当前位置:文档之家› 高数下论文-无穷级数收敛性

高数下论文-无穷级数收敛性

高数下论文-无穷级数收敛性
高数下论文-无穷级数收敛性

高等数学论文

论文题目:级数敛散性判别方法的归纳姓名:冯菲菲

院系:电气信息学院

专业:电子信息工程

指导老师:费腾

时间:2013年5月

摘 要:无穷级数是《高等数学》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数 ;收敛;判别 ;发散

引言: 在讲解数项级数敛散性判别方法时,每讲一种判别方法,学生按照指定的判别方法进行解题,一般都能很容易求得结果,而当把多种判别方法讲完,再让学生作综合判别时, 学生要么束手无策,要么选择判别方法时带有盲目性 ,拿作判别方法进行实验性解题,只要求得结果,不问方法的简单与繁琐,而不是先从简单方法入手,往往用一种简单的方法就可以轻松解题,却用较繁琐方法费了九牛二虎之力,结果还不一定正确,造成这种情况的主要原因主要是学生对所学的判别方法的使用条件及特点不太熟悉,解题思路比较乱 .所以在讲解完常数项级数敛散性判别方法之后,非常有必要归纳总结一下.

一.级数收敛的概念和基本性质

给定一个数列{n u },形如

n u u u +++21 ①

称为无穷级数(常简称级数),用∑∞

=1n n u 表示。无穷级数①的前n 项之和,记为

∑==n

n n n u s 1

=n

u u u +++ 21 ②

称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞

=1n n u 收敛,若级数的部分和发散则称级数∑n v 发

散。

研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理:

定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v

定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m

>N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε

以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二.正项级数的收敛判别

各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法

1 比较判别法

设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有

n n v u ≤,则

(i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞

=12

n n a 收敛,证明:∑

=2

ln n n

n

n a 收敛(n a >0). 证明:因为 0<∑∞

=1

2

n n a <)ln 1(212

2n n a n + 易知:∑∞

=22ln 1n n n 收敛(积分判别法),又∑∞=22n n a 收敛,所以)ln 1 2

12

2

2n n a n n +∑∞

=(收敛。

由比较判别法知∑

=2

ln n n

n

n a 收敛(n a >0). 例 2 . 证明:级数)0(sin )1(1

≠?-∑∞=x n x

n 都是条件收敛的。

证: 不妨设x>0,则?x N >0,当n>x N 时,0n

x ,且{n x

sin }

为单调递减数列,且n

x

n sin lim ∞→=0。

由莱布尼茨判别法知)0(sin )1(1

≠?-∑∞

=x n x

n 收敛。

而当n>x N 时,n

x

n sin

)1(- =n x sin >0,n

x n x n sin

lim

∞→=1

又∑∞

=1n n x 发散,由比较判别法知∑∞

=1

sin n n x

也发散。

所以0≠?x ,级数)0(sin )1(1≠?-∑∞

=x n x

n 都是条件收敛的。

例 3. 证明级数)]!1

!21!111([1

n e n ++++-∑∞

= 收敛

证: 0< n a = )!

1!21!111(n e +++- < !1

n n ?= n b .

n

n n b b 1l i m +∞→= !

1)!

1()1(1

lim n n n n n ?+?+∞→= 2)1(lim +∞→n n n =0

由比值判别法知∑n b 收敛,再由比较判别法知∑n a 收敛,即有:

级数)]!1

!21!111([1

n e n ++++-∑∞

= 收敛。

根据比较原则,我们得到了两个更为实用的判别法,即柯西判别法和达朗贝尔判别法。

2 柯西判别法(根式判别法)

设∑n u 为正项级数,且存在某正整数0N 及正常数l ,(i )若对一切n >0N ,成立不等式n n u ≤l <1,则级数∑n u 收敛。(ii )若对一切n >0N ,成立不等式

1≥n

n u 则级数∑n u 发散。

例 1 . 判别级数∑n n 2

2

的敛散性。

解:因为 =∞→n

n n u lim 2l i m 2n

n n ∞→=12

1

<

所以由根式判别法知级数∑n n 2

2

收敛。

3 达朗贝尔判别法(比值判别法)

设∑n u 为正项级数,且存在某正整数0N 及常数q (0<q <1). (i )若对一切n >0N ,成立不等式

≤+n

n u u 1

q ,则级数∑n u 收敛。

(ii )若对一切n >0N ,成立不等式

11

≥+n

n u u 则级数∑n u 发散。 例 1 .判别级数∑?n n n

n !

3的敛散性。

解:因为 =+∞→n n n u u 1l i m !3)1()!1(3lim 11n n n n n n n n n ?++++∞→= n

n n

)11(3

lim +∞→= e 3>1 所以由比式判别法知级数∑?n n n

n !

3发散。

4积分判别法

积分判别法是利用非负函数的单调性和积分性质,并以反常积分为比较对象来判断正项级数的敛散性。

设f 为[1,+ ∞)上非负减函数,那么正项级数∑)(n f 与反常积分dx

x f ?∞

1)(同时收敛或同时发散。

例 1 .判别级数∑∞

=3)

ln (ln )(ln 1

n q

p n n n 的敛散性。 解:设f(x)=

q

p n n n )

ln (ln )(ln 1

,则f(x)在[3,+ )∞上非负递减。 若1=p ,这时有?

+∞

3

)

ln (ln )(ln q

p x x x dx

= ?+∞

3ln ln q u du = ??

??

?≤∞+>--)1()1()3ln (ln 111

1

q q q q 当小q >1时级数收敛;当小q ≤1时级数发散; 若1≠p ,这时有?+∞3

)

ln (ln )(ln q p x x x dx

=?+∞-3ln ln )1(q u p u e du 对任意的q ,当01>-p 时,取t>1,有

q

u p t u u e u )1(1

lim -∞

→?

=0 即该积分收敛。当01<-p 时,有 q

u p t u u e u )1(1l i m

-∞

→?=∞

+即该积分发散。

5拉贝判别法

设∑n u 为正项级数,且存在某正整数0N 及常数r ,(i )若对一切n >0N ,成立不等式r u u n n

n ≥-

+)1(1

>1,则级数∑n u 收敛。

(ii )若对一切n >0N ,成立不等式1)1(1

≤-

+n

n u u n 则级数∑n u 发散。 例 1 .判别级数∑

+++)

()2)(1(!

n x x x n (x>0)的敛散性。

解:因为 )1(l i m 1

n

n n u u n +∞

→-

= n n ∞→lim [1-

)1()2)(1()!1(+++++n x x x n ? !

)

()2)(1(n n x x x +++ ]

= x n x nx

n =++∞→1

lim

所以由拉贝判别法知,当小x >1时级数收敛;当小x ≤1时级数发散;

6对数判别法

对于正项级数∑n u ,如果存在q n

u n

n =∞→ln )1ln(

lim

,则当q>1时,级数∑n u 收敛;当q<1时,级数∑n u 发散。

例 1判别级数∑∞

=2n n a =∑∞

=-+--2

]

)

1(ln [1

5n n n 的敛散性。

证明:∞

→n lim

n a n ln )1ln(

= ∞→n lim n

n n ln 5

ln ])1([ln 1---=ln 5>1 因此有对数判别法可知级数∑∞

=2

n n a =∑∞

=-+--2

]

)

1(ln [1

5n n n 收敛。

7双比值判别法

对于正项级数∑n u ,如果存在n n n u u 2lim ∞→= 1

12lim ++∞→n n n u u

= ρ,则当ρ< 21时,级

数∑n u 收敛;当ρ>

2

1

时,级数∑n u 发散。 例 1判别级数∑

=1

2ln n n n

的敛散性。 证明:因为n

n n u u 2lim ∞→=41ln )2()2ln(lim 22=?∞→n n n n n 21

<

由此知级数∑

=1

2ln n n n

收敛。 例 2 判别级数∑∞

=1!n n n

e

n n 的敛散性。

证明:这里1+>n n a a ,即n n e n n !> 1

1

)!1()1(++++n n e

n n 有∞→n lim n n a a 2= n n n n n n e n e n n !)!2()2(lim 22?∞→= n n n

n n n n n n e n n e n n e n e n 2222)2()2(22)2(lim --∞→?ππ= 22> 2

1 所以级数∑∞

=1!n n n

e

n n 发散。

8高斯判别法

设∑n a 是严格正项级数,并设

1

+n n

a a =λ+n μ+n n v ln +)ln 1(

n n ο,则关于级数∑n

a

的敛散性,有以下结论:

(i )如果λ>1,那么级数∑n a 收敛;如果λ<1,那么级数∑n a 发散。 (ii )如果λ=1,μ>1,那么级数∑n a 收敛;如果λ=1,μ<1,那么级数∑n

a 发散。

(iii )如果λ=μ=1,υ>1,那么级数∑n a 收敛;如果λ=μ=1,υ<1,那么级数∑n a 发散。

例1 Gauss 超几何级数1+∑

=-+++-++-++n

n n n n n 1

)1()2)(1(!)1()1()1()1(γγγγβββααα n

x 的敛

散性,其中均χγβα,,,为非负常数。

解:因为1+n n a a =χ

βαγβαγ1)1)(1()

1)(11(1))(())(1(n

n n n x n n n n ++++=

++++ 又因为1)1(-+n α=1-n α+)1(2n ο,1)1(-+n β=1-n β+)1

(2n

ο,

所以

1+n n a a =x

1

(1+n βαγ--+1+)1(2n ο)。

根据高斯判别法可以判别:

如果x<1;或者x=1, βαγ+>,那么级数收敛。 如果x>1;或者x=1, βαγ+≤,那么级数发散。

三.总结

总结了数项级数敛散性的判别法和解题思路,以及在此基础上对新的证明

方法的探讨,从不同的数学知识思维角度,给出了调和级数发散的八种证明方法;同时对调和级数的性质也做了进一步的分析讨论,给出了调和级数的一些新的性质。

最后很感谢费腾老师的悉心教导,让我们就能更好地掌握如何先则数项级数敛散性的判别法,做到避繁就简,思路清晰,起到事半功倍的效果,使我们对调和级数本身有了更深入的了解和认识。

四.参考文献

[1]高等数学下册/柳翠华,熊德之主编.-北京:科学出版社,2011.9 [2]高等数学学习与提高/杨建华,孙霞林,王志红主编.-2版.-北京:科学出版社,2012.8

[3]双比值判别法与对数判别法的比较/杨钟玄. [J].四川师范大学学报,2004,(1):57-60.

[4]一类特殊正项级数的敛散性判定技巧/刘芜健.南京邮电大学学报

大一上学期高数论文

合肥学院 课程论文 专业酒店管理 班级一班 学生姓名张超 学号1514061036 论文题目微积分在生活中的应用 教师王后春

微积分在生活中的应用摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2 和直线x=l,x=2及x轴所围成的图形的面积。 f x 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

数项级数及其收敛性

数项级数及其收敛性 无穷级数是微积分中不可缺少的部分,无穷级数的历史可追溯到两千多年前,在古代希腊和中国就有了模糊的级数思想,而无穷级数的真正发展是从微积分诞生开始的。古希腊时期,亚里士多德就知道公比小于1(大于零)的等比级数可求出和数;阿基米德在《抛物线图形求积法》一书中,使用几何级数去求抛物弓形面积,并且得出级数231 111 41 (44443) n 的和;关于无穷级数,数学史上有个著名的芝诺悖论。"两分法”:向着一个目的地运动的物体,首先必须经过路程的中点;然而要经过这点,又必须先经过路程的四分之一点;要过四分之一点又必须首先通过八分之一点等等,如此类推,以至无穷。结论是:无穷是不可 穷尽的过程,运动永远不可能开始的。'庄子亦说'一尺之棰,日取其半,万世不竭。''但同时经验告诉我们,终点是能够达到的。'要解决这个悖论,需要引进极限方法。研究无穷级数及其和,可以说是研究数列及其极限的另一种形式,尤其在研究极限的存在性及计算极限方面显示出很大的优越性.它在表达函数、研究函数的性质、计算函数值以及求解微分方程等方面都有重要的应用,在解决经济、管理等方面的问题中有着十分广泛的应用. 一、级数基本概念 定义1设给定一个数列,,,,,n u u u u 321,则表达式 n u u u 21称为无穷级数,简称级数,记作 1n n u ,即n n n u u u u 2 11, 其中称为级数的第项,也称一般项或通项,如果是常数,则级数1n n u 称为常数项级数,如果是函数,则级数1n n u 称为函数项级数. 其实,在中学数学中我们就已经遇到过无穷级数,如无穷等 比数列:2,,............(1)n a aq aq aq q ,各项的和 2............1n a a aq aq aq q ;另外,无限循环小数也是无穷级数,比如:1 0.33 1033.0,2103 03.0,n 103 030.0,所以有

大一下高数论文(1)

大一下高数论文 大一下学期,我们主要学了微分方程,微分方程是数学的重要分支.在这里我重点介绍了几个利用微分方程常来解决的问 题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 应用微分方程解决具体问题的主要步骤: (1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的解; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线 我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面就来介绍等角轨线的方法. 首先把问题进一步提明确一些. 设在(x,y )平面上,给定一个单参数曲线族(C ):()0,,=c y x ?求这样的曲线l ,使得l 与(C)中每一条曲线的交角都 是定角 α . 设l 的方程为 1y =)(1x y .为了求)(1x y ,我们先来求出)(1x y 所对应满足的微分方程,也就是要求先求得x , 1y ,' 1 y 的关系式.条件告诉我们l 与(C )的曲线相交成定角 α,于是,可以想象,1y 和'1y 必然应当与(C )中的曲线 y =)(x y 及其切线的斜率'y 有一个关系.事实上,当α≠ 2 π 时,有 k y y y y ==+-αtan 1' 1 '' ' 1 或 1 ' 1' 1' +-= ky k y y 当 α= 2 π 时,有 ' 1 '1y y - = 又因为在交点处, )(x y =)(1x y ,于是,如果我们能求得x , 1y ,' 1y 的关系 () 0,,'=y y x F 采用分析法.

关于高等数学论文

《高等数学》 期末课程总结 姓名:张桂花 班级: 12级采矿01班 系别:环境与城市建设学院 高等数学论文 摘要: 经过一个学期的学习,对于高数我又有了一个更深的了解,大一上学期主要是了解高数一些最基本的东西,等到了下学期,主要是对上学期所学知识进行一定的延伸和拓展,在原有学习的基础上更深入的了解其精髓,对于我们更深刻的掌握高数这门学科有很大的好处。这一学期里我们重点学习了高数中的导数、微分和积分的扩充,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。另外,这学期也新引入了无穷级数和微分方程。经过一学期的学习,我认识到了数学里一些更加新奇的东西,以前我们都很难计算的无穷数列在无穷级数的学习后得以解决了,而且还可以将一些难以求解的级数通过转化和变形成为我们熟悉的级数形式然后进行求解,这让我想到了我们生活中的很多东西都是这样的,当我们遇到困难不能解决的时候,我们就要习惯产生联想,将这种问题想方法转化为我们熟悉的能解决的东西在进行处理,这些都是我们的高数在不知不觉中一直告诉我们的真谛。数学也训练我们的逻辑思维能力,它在一方面让

我们大胆的去假设,另一方面又需要我们去小心的求证,只有我们证明确实成立的东西我们才能进一步的运用,但是不得不让人佩服的就是数学的逻辑性,同时它也在训练者我们,只有我们在每一个数学环节都严谨的去学习去证明去求解,我们的结果才会正确。 关键词:导数,微分,重积分,级数。 正文: 高等数学下册主要是围绕导数、微分、积分、无穷级数展开的。 首先,第七章主要是函数的微分,上学期我们学习的是一元函数积分,但是实际问题中,往往涉及多个因素之间的关系,反映到数学上就是表现为一个变量依赖于多个变量的情形,从而产生了多元函数的概念,这在高等数学里占据了主要的位置,这一章主要介绍了多元函数的求导、求极值。隐函数的微分方法,还介绍了方向导数、梯度等新概念,还将多元函数的微分应用在几何上,和以前所学的内容很好的结合起来了,为我们提供了更多的解题方法和更灵活的解题思路,对于我们整体的掌握好高数的精华很重要。在这一章节中我们需要重点掌握的有以下几点:1、二重极限的概念,2、可导(导数的定义),3、可微的定义。首先我们要清楚二重极限的概念,需要注意的就是定义里的定点如p0(x0,y0),这里的点p(x,y)是按照任意方式趋近于p0的。还要注意它和二次极限的区别,二次极限 是对一个函数f(x,y)先后分别对x →x0,y →y0求极限A y x f y x y x =→),(lim ) 0,0(),(而二重极限则是对函数f(x,y)当x →x0且y →y0时求极限A y x f y y x x =→→),(lim lim 0 0。求是否存在二重极限时可以用取线路的方法,若取不同的线路求得的二重极限的结果一致则存在,否则就不存在。对于可微,我们要掌握多元函数的全微分的求导,重点注意可微,可导,连续之间的关系。还有就是要知复合函数的微分法,隐函数的微分

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

大一高等数学论文

20113564 胡骐薪工商1112 微分方程的基本应用 微分方程是数学的重要分支, 用微分方程来刻画许多自然科学、经济科学甚至社会科学领域中的一些规律,这是微分方程应用的重要领域,也是其发展的动力.在这里我重点介绍了几个利用微分方程常来解决的问题的例子,从中我们可以了解到微分方程用的广泛性以及解决具体问题时常采用的一般步骤. 微分方程是与微积分一起形成发展起来的重要数学分支,已有悠久的历史,早在17~18世纪,牛顿、莱布尼兹、贝努里和拉格朗日等人在研究力学和几何学中就提出了微分方程【1,2】.随着科学的发展,它在力学、电学、天文学和其他数学物理领域内的应用不断获得成功,有力地推动了这些学科的发展,已成为研究自然科学和社会科学的一个强有力工具.如今,微分方程仍继续保持着进一步发展的活力,其主要原因是它的根源深扎在各种实际问题之中,许多实际问题可以通过建立微分方程模型得以解决. 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的. 数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 微分方程可以精确地表述事物变化所遵循的基本规律. 随着微分方程的理论的逐步完善,只要列出相应的微分方程并找到解方程的方法, 微分方程也就成了最有生命力的数学分支. 事实上,大部分的常微分方程求不出十分精确的解,而只能得到近似解. 当然,这个近似解的精确程度是比较高的. 现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等. 这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题. 应该说,应用常微分方程理论已经取得了很大的成就. 解常微分方程大致有分离变量法、变量替换法、常数变易法以及积分因子法等等,其中,积分因子法尤为重要,本论文主要讨论积分因子存在条件及其解法,通过积分因子使常微分方程化为全微分方程形式来求解. 微分方程在科学技术和实际生活中都有着广泛的应用。应用微分方程解决实际问题,其实就是建立微分方程数学模型,通过建立微分方程、确定定解条件、求解及对解的分析可以揭示许多自然界和科学技术中的规律.应用微分方程解决具体问题的主要步骤: (1)分析问题,将实际问题抽象,设出未知函数,建立微分方程,并给出合理的定解条件; (2)求解微分方程的通解及满足定解条件的特解,或由方程讨论解的性质; (3)由所求得的解或解的性质,回到实际问题,解释该实际问题,得出客观规律. 微分方程的应用举例 几何问题 1.等角轨线 我们来求这样的曲线或曲线族,使得它与某已知曲线族的每一条曲线相交成给定的角度.这样的曲线轨线已知曲线的等角轨线.当所给定的角为直角时,等角轨线就轨线正交轨线.等角轨线在很多学科(如天文,气象等)中都有应用.下面

高数论文

高数论文 很快,这个学期已经接近尾声了,我们对高数下册的学习也结束了。就对这门课的学习,有一些心得体会,以及对高等数学下册知识点的整理,做了如下总结。 I、心得体会高数下册比上册的难度、计算量都要大。比如三重 积分,计算时,不仅需要知道基本的公式,然后根据表达式 选择合适的坐标系;还要注意灵活变换,例如对于二重积分 注意有时需要把X-型区域换成Y-型区域来计算;总之算好一 道题需要基础+技巧+细心+耐心!而且有好多三维空间立体 的图形,需要对各种常见的表达式的图形非常熟悉,以及很 好的空间思维能力,而且画好立体图形是做好题的前提!以 及多重积分、级数等都是比较难以理解的知识点。因此本课 程学习起来也我感觉比较吃力。在学习高数的时候,我们应 该注重学习方法的选择,只有掌握好了学习方法,才能将这 门课学好。就像切西瓜一样,首先要找好下刀的方位,才能 将西瓜切正。学习高数这门课的时候,我们首先应该了解高 数这门课的性质,对数学来说,结构无处不在,结构是由许 多节点和联线绘成的稳定系统。数学中最基本的就是概念结 构,它们之间的联系组成了知识网络的结构,剖析高等数学 的知识结构,有助于加深对高等数学的理解。高数以极限思 想为灵魂,以微积分为核心,包括级数在内,它们都是从量 的方面研究事物运动变化的数学方法,本质上是几种不同性

质的极限问题。因此,我们在学习这些内容的时候应该掌握 它们之间的联系,这样我们在学习的时候就可以做到事半功 倍的效果。学习高数是一个漫长的过程,学习最重要的就是 不放弃,不能因为在学习高数课程的时候遇到了一点麻烦就 放弃,那样是不可能学好的,我们要相信:“坚持就是胜利!”II、对本课程主要知识点和知识体系进行下总结。⒈向量代数与空间解析几何向量是一种重要的数学工具,中学阶段也学了 不少向量的知识,在本课程里,我们进一步学习了向量的方 向余弦、向量积、混合积等概念;然后介绍了空间曲面的概 念以及常见的集中空间曲面,例如旋转曲面、柱面、二次曲 面;这些只是与后面的多元函数的几何应用有着很大的联系! 而且对后面的曲面积分的计算有着很大的帮助!因此掌握常 见的曲面的表达式以及其图形的画法十分重要!空间解析几 何是用代数的方法研究空间图形的性质。本章主要把中学的 二维曲线推广到空间三维坐标中间去,介绍了空间曲线的方 程,接着以向量为工具,研究了空间与直线之间的一些关系。 向量是一种重要的数学工具,是近代数学的基本概念之一, 在中学阶段,我们已经学习过如何利用向量来解决一些简单 的几何问题,本章在中学阶段学习的基础上,以向量为工具 研究空间曲面和空间曲线,介绍空间解析几何的基本内容, 是学习多元函数微分学和积分学的基础。本章中,主要的学 习方向就是解决空间几何体的相关问题,例如,求解空间几

大一高等数学期末论文范文

大一高等数学期末论文范文 通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先, 我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四 年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。 一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一 定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。 其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里 还是需要绷紧一根弦注意!!!。可能之前会听到家长或者老师会说,到了大学就可以好好 玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同 学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松这句话大家一定注意。下面我来介绍一下,大学高数的一些学习方法: 第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任 何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下其实,这个要求也不低,但希望大家一定 不能落下。 第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉 得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不 要积压,要及时的问同学或者老师建议是老师,但前提是你对这道题目要有一定的思考, 经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老 师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。 第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题 都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大 量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学, 一定要多做题范围也就是课本和老师讲的题,特别是向拿奖学金的同学。 第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非 你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就 想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大 家应该体会的到。 好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

学生数学小论文10篇

数学学习经验 学好数学很重要,因为在生活中,我们经常用到数学,比如:妈妈爸爸发工资的时候,就要数工资,数工资,就要用到数学。钟表上也有数学知识,所以学好数学是很重要的。 我认为要想学好数学,上课听讲很重要,因为数学知识光靠自己很难理解和掌握,所以在课堂上,要认真听老师的讲解,我们的大脑要跟着老师的讲解思路转动,这样才能听懂老师的说法,知道这类题怎么做为什么要这样。你上课不认真听讲,老师留的上交作业不会做,家庭作业也不会做。下课后,你要看一下老师教你们的练习题、算式题等……要复习一遍。下课后,还要多做练习题,这样才会提升你的算术能力。 指导老师:李晓丽

学习数学好方法 南阳市第五小学三(4)班宋雨桥 数学一直是我最爱的科目,上三年级以后我逐渐积累了一定的学习经验,平时成绩比较稳定,以下是我的学习方法总结方法: 第一种方法:上课认真听讲,多发言。如果老师讲的内容,在预习时搞不懂,或者是你做错的题,认真听老师讲解后,会记得更清楚,下次再出现和它类似的题,我们一定得满分。 第二种方法:认真观察身边的数学。我们的生活中到处都有数学,比如:陪妈妈上街买菜的时候,我发现土豆1元1斤,黄瓜1.5元1斤,妈妈各买2斤,这时候我就会帮妈妈算一算。这样,不但复习了乘法,又学习了小数加法。只要认真观察,留心身边的事物,我们会有更多的发现。 数学伴随着我们的生活,所以我们一定要好好学习。 指导老师:李晓丽

我是这样学数学的 南阳市第五小学三(4)班线为国 数学是我们小学生最重要的学习科目,学好数学的方法很多,我平时主要做到以下几点: 一、做好课前预习 如果第二天有数学课,头一天晚上我们要做好充分的准备,预习好第二天的课程,看看哪些自己懂得,哪些看不懂,是要通过老师的讲解才能明白的,把不懂的地方标清楚,进行初步思考,等老师上课时解决。 二、专心听讲,做好课堂笔记 在老师讲课时,我们应该带着预习过程中需要解决的问题,专心听讲,围绕老师提出的问题积极思考,踊跃回答老师提出的问题,还要记下没听懂的问题,课后请老师给予辅导。 三、及时复习 复习时我们要回想当天老师讲的内容,加深记忆,减少对知识的遗忘。 四、认真完成作业 在做作业时要认真,做到多思考多检查,保证作业的质量,养成认真检查的好习惯。 只要我们认真的做到以上几点,我相信我们一定能学好

大一第二学期高数论文设计

姓名:某某某 学院:某某学院 班级:某某***班 学号:**********

【摘要】 又经过一个学期的学习,我对高数的认识又有不同了,大一上学期的学习主要是对高数的基础进行认识,而大二的学习就是更深入延伸和拓展,在原有学习的基础上更深入的了解其精髓,重点学习了高数中的导数、微分和积分的扩充,对于我们更深刻的掌握高数这门学科有很大的好处。这一学期里我们,即从对一元函数的求导到对多元函数的求导,求偏导和求全微分,从一重积分扩充到二重积分和三重积分,但是之前的一重积分主要是运算,但是重积分则更加注重在其运用上,积分也从之前的对某一个区域积分延伸到对曲线积分和曲面积分上。另外,这学期也新引入了无穷级数和微分方程。学习高数我们应该有严谨的态度,在努力的基础上加上认真,才能更好的学习。 【关键词】 导数微分重积分级数 一、对高数的认识 已经经过两个学期的学习,我对高数的认识已然不同,高数是最最有用的课程之一,后面的好多课程都会用到高数的知识。高数是公共基础课,对工科学生尤为重要,后续课程都会用到,比如,接下来的复变函数、积分变换是高数的延续,而大学物理、电路、电子技术等都需要高数的知识进行解题。是进一步进修不可或缺的考研等都要考数学。总之高数是理工科基础的基础。就像你小学学的加减法是你继续学习的基础一样。数学培养的是

我的思维,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而我建立模型地基础就是我怎样把实际问题转化为数学问题。 而很多时候数学的学习是有很多趣味的,像重积分,二重积分,哪怕是三重积分,那些变化,通过立体模型的解题过程是多么的好玩,多么的妙趣横生。 二、如何学习 (1)课前预习 从小到大,经过这么多年的学习,当然发现适当的预习是必要的,在上课前对所学知识的先行认识,相应地复习与之相关内容。如果能够做到这些,那么学习就会变得比较主动、深入,会取得比较好的效果。 (3)课后复习 复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。 三、高数解题方法(多重积分) 1.高等数学是一门严密的学科,在学习高数过程中,我认为应用最为广泛的是积分,高数中积分包含了曲面积分、曲线积分、二重积分和三重积分等,它们在许多学科中、生活中应用比较广泛。 1.1曲面的面积

大一经济数学基础论文范文

大一经济数学基础论文范文 经济数学是属于经济学的一个分支,大一的经济数学是经济学管理专业的基础知识。下面是学习啦小编为大家推荐的大一经济数学论文,供大家参考。 大一经济数学论文范文篇一:《经济类高等数学分层教学的实践研究》 摘要:高等数学是经济类本科生一门重要的基础课程,对掌握好其专业课程知识和从事本专业更高层次的研究起着关键作用。为使该专业学生学好这门课程,我校对高等数学的教学试行了分层教学的教学模式。本文从分层的必要性、分层方式以及取得的效果等方面分析阐述了实行分层教学的优势。 关键词:高等数学;分层教学;因材施教 一、分层教学实施的必要性 高等数学是大学本科经济类专业学生的一门重要的基础课程,其重要性体现在学好这门课程不仅是学好其专业课的基本保障,更是提高思维素质的方式和进行更高层次研究的不可缺少的工具。因此,一般的本科院校对经济类的学生从一年级开学就开始开设高等数学课程。然而,高等学校扩大招生后,我国的高等教育已经从精英教育发展到大众教育阶段,使得高校各专业入学人数在激增的同时,生源质量下降已是不争的事实。而且学生来自全国各个省市地区,入学的数学成绩、水平参差不齐;不同学生的兴趣、爱好及发展方向各不相同。而相同专业所使用的教材、教学计划、教学大纲都是一样的,学生和教师基本没有选择的余地。这种统一的教学模式严重阻碍了高等数学 教学质量的进一步提高。目前,这一课程的教学面临的最大问题是学生的学习兴趣和学习成绩的下降。而造成这一问题的因素是多方面的,其中一个重要的原因是忽视学生对教学方法、教学内容的不同需求。因此,根据学生的数学成绩、兴趣爱好、发展志向在适当尊重个人意愿的前提下对学生实施不同要求,不同方式的教学方式,就势在必行。本文以科学理论为基础,结合本校的教学实践,分析论述了分层教学的实施方法和取得的成果。 二、分层教学的理论基础 分层教学的理论基础是美国心理学、教育学家布鲁姆

高等数学课程小论文

数学史与高等数学 摘要数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。这样的例子在数学史上不胜枚举。在此奋斗的过程中所蕴涵的深刻的哲理。也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。 关键词教学史高等数学 数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。 如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。由此体现出了微积分的重要性以及它和各科之间的关系。因此,微积分总是作为高等院校理工类的一f j重要的必修课。一般制订为两学期教学计划。它包含了微分学,积分学,空问解析几何,无穷级数和常微分方程的基础知识。我围的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味

高数小论文

[键入公司名称] 高数小论文 之微积分在生活中的应用 张叶朋 2013010940 通信1304班 关键词:微积分,牛顿-莱布尼兹公式,物理,应用,生活。

摘要: 1.牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。 2. 微积分在生活中无处不在,可以说是和实际应用息息相关。它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支,有越来越广泛的应用。 3.微积分是为了解决变量的瞬时变化率而存在的。数学的角度:是研究变量在函数中的作用。物理的角度:是为了解决长期困扰人们的关于速度与加速度的定义的问题。“变”这个字是微积分最大的奥义。因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。 微积分的定义: 微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点 a=x0

数学分析:第章数项级数

数学分析:第章数项级数 The Standardization Office was revised on the afternoon of December 13, 2020

第十二章 数 项 级 数 目的与要求:1.使学生掌握数项级数收敛性的定义和收敛级数的性质,掌握等比级数与调和级数的敛散性;2. 掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别法和积分判别法. 重点与难点:本章重点是数项级数收敛性的定义,基本性质和判别正项级数敛散性的各种方法;难点则是应用柯西收敛准则判别级数的敛散性. 第一节 级数的收敛性 一 级数的概念 在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论无限多个实数相加所可能出现的情形及特征.如 +++++n 2 1 21212132 从直观上可知,其和为1. 又如, +-++-+)1(1)1(1. 其和无意义; 若将其改写为: +-+-+-)11()11()11( 则其和为:0; 若写为: ++-++-+]1)1[(]1)1[(1 则和为:1.(其结果完全不同). 问题:无限多个实数相加是否存在和; 如果存在,和等于什么. 1 级数的概念 定义1 给定一个数列{}n u ,将它的各项依次用加号“+”连接起来的表达式 +++++n u u u u 321 (1)

称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项. 级数(1)简记为:∑∞ =1n n u ,或∑n u . 2 级数的部分和 n n k k n u u u u S +++==∑= 211 称之为级数∑∞ =1 n n u 的第n 个部分和,简称部分和. 3 级数的收敛性 定义2 若数项级数∑∞ =1n n u 的部分和数列{}n S 收敛于S (即S S n n =∞ →lim ),则称数项 级数∑∞=1 n n u 收敛 ,称S 为数项级数∑∞ =1 n n u 的和,记作 =S ∑∞ =1 n n u = +++++n u u u u 321. 若部分和数列{}n S 发散,则称数项级数∑∞ =1 n n u 发散. 例1 试讨论等比级数(几何级数) ∑∞ =--+++++=1121n n n aq aq aq a aq ,)0(≠a 的收敛性. 解:见P2. 例2 讨论级数 ++++?+?+?) 1(1431321211n n

高等数学基本公式整理(级数部分)

常数项级数: 是发散的 调和级数:等差数列:等比数列:n n n n q q q q q n n 1 312112 )1(3211111 2 +++++= ++++--= ++++-ΛΛΛ 级数审敛法: 散。 存在,则收敛;否则发、定义法: 时,不确定 时,级数发散 时,级数收敛 ,则设:、比值审敛法: 时,不确定时,级数发散 时,级数收敛 ,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞ →+∞→∞ →+++=?? ? ??=><=?? ? ??=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11 1 )1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ ΛΛΛ 幂级数:

01 0)3(lim )3(111 1111 221032=+∞=+∞ === ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρ ρρΛΛΛΛ函数展开成幂级数: Λ ΛΛ Λ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00 lim )(,)()!1() ()(! )()(!2)())(()()(2010)1(00)(2 0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: ) ()!12()1(!5!3sin )11(! )1()1(!2)1(1)1(1 21532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin ) sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞ =ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

相关主题
文本预览
相关文档 最新文档