当前位置:文档之家› 三维TTI介质格林函数的高斯束计算方法_刘鹏

三维TTI介质格林函数的高斯束计算方法_刘鹏

三维TTI介质格林函数的高斯束计算方法_刘鹏
三维TTI介质格林函数的高斯束计算方法_刘鹏

格林函数法求解场的问题

格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: Heat Eq.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Green ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题: ()()()()()201 f s u r r u r u r r n ρεαβ???=-??? ????+=??????? 这里讨论的是静电场()u r , ()f r ρ 代表自由电荷密度。

时间序列作业ARMA模型--.

一案例分析的目的 本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。 二、实验数据 数据来自中经网统计数据库

数据来源:中经网数据库 三、ARMA 模型的平稳性 首先绘制出N 的折线图,如图 从图中可以看出,N 序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平

稳的。此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。下面对N 的平稳性和季节季节性进行进一步检验。 四、单位根检验 为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下:GENR LN = LOG(N) 对数后的N趋势性也很强。下面观察N 的自相关表,选择滞后期数为36,如下: 从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:

T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。 五、季节性分析 趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性: Genr = DLN = LN – LN (-1) 观察DLN的自相关表,如下:

DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分: GENR SDLN = DLN – DLN(-6) 再做关于SDLN的自相关表,如下: SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。 六、滞后阶数的初步确定 观察SDLN的自相关、偏自相关图,ACF 和PACF在滞后期1和滞后期6还有滞后期12异于0,其余均与0无异,因此,SARMA(p,q)(k,m)s 中p和q均不超过1,k和m均不超过2.6考虑到高洁移动平均模型估计较为困难,而且自回归模型的检验可以表示无穷的移动平均过程,因此q尽可能取较小的取值。本例拟选择SARMA(1,0)(1,0)6、SARMA(1,0)(1,1)6、SARMA(1,0)(1,2)6、SARMA(1,0)(2,1)6、SARMA(1,1)(1,0)6、SARMA(1,1)(1,1)6、SARMA(1,1)(1,2)6、SARMA(1,1)(0,1)6八个模型来拟合SDLN。

曲面曲率计算方法的比较与分析

研究生专业课程报告 题目:曲面曲率直接计算方法的比较 学院:信息学院 课程名称:三维可视化技术 任课教师:刘晓宁 姓名:朱丽品 学号:201520973 西北大学研究生处制

曲面曲率直接计算方法的比较 1、摘要 曲面曲率的计算是图形学的一个重要内容,一般来说,曲面的一阶微分量是指曲面的切平面方向和法向量,二阶微分量是指曲面的曲率等有关量.它们作为重要的曲面信息度量指标, 在计算机图形学, 机器人视觉和计算机辅助设计等领域发挥了重要的作用.此文对曲面上主曲率的2种直接估算方法(网格直接计算法和点云直接计算法)进行了论述, 并进行了系统的总结与实验, 并给出了其在颅像重合方面的应用。 关键词曲面曲率、主曲率、点云、三角网格 2、引言 传统的曲面是连续形式的参数曲面和隐式曲面, 其微分量的计算已经有了较完备的方法.随着激光测距扫描等三维数据采样技术和硬件设备的长足进步, 以及图形工业对任意拓扑结构光滑曲面造型的需求日益迫切, 离散形式的曲面———细分曲面、网格曲面和点云曲面正在逐渐成为计算机图形学和几何设计领域的新宠.于是, 对这种离散形式的曲面如何估算微分量, 就成为一个紧迫的课题。 CT扫描技术获得的原始点云和网格数据通常只包含物体表面的空 间三维坐标信息及其三维网格信息,没有明确的几何信息,而在点云和网格的简化、建模、去噪、特征提取等数据处理和模式识别中,常需要提前获知各点的几何信息,如点的曲率、法向量等,也正基于此,点云和网格的几何信息提取算法一直是研究的热点。点的法向量和曲

率通常采用离散曲面的微分几何理论来计算,由于离散曲面分为网格和点集两种形式,其法向量和曲率计算也分为两类: 一类是基于网格的法向量和曲率计算,另一类是基于散点的法向量和曲率计算。由于基于三角网的点云几何信息计算精度一般比较低,通常采用直接计算法。在点云几何信息提取中,常采用基于散乱点的点云几何信息计算方法,该类方法主要是通过直接计算法和最小二乘拟合算法获取点云的局部n 次曲面,然后根据曲面的第一基本形式和第二基本形式求解高斯曲率和平均曲率,而点云的局部曲面表示有两种: 一是基于法向距离的局部曲面表示,二是基于欧几里德距离的局部曲面表示。本节中针对近几年来国际上提出的对三角网格曲面估算离散曲率的直接估算法,从数学思想与表达形式等方面进行系统的归纳与总结. 3、三角网格曲面的曲率的计算及代码实现 为了叙述清楚起见, 引入统一的记号.k 1和k 2表示主曲率,曲面的主曲率即过曲面上某个点具有无穷个曲线,也就存在无穷个曲率(法曲率),其中存在一条曲线使得该曲线的曲率为极大,这个曲率为极大值k 1,垂直于极大曲率面的曲率为极小值k 2。这两个曲率的属性为主曲率。它们代表着法曲率的极值。主曲率是法曲率的最大值和最小值。 H 表示平均曲率,是空间上曲面上某一点任意两个相互垂直的正交曲率的平均值。如果一组相互垂直的正交曲率可表示为K1、K2,那么平均曲率则为:H= (K1 +K 2 ) / 2。 K 表示曲面的高斯曲率, 两个主曲率的乘积即为高斯曲率,又称

格林函数()

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 上具有连续一阶导数,而在 T 中具 有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u 亦即

.)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=? (12-1-4) 第一、第二、第三类边界条件可统一地表为 ),( M u n u ?βα=??????+??∑ (12-1-5) 其中 (M )是区域边界 上的给定函数。=0, ≠0为第一类边界条件, ≠0,=0是第二类边界条件,、 都不等于零是第三类边界条件。泊松方程与第一类边界条件构成的定解问题叫作第一边值问题或狄里希利问题,与第二类边界条件构成的定解问题叫作第二边值问题或诺依曼问题,与第三类边界条件构成的定解问题叫作第三边值问题。 为了研究点源所产生的场,需要找一个能表示点源密度分布的函数。§5.3中介绍的 函数正是描述一个单位正点量的密度分布函数。因此,若以v (r ,r 0 ) 表示位于r 0 点的单位强度的正点源在r 点产生的场,即v (r ,r 0 )应满足方程 ).() ,(00r r r r v -=?δ (12-1-6) 现在,我们利用格林公式导出泊松方程解的积分表示式。以v (r ,r 0)乘(12-1-4), u (r )乘(12-1-6),相减,然后在区域T 中求积分,得 . )( )(0?????????--=?-?T T T dV r r u vfdV dV v u u v δ (12-1-7) 应用格林公式将上式左边的体积分化成面积分。但是,注意到在r =r 0 点,v 具有 函数的奇异性,格林公式不能用。解决的办法是先从区域T 中挖去包含r 0 的小体 积,例如半径为 的小球K (图12-1), 的边界面为 。对于剩下的体积,

时间序列:ARIMA模型

实验:建立ARIMA模型(综合性实验) 实验题目:某城市连续14年的月度婴儿出生率数据如下表所示: 26.663 23.598 26.931 24.740 25.806 24.364 24.477 23.901 23.175 23.227 21.672 21.870 21.439 21.089 23.709 21.669 21.752 20.761 23.479 23.824 23.105 23.110 21.759 22.073 21.937 20.035 23.590 21.672 22.222 22.123 23.950 23.504 22.238 23.142 21.059 21.573 21.548 20.000 22.424 20.615 21.761 22.874 24.104 23.748 23.262 22.907 21.519 22.025 22.604 20.894 24.677 23.673 25.320 23.583 24.671 24.454 24.122 24.252 22.084 22.991 23.287 23.049 25.076 24.037 24.430 24.667 26.451 25.618 25.014 25.110 22.964 23.981 23.798 22.270 24.775 22.646 23.988 24.737 26.276 25.816 25.210 25.199 23.162 24.707 24.364 22.644 25.565 24.062 25.431 24.635 27.009 26.606 26.268 26.462 25.246 25.180 24.657 23.304 26.982 26.199 27.210 26.122 26.706 26.878 26.152 26.379 24.712 25.688 24.990 24.239 26.721 23.475 24.767 26.219 28.361 28.599 27.914 27.784 25.693 26.881 26.217 24.218 27.914 26.975 28.527 27.139 28.982 28.169 28.056 29.136 26.291 26.987 26.589 24.848 27.543 26.896 28.878 27.390 28.065 28.141 29.048 28.484 26.634 27.735 27.132 24.924 28.963 26.589 27.931 28.009 29.229 28.759 28.405 27.945 25.912 26.619 26.076 25.286 27.660 25.951 26.398 25.565 28.865 30.000 29.261 29.012 26.992 27.897 (1)选择适当模型拟和该序列的发展 (2)使用拟合模型预测下一年度该城市月度婴儿出生率 实验内容: 给出实际问题的非平稳时间序列,要求学生利用R统计软件,对该序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。 实验要求: 处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。 实验步骤: 第一步:编程建立R数据集; 第二步:调用plot.ts程序对数据绘制时序图。 第三步:从时序图中利用平稳时间序列的定义判断是否平稳? 第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤第五步:根据Box.test纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的

武汉大学数学物理方法5_4用电像法求某些特殊区域的狄氏格林函数

§5.3格林函数的一般求法
一、泊松格林函数
1、三维泊松方程的基本解 对于 D G = -d ( M - M 0 ) M ?t (1) 1 ? 2 ?G 注意到 DG = (r ) 2 ?r ?r r ? ?G 1 ? 2G + (sin q )+ 2 ?r r sin q ?q r 2 sin q ? j 2 1 由于是点源产生场故问 题是球对称的 1 d 2 dG 故原定解问题 ? (r ) = d (r ) dr r 2 dr

r = MM 0 =
?
( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z 0 ) 2
(1)若 r 1 0 即 M 1 M 0 1 d 2 dG 则 (r )=0 2 dr dr r d 2 dG C1 ù é 2 dG 于是 ( r )=0?r = C1 ? êdG = dr ú 2 dr dr dr r ? ? 1 ? G = - C1 + C 2 取 C 2 = 0 r 1 仍为方程的解 G = - C1 r

( 2 ) 若 r = 0,则应考虑以 M 0 为中心任意小 e 为半径 的球体中情况
由(1), D Gdxdydz òòò
t
= - òòò d ( x - x0 , y - y 0 , z - z 0 )dxdydz
te
= -1
即 lim
e ?0
òòò
te
D Gdxdydz = - 1
(2)

又当 e 1 0时
òòò
te
DGdv =
òòò = ? Gd s = òò òò
te
? × ? G dv
se
?G ds s e ?r
= =
òò
se
C1
1
e2
ds
2p p
òò
0 0
C1 2 e sin dqdj 2 e
= C1 4p
对此式两边取极限
:

时间序列ARMA模型及分析

ARMA模型及分析 本次试验主要是通过等时间间隔,连续读取70个某次化学反应的过程数据,构成一个时间序列。试对该时间序列进行ARMA模型拟合以及模型的优化,最后进行预测。以下本次试验的数据: 表1 连续读取70个化学反应数据 47 64 23 71 38 64 55 41 59 48 71 35 57 40 58 44 80 55 37 74 51 57 50 60 45 57 50 45 25 59 50 71 56 74 50 58 45 54 36 54 48 55 45 57 50 62 44 64 43 52 38 59 55 41 53 49 34 35 54 45 68 38 50 60 39 59 40 57 54 23 资料来源:O’Donovan, Consec. Readings Batch Chemical Proces, https://www.doczj.com/doc/ff11474305.html,ler et al. 下面的分析及检验、预测均是基于上述数据进行的,本次试验是在Eviews 6.0上完成的。 一、序列预处理 由于只有对平稳的时间序列才能建立ARMA模型,因此在建立模型之前,有必要对序列进行预处理,主要包括了平稳性检验和纯随机检验。 序列时序图显示此化学反应过程无明显趋势或周期,波动稳定。见图1。

图2 化学反应过程相关图和Q统计量 从图2的序列的相关分析结果:1. 可以看出自相关系数始终在0周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值在滞后2、3、4期是都为0,所以拒接原假设,即序列是非纯随机序列,即非白噪声序列(因为序列值之间彼此之间存在关联,所以说过去的行为对将来的发展有一定的影响,因此为非纯随机序列,即非白噪声序列)。 二、模型识别 由于检验出时间序列是平稳的,且是非白噪声序列,因此可以建立模型,在建立模型之前需要识别模型阶数即确定阶数。阶数确定要借助于时间序列的相关图,即序列的自相关函数和偏自相关函数,并根据他们之间的理论模式进行阶数最后的确定。 下面给出自相关函数和偏自相关函数之间的理论模式:

第四章 Laplace方程的格林函数法

第四章 Laplace 方程的格林函数法 在第二、三两章,系统介绍了求解数学物理方程的三种常用方法—分离变量法、行波法与积分变换法,本章来介绍Laplace 方程的格林函数法。先讨论此方程解的一些重要性质,在建立格林函数的概念,然后通过格林函数建立Laplace 方程第一边值问题解的积分表达式。 §4.1 Laplace 方程边值问题的提法 在第一章,从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维Laplace 方程 2 2 2 2 2 2 2 u u u u u x y z ????=?≡ + + =??? 作为描述稳定和平衡等物理现象的Laplace 方程,它不能提初始条件。至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。 (1)第一边值问题 在空间(,,)x y z 中某一个区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ(或记作Ω)上连续,在Ω内有二阶连续偏导数且满足Laplace 方程,在Γ上与已知函数f 相重合,即 u f Γ = (4.1) 第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。

Laplace 方程的连续解,也就是所,具有二阶连续偏导数并且满足Laplace 方程的连续函数,称为调和函数。所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知。 (2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在 Ω+Γ 上连续,在Γ上任一点处法向导数 u n ??存在,并且等于已知函数f 在该点的值: u f n Γ ?=? (4.2) 这里n 是Γ的外法向矢量。 第二边值问题也称纽曼(Neumann )问题。 以上两个问题都是在边界Γ上给定某些边界条件,在区域内部要求满足Laplace 方程的解,这样的问题称为内问题。 在应用中我们还会遇到Dirichlet 问题和Neumann 问题的另一种提法。例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件u f Γ =,这里Γ是Ω的边界,f 表示物体表面的温度分布。像这样的定解问题称为Laplace 方程的外问题。 由于Laplace 方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于电学上总是假定无穷远处的电位为零,所以在外问题中常常要求附加如下条件: lim (,,)0(r u x y z r →∞ == (4.3) (3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数

平稳时间序列的ARMA模型

第五讲(续) 平稳时间序列的ARMA模型 1

2 1 平稳性 有一类描述时间序列的重要随机模型受到了人们的广泛关注,这就是所谓的平稳模型。这类模型假设随机过程在一个不变的均值附近保持平衡。其统计规律不会随着时间的推移发生变化。平稳的定义分为严平稳和宽平稳。 定义1(严平稳) 设{},t x t T ∈是一个随机过程,t x 是在不同的时刻t 的随机变量,在不同的时刻t 是不同的随机变量,任取n 个值1,,n t t 和任

3 意的实数h ,则1,,n x x 分布函数满足关系式 1111(,,;,)(,,;,) n n n n n n F x x t t F x x t h t h =++ 则称{},t x t T ∈为严平稳过程。 在实际中,这几乎是不可能的。由此考虑到是否可以把条件放宽,仅仅要求其数字特征(数学期望和协方差)相等。 定义2(宽平稳) 若随机变量{},t x t T ∈的均值(一阶矩)和协方差(二阶矩)存在,且满足:

4 (1)任取t T ∈,有()t E x c =; (2)任取t T ∈,t T τ+∈,有 [(())(())]()E X t a X t a R ττ-+-= 协方差是时间间隔的函数。则称{},t x t T ∈ 为宽平稳过程,其中()R τ为协方差函数。 2 各种随机时间序列的表现形式

白噪声过程(white noise,如图1)。属于平稳过程。y t = u t, u t~ IID(0, σ2) 3 white noise 2 1 -1 -2 -3 140160240260 图1 白噪声序列(σ2=1) 5

数学物理方法作业

目录 0 引言 (2) 1 格林函数法求解稳定场问题 (3) 2 泊松方程的格林函数 (4) 3 镜像法求格林函数. (5) 4 格林函数的对称性 (11) 5 求解泊松方程的第一类边值问题 (13) 6 用正交函数组展开格林函数 (14)

0引言 格林函数, 又名源函数,或影响函数,是数学物理中的一个重要概念。格林函数在电磁场理论中有着非常广泛的应用,如在求解静电场问题时,往往会涉及到求解感应电荷的问题,而一般来说感应电荷的量值是不易求得的,特别是对不规则形状的导体通过应用格林函数的倒易性来求解某些接地导体上感应电荷,能比较简便地解决这个问题。本文就在格林函数求解稳定场问题方面加以讨论。

1 格林函数法求解稳定场问题 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: 热力学方程.: ()2222 ,u a u f r t t ?-?=? 表示温度场u 与热源(),f r t 之间关系 泊松方程.: ()20 u f r ρε?=-=- 表示静电场u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势: () ' '0 4r d V r r ρφπεΩ=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入格林函数s 的概念。 格林函数:代表一个点源所产生的场。普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 格林函数. 下面,我们先给出格林函数s 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。实际上,只限于讨论泊松方程的第一类边值问题所对应的 格林函数s 。

格林函数(免费)

§2.4 格林函数法 解的积分公式 在第七章至第十一章中主要介绍用分离变数法求解各类定解问题,本章将介绍另一种常用的方法——格林函数方法。 格林函数,又称点源影响函数,是数学物理中的一个重要概念。格林函数代表一个点源在一定的边界条件和(或)初始条件下所产生的场。知道了点源的场,就可以用迭加的方法计算出任意源所产生的场。 一、 泊松方程的格林函数法 为了得到以格林函数表示的泊松方程解的积分表示式,需要用到格林公式,为此,我们首先介绍格林公式。 设u (r )和v (r )在区域 T 及其边界 ∑ 上具有连续一阶导数,而在 T 中具有连续二阶导数,应用矢量分析的高斯定理将曲面积分 ??∑ ??S d v u ? 化成体积积分 . )(??????????????+?=???=??∑ T T T vdV u vdV u dV v u S d v u ? (12-1-1) 这叫作第一格林公式。同理,又有 . ???????????+?=??∑ T T vdV u udV v S d u v ? (12-1-2) (12-1-1)与(12-1-2)两式相减,得 , )()(??????-?=??-?∑ T dV u v v u S d u v v u ? 亦即 .)(??????-?=??? ????-??∑T dV u v v u dS n u v n v u (12-1-3) n ?? 表示沿边界 ∑ 的外法向求导数。(12-1-3)叫作第二格林公式。 现在讨论带有一定边界条件的泊松方程的求解问题。泊松方程是 )( ),(T r r f u ∈=?? ? (12-1-4)

格林函数以及拉普拉斯方程

格林函数 格林函数的概念及其物理意义 格林函数法是求解导热问题的又一种分析解法。 从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。这些热作用都可以看做广义上的热源。从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。在此仅讨论用格林函数法求解非稳态导热问题。 用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。 “瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。δ函数的定义为

时间序列ARMA模型

ARMA (p,q )时间序列模型 1、 ARMA 模型的构建: ①AIC 定阶准则:选p , q,使得 2 ^min()ln 2(1)AIC n p q εσ=+++ (1) 其中:n 是样本容量;2 ^εσ是2εσ的估计,与p , q 有关。若当^^ ,p p q q ==时, 式(1)达到最小值,则认为序列是ARMA (^ ,p ^ q ) 当ARMA (^ ,p ^ q )序列含有未知参数μ时,模型为 ()()(),t t B X B ?μθε-= (2) 这时应选取p,q ,使得 2 ^min()ln 2(2)AIC n p q εσ=+++ (3) ②ARMA 模型的参数估计 一般使用MATLAB 工具箱给出相关参数估计。方法有有炬估计、逆函数估计、最小二乘法、最大似然估计等。 ③ARMA 模型的2χ检验 若拟合模型的残差记为^ t ε,即t ε的估计值。记 ^ ^ 1 2^1 ,1,2,,,n k t t k t k n t t k L ε εηε -+=== =∑∑ (4) 则2χ检验统计量是 2 2 1 (2)L k k n n n k ηχ==+-∑ (5) L 是^ t ε自相关函数的拖尾数。 检验的假设是 0:0,k H ρ=当k L ≤时; 1:H 对某些,0k k L ρ≤≠。

在0H 成立时,若样本容量n 充分大,2χ近似于2()L r χ-分布,其中r 是估计的模型参数个数。 2χ检验法: 给定显著性水平α,查表的上α分位数2()L r αχ-,当22 ()L αχχ≥时拒绝0H , 认为t ε非白噪声,模型检验未通过;而当22 ()L r αχχ≤-时,接受0H ,认为t ε是 白噪声,模型通过检验。 2、 ARMA (p,q )序列的预报 时间序列的m 步预报,是根据1{,,}k k X X - 的取值对未来k+m 时刻的随机变量k m X +(m>0)做出估计。估计量记作1,,k k X X - 的线性组合。 ^ ^ ^ ^ 12()(1)(2)(),.k k k k p X m X m X m X m p m p ???=-+-++-> (6) 计算递推式为: ^ 1112^ ^ 212^ ^ ^ ^ 121^ ^ ^ ^ 12(1),(2)(1), ()(1)(2)(1),()(1)(2)(),. k k k k p p k k k k p p k k k k k p p k k k k p X X X X X X X X X p X p X p X X X m X m X m X m p m p ?????????????--+-+-=+++=+++=-+-+++=-+-++-> (7) 关于MA (q )序列 {,0,1,2,}t X t =±± 的预报,有 ^ ()0,.k X m m q => 因此,只需讨论^ (),1,2,,k X m m q = 。为此,定义预报向量 ^ ^ ^ ^ ()[(1),(2),,()]T k k k k X q X X X q = .(8) 令 *,1,2,,, 0,. j j j p j p ??=?? >? 可得到下列递推预报公式:

格林函数法

§3.4 格林函数法 利用一个点电荷的边值问题的解,可以解决同类边值问题:对于给定空间区域V 内的电荷分布ρ和V 的边界S 上(第一类边值问题)各点的电势S ?,或者(第二类边值问题)各点的电场法向分量S n ???。 静电场的电势函数满足泊松(Simeon Denis Poisson, 1781-1840)方程 20 ρ ?ε?=? 其中()r ρG 为电荷密度。位于r ′G 处的单位点电荷的密度分布函数为()r r δ′?G G ,它所产生的静电势(,)G r r ′G G 满足类似的微分方程 2 ()(,)r r G r r δε′?′?=?G G G G , (3.15) 和相应的边条件。以此Green 函数取代格林公式(0.12)中的函数()r ψG ,可得积分方程 0()(,)()(,)()(,)(),V S r G r r r G r r r dV G r r r dS n n ??ρε?′′????′′′′′′=+???′′??? ?∫∫∫∫∫G G G G G G G G G G w (3.16) 第一类边值问题的Green 函数:在边界S 上各点的电势为零的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第一类Green 函数,记为1(,)G x x ′G G 。利用(3.16)式可以得到第一类边值问题的解,即 0(,)()(,)()().V S G r r r G r r r dV r dS n ?ρε?′?′′′′′=?′?∫∫∫∫∫G G G G G G G w (3.17) 第二类边值问题的Green 函数:在边界S 上各点的电场法线分量为常数01 S ε的条件下,空间区域V 内x ′G 的单位点电荷产生的电势分布就是第二类Green 函数,记为2(,)G x x ′G G 。利用(3.16)式可以得到第二类边值问题的解,即 0()1()(,)()(,)().V S S r r G r r r dV G r r dS r dS n S ??ρε?′?′′′′′′′=++′?∫∫∫∫∫∫∫G G G G G G G G w w (3.18) 【无界空间的格林函数】(P58) 【半无限空间的格林函数】(P59) 【球外空间的格林函数】(P60) 【球内空间的格林函数】(补充题)

时间序列分析ARMA模型实验

时间序列分析A R M A模型 实验 The following text is amended on 12 November 2020.

基于ARMA模型的社会融资规模增长分 析 ————ARMA模型实验 第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 数据来源 数据来源于中经网统计数据库。具体数据见附录表。 所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 判断序列的平稳性 首先绘制出M的折线图,结果如下图: 图社会融资规模M曲线图

从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图lm曲线图 对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显着的,ACF 随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.* Augmented Dickey-Fuller test statistic Test critical values:1% level 5% level 10% level *MacKinnon (1996) one-sided p-values. 单位根统计量ADF=小于临界值,且P为,因此该序列不存在单位根,即该序列是平稳序列。 由于趋势性会掩盖季节性,从lm图中可以看出,该序列有一定的季节性,为了分析季节性,对lm进行差分处理,进一步观察季节性: 图dlm曲线图 观察dlm 的自相关表: 表 dlm的自相关图 Date: 11/02/14 Time: 22:35 Sample: 2005M11 2014M09 Included observations: 106 Autocorrelation Partial Correlation AC PAC Q-Stat Prob ****|. |****|. |1 .|* |**|. |2 .|. |*|. |3

§10 格林函数法求解稳定场问题

第十讲 格林函数法求解稳定场问题 1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。 从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系: 热传导方程(Heat Eq.): ()2 22 2 ,u a u f r t t ?-?=? 表示温度场 u 与热源(),f r t 之间关系 Poission ’s Eq.: ()20 u f r ρ ε?=-=- 表示静电场 u 与电荷分布()f r 之间的关系 场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。 例如,在有限体内连续分布电荷在无界区域中产生的电势:

() ' ' ' 04V r dV r r ρ φπε=-? 这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。 或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。所以,研究点源及其所产生场之间的关系十分重要。这里就引入Grenn ’s Functions 的概念。 Green ’s Functions :代表一个点源所产生的场。 下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。 (我们将不介绍格林函数法在热传导问题和波动方程求解中的应用。) 普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。所以,我们需要在特定的边值问题中来讨论 Green ’s Functions. 我们只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions. 2 泊松方程的格林函数 静电场中常遇到的泊松方程的边值问题:

第5章格林函数法

第5章格林函数法

格林(Green)函数,又称为点源影响函数,是数学物理中 的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场. 格林函数法是解数学物理方程的常用方法之一. 5.1 格林公式 T Σ 上具有连续一阶导数, 在区域及其边界 中具有连续二阶导数,应用矢量分析的高斯定理 d d T T div = ?∫∫∫ ∫∫∫ i A V = A V (5.1.1) 单位时间内流体流过边界闭曲面S 的流量 单位时间内V 内各源头产生的流体的总量

将对曲面 Σ 的积分化为体积分 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2) ()uv u v u v ?=??+?以上用到公式称上式为第一格林公式.同理有 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫ ∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3) 上述两式相减得到 ()d ()d T u u u u V Σ ???=Δ?Δ∫∫ ∫∫∫i S v v v v

的外法向偏导数. 5.1.4)为第二格林公式. 进一步改写为 ()d ()d T u S u u V n Σ???=Δ?Δ??∫∫∫∫∫ v u v v v n (5.1.4)

5.2 泊松方程的格林函数法 讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=?r r (5.2.1)(5.2.2) 是区域边界 Σ 上给定的函数. 是第一、第二、第三类边界条件的统一描述

相关主题
文本预览
相关文档 最新文档