一段叫做惰性区,在减温水的扰动下,主气温的动态特性可表示为:

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

()()()10

001n s k G W s T s θ==+ (4-1)

其中0k 为放大系数,0T 为时间常数,n 为阶次。其传递函数由两点法可以通过实验测得。

同理导前区的传递函数也可以表示为:

()()()222

121n s k G W s T s θ==+ (4-2)

其中2k 为导前区的放大系数,2T 为导前区的时间常数,2n 为阶次,该传递函数也可以通

过实验求的。

惰性区的传递函数也可以表示为

()()()111

2121n s k G s T s θ==+ (4-3)

其中1k 为惰性区放大系数,1T 为惰性区时间常数,1n 为阶次,该传递函数无法通过实验求

出,而是由下式求出:

()()()021G s G s G s =

(4-4)

可得到: 012k k k = (4-5)

22002210022

n T n T T n T n T -=- (4-6) 2

0022122

0022()n T n T n n T n T -=- (4-7) 4.3.2主汽温控制方法

在火电厂中,对主汽温的控制有较高的要求,然而在实际生产过程中,由于主蒸汽流量、压力、烟气温度和流速等的外扰,以及减温水内扰频繁且幅度较大,加上对象模型参数随工况参数(主蒸汽压力、温度和流量)的变化而变化,因而难以建立精确的数学模型.因此,主汽温控制是一个存在大时滞、时变性、大干扰,具有不确定性和非线性的复杂热工对象。

课程名称 智能控制(控制类)授课教师 陈泽华 考试时间 2013.5

常规汽温控制系统为串级PID 控制或导前微分控制,串级PID 控制系统见下图:

主调节器

副调节器对象导前区对象惰性区

图4-5 主气温串级控制框图

其中r 为过热汽温设定值,为系统输入,

1()G s

2()G s 分别为控制系统对象的导前区和惰性区的传递函数,K 为执行器近似传递函数。传统的控制都需要人工整定PID ,且要求对象模型精确,改进后加入神经网络的控制方案如下图,把常规PID 控制器用神经网络来实现如图4-6所示:

图4-6直流锅炉过热汽温NN 控制方框图 图中,1()G s 2()G s 分别为控制系统对象的导前区和惰性区的传递函数,K 为执行器近似传递函数。12,h h m m 分别表示副变送器和主变送器。r 为输入信号,在传统PID 的基础

上增加了一个神经网络,用神经网络来在线实时输出PID 的比例,积分和微分三个参数。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5: BP神经网络预测的matlab代码: P=[ 0 0.1386 0.2197 0.2773 0.3219 0.3584 0.3892 0.4159 0.4394 0.4605 0.4796 0.4970 0.5278 0.5545 0.5991 0.6089 0.6182 0.6271 0.6356 0.6438 0.6516

0.6592 0.6664 0.6735 0.7222 0.7275 0.7327 0.7378 0.7427 0.7475 0.7522 0.7568 0.7613 0.7657 0.7700] T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.4893 0.2357 0.4866 0.2249 0.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.1848 0.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.2403 0.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ] threshold=[0 1] net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');

神经网络pid控制matlab程序

%Single Neural Adaptive PID Controller clear all; close all; x=[0,0,0]'; xiteP=0.40; xiteI=0.35; xiteD=0.40; %Initilizing kp,ki and kd wkp_1=0.10; wki_1=0.10; wkd_1=0.10; %wkp_1=rand; %wki_1=rand; %wkd_1=rand; error_1=0; error_2=0; y_1=0;y_2=0;y_3=0; u_1=0;u_2=0;u_3=0; ts=0.001; for k=1:1:1000 time(k)=k*ts; yd(k)=0.5*sign(sin(2*2*pi*k*ts)); y(k)=0.368*y_1+0.26*y_2+0.1*u_1+0.632*u_2; error(k)=yd(k)-y(k); %Adjusting Weight Value by hebb learning algorithm M=4; if M==1 %No Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*u_1*x(1); %P wki(k)=wki_1+xiteI*u_1*x(2); %I wkd(k)=wkd_1+xiteD*u_1*x(3); %D K=0.06; elseif M==2 %Supervised Delta learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1; %P wki(k)=wki_1+xiteI*error(k)*u_1; %I wkd(k)=wkd_1+xiteD*error(k)*u_1; %D K=0.12; elseif M==3 %Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*x(1); %P wki(k)=wki_1+xiteI*error(k)*u_1*x(2); %I wkd(k)=wkd_1+xiteD*error(k)*u_1*x(3); %D K=0.12; elseif M==4 %Improved Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1); wki(k)=wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1); wkd(k)=wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1); K=0.12; end x(1)=error(k)-error_1; %P

基于BP神经网络的PID控制器的设计

基于BP神经网络的PID控制器的研究与 实现 课程名称:人工神经网络

目录 前言 (3) 一、BP神经网络 (4) 二、模拟PID控制系统 (5) 三、基于BP神经网络的PID控制器 (6) 四、仿真程序 (10) 五、运行结果 (17) 六、总结 (18) 参考文献 (19)

前言 人工神经网络是以一种简单神经元为节点,采用某种网络拓扑结构构成的活性网络,可以用来描述几乎任意的非线性系统。不仅如此,人工神经网络还具有学习能力、记忆能力、计算能力以及各种智能处理能力,在不同程度和层次上模仿人脑神经系统的信息处理、存储和检索的功能。不同领域的科学家,对人工神经网络有着不同的理解、不同的研究内容,并且采用不同的研究方法。对于控制领域的研究工作者来说,人工神经网络的魅力在于:①能够充分逼近任意复杂的非线性关系,从而形成非线性动力学系统,以表示某种被控对象的模型或控制器模型;②能够学习和适应不确定性系统的动态特性;③所有定量或定性的信息都分布储存于网络内的各神经单元,从而具有很强的容错性和鲁棒性;④采用信息的分布式并行处理,可以进行快速大量运算。对于长期困扰控制界的非线性系统和不确定性系统来说,人工神经网络无疑是一种解决问题的有效途径。正因为如此,把人工神经网络引入传统的PID 控制,将这两者结合,则可以在一定程度上解决传统PID 调节器不易在线实时整定参数、难于对一些复杂过程和参数慢时变系统进行有效控制的不足。

一、BP神经网络 BP神经网络是一种有隐含层的多层前馈网络,其结构如图1-1所示。如果把具有M个输入节点和L个输出节点的BP神经网络看成是从M维欧氏空间到L维欧氏空间的非线性映射,则对于具有一定非线性因数的工业过程被控对象,采用BP网络来描述,不失为一种好的选择。在BP神经网络中的神经元多采用S型函数作为活化函数,利用其连续可导性,便于引入最小二乘学习算法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正加权系数,以期使误差均方值最小。BP神经网络的学习过程可分为前向网络计算和反向误差传播——连接加权系数修正两个部分,这两个部分是相继连续反复进行的,直至误差满足要求。不论学习过程是否已经结束,只要在网络的输入节点加入输入信号,则这些信号将一层一层向前传播;通过每一层时要根据当时的连接加权系数和节点的活化函数与阈值进行相应计算,所得的输出再继续向下一层传输。这个前向网络计算过程,既是网络学习过程的一部分,也是将来网络的工作模式。在学习过程结束之前,如果前向网络计算的输出和期望输出之间存在误差,则转入反向传播,将误差沿着原来的连接通路回送,作为修改加权系数的依据,目标是使误差减小。

基于BP神经网络预测模型指南

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

BP神经网络实验 Matlab

计算智能实验报告 实验名称:BP神经网络算法实验 班级名称: 2010级软工三班 专业:软件工程 姓名:李XX 学号: XXXXXX2010090

一、实验目的 1)编程实现BP神经网络算法; 2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系; 3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。 二、实验要求 按照下面的要求操作,然后分析不同操作后网络输出结果。 1)可修改学习因子 2)可任意指定隐单元层数 3)可任意指定输入层、隐含层、输出层的单元数 4)可指定最大允许误差ε 5)可输入学习样本(增加样本) 6)可存储训练后的网络各神经元之间的连接权值矩阵; 7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。 三、实验原理 1 明确BP神经网络算法的基本思想如下: 在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架 反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小 BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果 2 明确BP神经网络算法步骤和流程如下: 1初始化网络权值 2由给定的输入输出模式对计算隐层、输出层各单元输出 3计算新的连接权及阀值, 4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

pid神经网络控制器的设计

第三章 PID 神经网络结构及控制器的设计 在控制系统中,PID 控制是历史最悠久,生命力最强的控制方式,具有直观、实现简单和鲁棒性能好等一系列优点。但近年来随着计算机的广泛应用,智能控制被越来越广泛的应用到各种控制系统中。智能控制方法以神经元网络为代表,由于神经网络可实现以任意精度逼近任意函数,并具有自学习功能,因此适用于时变、非线性等特性未知的对象,容易弥补常规PID 控制的不足。将常规PID 控制同神经网络相结合是现代控制理论的一个发展趋势。 3.1 常规PID 控制算法和理论基础 3.1.1 模拟PID 控制系统 PID(Proportional 、Integral and Differential)控制是最早发展起来的控制策略之一,它以算法简单、鲁捧性好、可靠性高等优点而梭广泛应用于工业过程控制中。 PID 控制系统结构如图3.1所示: 图3.1 模拟PID 控制系统结构图 它主要由PID 控制器和被控对象所组成。而PID 控制器则由比例、积分、微分三个环节组成。它的数学描述为: 1() ()[()()]t p D i de t u t K e t e d T T dt ττ=+ +? (3.1) 式中,p K 为比例系数; i K 为积分时间常数: d K 为微分时间常数。 简单说来,PID 控制器各校正环节的主要控制作用如下: 1.比例环节即时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 3.微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 具体说来,PID 控制器有如下特点: (1)原理简单,实现方便,是一种能够满足大多数实际需要的基本控制器; (2)控制器能适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,在很多情况下,其控制品质对被控对象的结构和参数摄动不敏感。 3.1.2 数字PID 控制算法 在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式PID 控制算法和增量式PID 控制算法。 1.位置式PID 控制算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(3.1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(3.1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: t kT = (0,1,2,3...)k = ()()()k k t j j e t dt T e jT T e j ==≈=∑∑? ()()[(1)]()(1) de t e kT e k T e k e k dt T T ----≈= (3.2) 式中,T 表示采样周期。 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将()e kT 简化表示()e k 成等,即省去T 。将式(3.2)代入到(3.1)中可以得到离散的PID 表达式为: 0(){()()[()(1)]}k D p j I T T u k K e k e j e k e k T T ==+ + --∑ (3.3) 或 0 ()()()[()(1)]}k p I D j u k K e k K e j K e k e k ==++--∑ (3.4) 式中,k ——采样序号,0,1,2...k =; ()u k ——第k 次采样时刻的计算机输出值;

基于S函数的RBF神经网络PID控制器

基于径向基函数的神经网络的PID控制器 摘要 RBF神经网络在分类问题中得到了广泛的应用,尤其是模式识别的问题。许多模式识别实验证明,RBF具有更有效的非线性逼近能力,并且RBF神经网络的学习速度较其他网络快。本文在具有复杂控制规律的S函数构造方法的基础上,给出了基于MATLAB语言的RBF神经网络PID控制器,及该模型的一非线性对象的仿真结果。 关键词:S函数;RBF神经网络PID控制器;Simulink仿真模型径向基函数(RBF-Radial Basis Function)神经网络是由J.Moody和C.Darken 在20世纪80年代末提出的一种神经网络,它具有单隐层的三层前馈网络。由于它模拟了人脑中局部调整、相互覆盖接受域(或称野-Receptive Field)的神经网络结构,因此,RBF神经网络是一种局部逼近网络,已证明它能以任意精度逼近任意连续函数。 1.S函数的编写方法 S函数是Simulink中的高级功能模块,Simulink是运行在MATLAB环境下用于建模、仿真和分析动态系统的软件包。只要所研究的系统模型能够由MATLAB语言加以描述,就可构造出相应的S函数,从而借助Simulink中的S 函数功能模块实现MATLAB与Simulink之间的沟通与联系,这样处理可以充分发挥MATLAB编程灵活与Simulink简单直观的各自优势。当系统采用较复杂的控制规律时,Simulink中没有现成功能模块可用,通常都要采用MATLAB编程语言,编写大量复杂而繁琐的源程序代码进行仿真,一是编程复杂、工作量较大,二来也很不直观。如果能利用Simulink提供的S函数来实现这种控制规律,就可以避免原来直接采取编程的方法,不需要编写大量复杂而繁琐的源程序,编程快速、简捷,调试方便,则所要完成的系统仿真工作量会大大减少。 RBF神经网络PID控制器的核心部分的S函数为: function [sys,x0,str,ts]=nnrbf_pid(t,x,u,flag,T,nn,K_pid,eta_pid,xite,alfa,beta0,w0) switch flag,

用matlab编BP神经网络预测程序加一个优秀程序

求用matlab编BP神经网络预测程序 求一用matlab编的程序 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights=net_1.IW{1,1} inputbias=net_1.b{1} % 当前网络层权值和阈值 layerWeights=net_1.LW{2,1} layerbias=net_1.b{2} % 设置训练参数 net_1.trainParam.show = 50; net_1.trainParam.lr = 0.05; net_1.trainParam.mc = 0.9; net_1.trainParam.epochs = 10000; net_1.trainParam.goal = 1e-3; % 调用TRAINGDM 算法训练BP 网络 [net_1,tr]=train(net_1,P,T); % 对BP 网络进行仿真 A = sim(net_1,P); % 计算仿真误差 E = T - A; MSE=mse(E) x=[。。。]';%测试 sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 不可能啊我2009 28对初学神经网络者的小提示

第二步:掌握如下算法: 2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。 3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。 4.ART(自适应谐振理论),该算法的最通俗易懂的读物就是《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第15和16章。若看理论分析较费劲可直接编程实现一下16.2.7节的ART1算法小节中的算法. 4.BP算法,初学者若对误差反传的分析过程理解吃力可先跳过理论分析和证明的内容,直接利用最后的学习规则编个小程序并测试,建议看《机器学习》(机械工业出版社,Tom M. Mitchell著,中英文都有)的第4章和《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)的第11章。 BP神经网络Matlab实例(1) 分类:Matlab实例 采用Matlab工具箱函数建立神经网络,对一些基本的神经网络参数进行了说明,深入了解参考Matlab帮助文档。 % 例1 采用动量梯度下降算法训练BP 网络。 % 训练样本定义如下: % 输入矢量为 % p =[-1 -2 3 1 % -1 1 5 -3] % 目标矢量为t = [-1 -1 1 1] close all clear clc % --------------------------------------------------------------- % NEWFF——生成一个新的前向神经网络,函数格式: % net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes, % PR -- R x 2 matrix of min and max values for R input elements % (对于R维输入,PR是一个R x 2 的矩阵,每一行是相应输入的

神经网络PID控制

基于神经网络PID控制算法在多缸电液伺服系统同步控制中的仿真 研究 丁曙光,刘勇 合肥工业大学,合肥,230009 摘要:本文介绍了神经网络控制原理,提出了神经网络PID算法,通过选定三层神经网络作为调节函数,经过Simulink仿真确定了神经网络PID控制器的参数,设计了神经网络PID控制器。推导出多缸液压同步控制系统在各种工况下的传递函数,并把该控制器应用到多缸液压同步控制系统中。经过仿真研究表明该控制器控制效果良好,能满足多缸液压同步的控制要求。 关键词:多缸同步;PID算法;仿真;神经网络 Study on the simulation and appllication of hydraulic servo system of straihtening machine based on Immune Neural network PID control alorithm DING Shu-guang, GUI Gui-sheng,ZHAI Hua Hefei University of Technology, Hefei 23009 Abstract:The principle of immune feedback and immune-neural network PID algorithm was respectively.An immune-neural network PID controller was designed by which an adaline neural network was selected as antibody stay function and parameters of the immune-neural network PID controller were determined by simulation.The transfer function of the hydraulic servo system of crankshaft straightenin on were introduced in different working conditions.The immune-neural network PID controller was applied to hydraulic system of crankshaft straightenin.The simulation and equipment were done,and results show that its control effectiveness is better and can meet the needs of he hydraulic servo-system of crankshaft straightening hydraulic press. Key words:straightening machine; Immune control arithmetic; simulation;neural network 0引言 精密校直液压机(精校机)液压伺服系统是精校机的执行环节,高精度液压位置伺服控制是精校机的关键技术之一,它保证了液压伺服控制系统的控制精度、稳定性和快速性,是完成校直工艺的必要条件。因此,精校机液压伺服控制系统的研究,为精校机产品的设计和制造提供了理论依据,对校直技术和成套设备的开发具有重大的意义[1]。 精校机液压位置伺服系统是一个复杂的系统,具有如下特点:精确模型难建立,要求位置控制精度高、超调量小、响应快、参数易变且难以确定[1]。因此该系统的控制有较大的难度。传统的PID控制虽然简单易行,但参数调整困难,具有明显的滞后特性,PID 控制很难一直保证系统的控制精度,Smith预估补偿 国家重大科技专项资助(项目编号:2009ZX04004-021)安徽省自然科学基金资助(项目编号:090414155)和安徽省科技攻关项目资助(项目编号:06012019A)制方法从理论上为解决时滞系统的控制问题提供了一种有效的方法,但是Smith预估器控制的鲁棒性差,系统性能过分依赖补偿模型的准确性,限制了它在实际过程中的应用[1~5]。 近年来,人们开始将生物系统的许多有益特性应用于各种控制中[1~5],取得了一定成果。自然免疫系统使生物体的一个高度进化、复杂的功能系统,它能自适应地识别和排除侵入肌体的抗原性异物,并且具有学习、记忆和自适应调节功能,以维护肌体内环境的稳定。自然免疫系统非常复杂,但其抵御抗原(antigen)的自适应能力十分显著。生物信息的这种智能特性启发人们利用它来解决一些工程难题,这就引起多种免疫方法的出现。人工免疫系统就是借鉴自然免疫系统自适应、自组织的特性而发展起来的一种智能计算技术。该算法在大量的干扰和不确定环境中都具很强的鲁棒性和自适应性,在控制、优化、模式识别、分类

基于BP神经网络PID整定原理和算法步骤

摘要 神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。 目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。 本文以BP神经网络作为研究对象。研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。再次将BP神经网络的算法应用于PID 中,介绍了基于BP神经网络PID整定原理和算法步骤。最后利用 MATLAB/Simulink 对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。 关键词:BP算法,PID控制,自整定

ABSTRACT As a kind of emerging information processing science,the neural network can simulate some basic characteristic of human brain. It is an information-processed method which takes person's cerebrum working pattern as a foundation and studies the model of adaptive and non- program. The characteristics of this kind of work mechanism are that it can show its processing function through the massive neurons function in the network. Then, it starts with simulating the human brain structure and the single neuron function to achieve the goal that simulates the human brain to process information. Nowadays, the neural network has wide application fields and prospects in the national economy and modernization of national defense science. It mainly applies in information, automation, economical and so on. This article takes the BP neural network as the research object. The content of the research mainly contain: firstly, it introduces the concept of neural network, control structure and mode of study and so on. Secondly, it introduces the artificial neuron model, the basic principles of BP neural network and the derivation process in detail. Then, it applies BP neural network in the PID, and introduces the tuning principles of PID based the BP neural network and steps of the algorithm. Finally, Matlab/Simulink is used to simulate the BP neural network PID control system. In the consequence, the performance of BP neutral network control significantly good. BP neural network control system has a strong self-tuning, adaptive function. KEY WORDS: BP algorithm, PID control, self-tuning

MATLAB基于BP神经网络PID控制程序

MATLAB基于BP神经网络PID控制程序>> %BP based PID Control clear all; close all; xite=0.20; %学习速率 alfa=0.01; %惯性因子 IN=4;H=5;Out=3; %NN Structure wi=[-0.6394 -0.2696 -0.3756 -0.7023; -0.8603 -0.2013 -0.5024 -0.2596; -1.0749 0.5543 -1.6820 -0.5437; -0.3625 -0.0724 -0.6463 -0.2859; 0.1425 0.0279 -0.5406 -0.7660]; %wi=0.50*rands(H,IN); %隐含层加权系数wi初始化 wi_1=wi;wi_2=wi;wi_3=wi; wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325; -0.1146 0.2949 0.8352 0.2205 0.4508; 0.7201 0.4566 0.7672 0.4962 0.3632]; %wo=0.50*rands(Out,H); %输出层加权系数wo初始化 wo_1=wo;wo_2=wo;wo_3=wo; ts=20; %采样周期取值 x=[0,0,0]; %比例,积分,微分赋初值 u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; Oh=zeros(H,1); %Output from NN middle layer 隐含层的输出I=Oh; %Input to NN middle layer 隐含层输入 error_2=0; error_1=0; for k=1:1:500 %仿真开始,共500步 time(k)=k*ts;

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

基于神经网络的PID控制

基于神经网络的PID控制 课程名称:智能控制 任课教师: 学生姓名: 学号: 年月日

摘要:本文基于BP神经网络的PID控制方法设计控制器,通过BP神经网络与PID的控制相结合的神经网络控制基本原理和设计来自适应的功能调节PID的的三个参数,并根据被控对象的近似数学模型来输出输入与输出并分析BP神经网络学习速率η,隐层节点数的选择原则及PID参数对控制效果的影响。计算机的仿真结果表示,基于BP神经网络的PID控制较常规的PID控制具有更好的自适应性,能取得良好的的控制结果。 关键字:BP算法神经网络 PID控制 Abstract:In this paper, based on BP neural network PID control method designed controller, through the BP neural network PID control with a combination of neural network control basic principles and design features adaptively adjusting the PID of the three parameters, and based on the controlled object approximate mathematical model to analyze the output and the input and output BP n eural network learning rate η, hidden layer nodes and PID parameter selection principle effect of the control . Computer simulation results indicated that based on BP neural network PID control compared with conventional PID control has better adaptability , can achieve good control results . Keyword:BP algorithms neural networks PID control 1引言 PID控制是最早发展起来的应用经典控制理论的控制策略之一,由于算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程并取得了良好的控制效果。随着工业的发展,对象的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,常规PID控制显得无能为力。因此常规PID控制的应用受到很大的限制和挑战。 神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。此外,神经网络具有逼近任意连续有界非线性函数的能力,对于非线性系统和不确定性系统,无疑是一种解决问题的有效途径。本文将常规PID控制与神经网络控制相结合,发挥各自的优势,形成所谓的智能PID控制。采用BP神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应性和更好的鲁棒性。 2 基于BP神经网络的PID控制 PID控制要取得较好的控制结果,必须通过调整好比例、积分和微分三种控制作用,形成控制量中既要相互配合又相互制约的关系。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现最佳组合的PID控制。采用BP网络,可以建立参数Kp、Ki、Kd自学习的PID控制器。基于BP神经网络的PID控制系统结构由常规的PID控制器和神经网络两个部分构成。 2.1常规的PID控制器 PID控制器由比例(P)、积分(I)、微分(D)3个部分组成,直接对被控对象进行闭环控制,并且三个参数 Kp、Ki、Kd为在线调整方式。 2.2 神经网络 根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

相关主题
文本预览
相关文档 最新文档