当前位置:文档之家› 基于CFD的船舶生活区减阻技术研究

基于CFD的船舶生活区减阻技术研究

基于CFD的船舶生活区减阻技术研究
基于CFD的船舶生活区减阻技术研究

超空泡减阻技术简介

超空泡减阻技术简介 超空泡是一种物理现象,当物体在水中的运动速度超过185千米/小时后,其尾部就会形成奇异的大型水蒸气沟,将物体与水接触的部分包住,物体接触的介质就由水变成了空气,由于空气密度只有水的1/800,因而就能大幅减少物体所受阻力,物体表面会形成大型空气泡,这就是“超空泡化现象”。 超空泡技术就是在艇体表面和水之间产生一个气体空腔,因此减小了阻力,增大了艇的航速。超空泡现象很长时间一直是令造船工程师们头痛的事,因为超空泡现象经常会在高速旋转的螺旋桨叶片表面产生而使螺旋桨高速“空转”从而损坏螺旋桨叶片。 超空泡技术概述 当航行体与水之间发生高速相对运动时,航行体表面附近的水因低压而发生相变,形成覆盖航行体大部分或全部表面的超空泡。形成超空泡之后,航行体将在气体中航行,由于航行体在水中的摩擦阻力约为在空气中摩擦阻力的850倍,因此,超空泡技术的应用可以使水下航行体的摩擦阻力大幅减小,从而使鱼雷等大尺度水下航行体的速度提高到100m/s的量级,使水下射弹等小尺度水下航行体的航速提高到1000m/s的量级。 超空泡发展过程 当航行体在流体中高速运动时,航行体表面的流体压力就会降低,当航行体的速度增加到某一临界值时,流体的压力将达到汽化压,此时流体就会发生相变,由液相转变为汽相,这就是空化现象。随着航行体速度的不断增加,空化现象沿着航行体表面不断后移、扩大、进而发展成超空化。其发展过程一般可以分为四个状态:游离型空泡、云状空泡、片状空泡和超空泡。 超空泡形成方法 超空泡分为自然超空泡和通气超空泡两种,形成超空泡一般有三种途径: 1)提高航行体的速度; 2)降低流场压力; 3)在低速情况下,利用人工通气的方法增加空泡内部压力。前两种方法形成的为自然超空泡,最后一种方法所得到的就是所谓的通气超空泡。 现有的减阻技术 脊装表面减阻,微气泡减阻,复合材料减阻,超空泡减阻技术。而水下超空泡武器是一种新概念武器,基于这种新概念、新原理设计的水下超空泡武器,其运动速度极高,且不受水声对抗器材的干扰,从而大大提高了水下武器的突防能力。 前苏联海军很早在七十年代就发展了火箭推进的“风雪”超空泡代号为BA-Ⅲ的“暴风”超高速鱼雷,航速已达到370公里/小时(约200节),其气泡一是利用超高速自行产生,二是把鱼雷发动机的尾气引到前面放出。超空泡潜艇的主要问题一是控制运动方向困难,二是气泡长时间的产生。德国正在研究开发的超空泡鱼雷用变换头部来控制运动方向,但是潜艇不太可能变换头部。然而美国人宣称已经解决控制运动方向和长时间产生气泡这两个问题,估计美国的潜艇是用调节气泡喷头的方法来操纵潜艇

无人机机翼减阻技术研究

American Institute of Aeronautics and Astronautics 1 Drag Reduction of Light UA V Wing with Deflectable Surface in Low Reynolds Number Flows Masoud Darbandi * and Ali Nazari ? Sharif University of Technology, Tehran, P.O. Box 11365-8639, Iran Gerry E. Schneider ? University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada The most effective approach to drag reduction is to concentrate on the components that make up the largest percentage of the overall drag. Small improvements on large quantities can become in fact remarkable aerodynamic improvements. Our experience shows that the use of light material in constructing human-powered airplanes and unmanned-air-vehicles UAVs has a few side effects on the aerodynamic characteristics of their wings. One important side effect is the unwanted deflection on wing shell. It is because of high flexibility and low solidity of the light material, which covers the wing skeleton. The created curvature has direct impact on the separation phenomenon occurred over the wing in low Reynolds number flows. In this work, we numerically simulate the flow over a UAV wing with and without considering the generated deflection on its shell. It is shown that the curvature on the wing surface between two supporting airfoil frames causes total drag coefficient reduction. Indeed, this drag reduction is automatically achieved without benefiting from additional drag-reduction devices and/or drag-reduction considerations. The current investigation has been conducted on a UAV wing with fxmp-160 airfoil section. This airfoil normally provides high lift coefficient in low Reynolds flows because of having suitable camber. The drag of a wing with this airfoil section can be reduced by the proper usage of low weight material as its wing shell providing that the wing shell deflects between its supporting frames during stretching the shell in manufacturing stage. Nomenclature α = angles of attack C d = total drag coefficient C dp = profile drag C ds = skin friction drag C l = two-dimensional lift coefficient C L three-dimensional lift coefficient L/D = lift-drag ratio Re = Reynolds number I. Introduction RAG reduction is one of the major objectives to the air vehicle designers and manufacturers 1. The study of air vehicles at their cruise shows that there are two main sources of drag force including lift-induced and skin-friction drags. It is reported that these two sources of drag are approximately one-third and one-half of the total drag, respectively, in civil transport aircraft. Reneaux 2 emphasizes that hybrid laminar flow technology and innovates wing tip devices offer the greatest potential for drag reduction. With respect to lift-induced drag, the classical way to reduce drag has been to increase the wing aspect ratio, which is automatically provided in UAV wings. However, for the wings with low aspect-ratio, it is suggested to use various winglet devices such as wing tip sails, wing grid, * Associate Professor, Department of Aerospace Engineering. ? Graduate Student, Department of Aerospace Engineering. ? Professor and Chair, Department of Mechanical Engineering, AIAA Fellow. D 3rd AIAA Flow Control Conference 5-8 June 2006, San Francisco, California AIAA 2006-3680

船舶节能技术的最新发展

目录 目录 (1) abstract (3) 第一章绪论 (4) 1.1 研究目的与意义 (4) 1.1.1 研究目的 (4) 1.1.2 研究意义 (5) 1.2 船舶技术节能潜力与特点 (5) 1.2.1 船舶节能潜力 (5) 1.2.2当前船舶节能技术的特点 (5) 二、船舶节能技术取得的进步 (5) 2.1 节能推进器 (5) 2.1.1低速柴油机 (5) 2.1.2 中速柴油机 (6) 2.1.3正反转螺旋桨 (6) 2.2节能附件 (6) 三、节能型船型的设计 (6) 3.1 小水线面双体船型 (6) 3.2 双艉鳍船型 (7) 3.3 球艉和球鼻艏船型 (7) 3.4 非对称尾船型 (7) 四、节能措施 (7) 4.1 减少船舶阻力 (7) 4.1.1减阻球鼻 (7) 4.1.2 球艉船型 (7) 4.1.3微气泡减阻 (8) 4.1.4采用船尾附体(如加鳍、导流管等) (8) 4.1.5 减少船体的粗糙度 (8) 4.2 提高推进效率 (9) 4.2.1 舵球 (9) 4.2.2 扭曲节能舵 (9) 4.2.3 桨前导流鳍 (9) 4.2.4 桨后自旋助推叶轮 (9) 4.2.5 新型的高效推进器 (9) 4.3 采用混合动力装置 (10) 4.3.1 混合动力装置组成 (10) 4.3.2 混合动力装置余热回收 (10) 4.3.3 热能回收系统的工作模式 (10) 4.3.4 混合动力装置的主要优点 (10) 4.4 绿色船舶 (11) 4.5 提高船舶操作运行技术 (12) 五、结论和展望 (14)

六、致谢 (14) 参考文献 (15)

船舶吃水差优化的研究

第19卷 第4期 中 国 水 运 Vol.19 No.4 2019年 4月 China Water Transport April 2019 收稿日期:2018-11-03 作者简介:戚可成(1972-),男,上海海华轮船有限公司高级轮机长。 船舶吃水差优化的研究 戚可成1 ,方剑益1 ,曾向明2 ,王 琦2 (1.上海海华轮船有限公司,上海 200080,2.上海海事大学,上海 200080) 摘 要:随着全球经济的快速发展,航运业也更加繁荣,与此同时,也带来了环境污染和能源逐渐枯竭的局面,为此,要提高船舶营运能效、节能减排。本文以”育明”轮为研究对象,通过仿真与试验结合,找出最佳吃水差。利用FLUENT 计算出计算船舶在不同吃水差下的阻力,通过船舶能效监控系统实时测出主机每海里油耗,并比较不同吃水差下船舶阻力的变化趋势和油耗的变化趋势,从中找出最佳吃水差,以供“育明”轮应用于实际航行,同时,也为其他营运船舶提供一个节能减排的新方法。 关键词:吃水差优化;船舶阻力;油耗 中图分类号:U674 文献标识码:A 文章编号:1006-7973(2019)04-0010-04 一、引言 根据国际海事组织(IMO)的统计,全球90%以上的贸易量都是由船舶运输来完成的,但是船舶在运输过程中也给环境带来了污染,如氮氧化物、硫氧化物、温室气体等,已经引起了国际社会的关注。其中,海上运输每年排放的温室气体超过1,000万t,占全球CO 2总排放量的2.7%左右[1]。 在此背景下,提高船舶能效、节能减排已势在必行。目前,航运界提出了多种节能减排的方法,如降速航行、航线优化、气泡减阻等。但是,这些方法都要增加船舶的投资资本或者是降低营运效率,并且这些方法对不同的船舶有不同的适应性,因此不能进行普遍推广。而调整船舶首尾吃水、改变吃水差,从而改变船舶在水中的航行姿态,降低船舶航行的阻力是一种相对简单而且具有普适性的船舶节能方法。 从国内外研究文献来看,1991年,王兴权等人[2]对“松林”号货轮做了纵倾的试验,并证实了通过调整船舶的纵倾状态可以节能;王伟等人[3]通过使用CFD 对KCS 船做了不同纵倾下的阻力预报,并从中得到船舶的最佳纵倾角和其节能效果;张剑在论文[4]中以46,000t 的油轮为研究对象,利用FLUENT 不同浮态下的船舶阻力进行计算,得出船舶处在艉倾3~4m 状态时的阻力最小,与平浮状态下相比可使航行阻力减少了2%;Subramani 和Paterson 等[5]对FF1052 和S60采用CFD 来计算船舶的阻力,然后将计算结果和实验结果对比,发现它们变化的趋势几乎一致,并且计算出的阻力最大值和实验中的最大值也很接近。 本文以“育明”轮为研究对象,使用通用流体计算软件FLUENT 计算船舶在不同吃水差下的阻力,并结合项目组研发的能效监控系统实测的主机油耗相对比,从中找出船舶在不同营运环境下的最佳吃水差,并提出吃水差优化的研究方法。 二、船舶吃水差 由于船舶装载的压载水、货物以及燃料使船舶的重心偏离船舶在正浮时的浮心位置,产生纵倾力矩,从而使船舶艏吃水与艉吃水不同[6]。 船舶的吃水差是指船舶的艏吃水d f 与艉吃水d a 的差,用t 表示,即: f a t =d d - (1) 当艏吃水大于艉吃水时,船舶的浮态为艏倾(Trim by bow);当艏吃水小于艉吃水时,船舶的浮态为艉倾(Trim by stern);当艏吃水等于艉吃水时,船舶的浮态为平浮(Even keel)。 船舶不同的吃水和不同的吃水差都会对船舶的航行性能产生重要的影响。如果船舶的艏倾过大,其首部甲板易上浪,舵叶和螺旋桨入水深度相对减小,如果遇到风浪,舵叶和螺旋桨易露出水面,形成飞车,导致船舶的航行稳定性变差,推进效率也降低。如果船舶的艉倾过大,不仅使首部底板容易受波浪拍打,船舶的操纵性会变差,驾驶台瞭望的盲区增加,还会使航速降低。 因此,船舶要保证在合适的吃水差下航行,如果调整的吃水差使船舶的阻力最小,主机每海里消耗的燃油量最小,能效营运水平最高,此时的吃水差被称为船舶最佳吃水差。 在通常情况下,计算船舶的首尾吃水时可以用下式近似求取: 0.5f m d =d +t (2) 0.5a m d =d t - (3) 除了可以用吃水差t 表示船舶的纵倾状态,还可以用纵倾角φ来表示船舶的纵倾状态,其中纵倾角φ要满足: tan t φ= L (4) 三、建模与计算 1.建立船舶模型

船用气泡减阻技术发展

船用气泡减阻技术发展

船用气泡减阻技术发展 早在十九世纪30年代俄国和瑞典科学家就提出设想:在运动船舶的船体外表面和水之间,引入空气和排气形成气幕,可以大幅减少运动船舶总阻力。然而,这一设计思想在工程技术实践中却并不容易实现。因此,目前真正用于实船的仅为俄罗斯等极少数国家。 气泡船(air cavity craft)也有称作空气润滑船(air-lubricated-hull craft)或气浮船(air ride express)的,它是高性能船型中的一种。其工作原理是把空气引入船底,在船底表面形成气水混合的两相流,从降低液体粘性系数的角度来减小艇体的摩擦阻力,达到高速航运的目的。 1949年底,瑞典哥德堡船模试验池的

Edstrand提出了气膜减阻原理,但由于空气会自由地飘离船体表面,无法形成气膜,试验没有取得成功。60年代后,各国对怎样锁定气膜进行了深入研究,基本上形成了两种思路。 第一种思路是在平底船上开设一个凹进 船底的平面,四周用板材围起来,在船底凹面内通以压缩空气,使大部分气体封存在船底,当然难免还有一小部分气体随船体的移动从 船底边缘逃逸出去。这类技术主要应用在低速运输船上,如驳船、货船和大型油船。在我国黑龙江水运科学研究所研究的垫气驳就属于 这一类,并于1982年在黑龙江航运的驳船上应用成功。在正常运营航速(Vs=9km/h)下,阻力可比原船型减小30%,而消耗在压缩空气上的功率只占总功率的3%,节能效果十分显著。 第二种思路是将船底下的一层薄薄的气 膜扩展成一个增压气室,最终将演变成侧壁式气垫船,成为另一类高性能船型。80年代以来,前苏联、法国、美国、澳大利亚、荷兰等

顶管注浆减阻技术

顶管注浆减阻技术 近年来,顶管技术朝着大管径、长距离的施工方向发展。特别是在繁华大都市的市政建设项目中,长距离地下顶管技术以其独有的优势被广泛地应用。 然而由于我市土质多为亚粘土、沙性土,顶进中摩阻系数大而使顶进长度受到限制。所以开发新的减阻技术,是实现大管径、长距离顶进的关键。 1 长距离顶进的方法、减阻材料及工艺效果 目前实现顶管的长距离施工的技术保证措施,除了设置中继间外,更重要的是通过注浆工艺来减小管材与土壤的摩擦阻力。采用注浆工艺润滑、减阻后可以使顶距提高40%一70%。 减阻用的主要材料是膨润土和水。当膨润土与水混合后,由于水掺人膨润土中,膨润土在水中膨胀重量可以达到膨润土原重量的600%—700%。经搅拌储存呈凝状,在有外力作用下呈流动状态,这种材料注夹在管外壳与土壤之间,会大大降低管节推进的摩阻力。静止时泥浆有良好的稳定性。为使膨润浆液有良好的性能,在制浆过程中要适量加一些辅助原料:如纯碱、纤维素CMC、缓凝剂等。 膨润土又分为钙基膨润土和钠基膨润土,吸收钙离子多的为钙基,吸收钠离子多的为钠基膨润土,根据不同的土质选用不同的配方。通过施工我们总结发现:在沙性土中钠基膨润土减阻效果较明显,资料分析显示它比钙基膨润土多含一层极薄的硅酸盐,它与膨润土中的蒙脱石小

粒子结合中易形成空隙构造,从而使浆液膨润性增加。触变以后流动性好,静止下来有胶凝性与固化性。 高效钠基膨润土浆液配方是:膨润土24kg,水76kg,碱0.8kg。 在不同的土质和施工条件下,对减阻泥浆性能有不同的要求。在沙性土质中,土层易塌方,流沙与地下水压向整个管壁,普通浆液达不到减阻效果,如在淤流沙层内,土层无水板结,遇水成流沙,膨润土会被流沙层内的水稀释,减阻效果就差。在这种情况下,①、要提高浆液粘度;②、应掺入CMC经甲基纤维素,以提高浆液抗剪切能力及润溶性。配方中的纯碱可提高浆液稠度,增加钠离子改变土粒子水化性能,但若加倍过量投入会破坏浆液的性能。 将搅拌好的浆液放入储浆罐中,须经3—4h存储待膨润土颗粒充分吸水膨胀(吸水率2h,430%)方可使用。此时浆液性能几项指标约为:粘度80s,静切力21mg/cm2,pH值0.8—10,比重约为1.17。粘稠度适中,用木锨棒插入液中能立住。 应注意的是:各地生产的膨润土成分特性相差较大,使用前要取样做试验。 在被顶进的混凝土管材上预留3—4个注浆孔,用口径为1英寸(0.0 254m)的橡胶管与各注浆孔连接,接到主注浆管上,再用软管连接到注浆泵上,泵的一端连接到储浆罐上。 近些年由于顶管采用注浆减阻工艺使顶管工程的口径及顶距都有大幅度提高,最大管径和最大顶距分别达到2400mm和290m。 2 注浆工艺中的顶力、摩擦力确定

减阻现象的发现和技术发展

减阻现象的发现和技术发展 在流体中加入少量高分子聚合物,能在湍流状态下降低流动阻力,这种现象称为高聚物减阻,加入其中用于降低流体流动阻力的化学添加剂称为减阻剂(drag reduction agent),简称DRA。减阻剂是一种 分子量大于百万以上的线性结构的柔性高分子聚合物,在流体中加入了少量这样的聚合物,就会使输量增加,阻力减少。运用添加减阻剂的方法进行流体减阻是众多减阻技术种类中应用最多的方法。 高聚物的湍流减阻是非牛顿流动所有异常现象中具有技术经济 及科学意义的现象之一。对高聚物减阻的研究,有很高的经济价值,对国民经济和国防建设有着重要的作用。在工业部门大量应用的管道系统中,减小摩阻,就可以大大降低运行动力的消耗。在管道输送原油和成品油的应用,减少长输送管道的中间泵站,缩短码头的卸油时间,提高工作效率。至今,减阻现象的研究已成为一门涉及到流体力学、流变学、高分子化学和高分子溶液的新的边缘学科,减阻现象在工程中的应用也形成一门独特的综合性工程科学。 经过近30年的研究与应用实践,美国的ARCO石油公司、德国的BASF公司等都相继开发出了性能更好、成本更低的减阻剂,减阻应用技术也得到相应的发展。这些,都促使世界上许多原油、成品油管道采用这一技术以提高现有管道得输送能力,并且取得了可观的经济效益。例如,中东地区一条直径为1000nma的原油输送管道,最大输量 为12.4万m3/d。 油田产量增加后,需要扩大管道输送能力。经过进行修建复线和

采取加减阻剂两种增输方案的经济论证后,决定并采用了注入减阻剂减小管道摩阻压降,同时更换大排量离心输油泵的方法,在保证管输压力不大于管道最大工作压力的前提下,成功地使管道输量从12.4万m3/d增加到15.9万m3/d。美国墨西哥海湾一条直径为250ram的海底原油管道。在加入减阻剂后,使管道最大输量从6000万m3/d增加到8500万m3/d,取得极大的经济效益。 1980年初,浙江大学开始研制用于油品中的油溶性减阻剂,并于1984年合成出采用乙烯——丙烯共聚而成的高分子聚合物。这种减阻剂在实验室条件下,在煤油中的减阻效果达到了30%。同年,石油天然气管道科学研究院与成都科技大学合作,研制出主要成份为聚甲基丙烯酸高级酯的减阻剂,减阻效果达31%。1985年,浙江大学又研制出采用烯烃与乙烯共聚反应而成的另一类型减阻剂,减阻效果又有所提高。但以上成果都局限于室内小试合成的结果。为了能达到工业应用,进行了中试放大的工作,但由于原料提纯,聚合过程中的一些工艺问题,加之缺乏工程应用背景,中试没有达到预定结果。 减阻剂是一种减少液体管道内摩阻损失的化学制品,是高分子聚合物,属碳氢化合物。早在1944年,美国麻省理工学院就研究了能够减阻的物质。1947年美国海军研究院开始进一步的发展研究。在60年代后期,美国的生产厂家己开始对减阻剂进行研制生产。1979年美国Conoco公司生产的CDR减阻剂开始应用在横贯阿拉斯加的原油管道上。自80年代初以来,在世界范围内,海上、陆上有几百条输油管道都陆续应用了减阻剂。

船舶专业词汇

船舶专业词汇 a faired set of lines 经过光顺处理的一套型线a stereo pair of photographs 一对立体投影相片abaft 朝向船体 abandonment cost 船舶废置成本费用accommodation 居住(舱室) accommodation ladder 舷梯 adjust valve 调节阀 adjustable-pitch 可调螺距式 admiralty 海军部 advance coefficient 进速系数 aerostatic 空气静力学的 aft peak bulkhead 艉尖舱壁 aft peak tank 艉尖舱 aileron 副鳍 air cushion vehicle 气垫船 air diffuser 空气扩散器 air intake 进气口 aircraft carrier 航空母舰 air-driven water pump 气动水泵 airfoil 气翼,翼剖面,机面,方向舵 alignment chock 组装校准用垫楔 aluminum alloy structure 铝合金结构 American Bureau of Shipping 美国船级社amidships 舯 amphibious 两栖的 anchor arm 锚臂 anchor chain 锚链 anchor crown 锚冠 anchor fluke 锚爪 anchor mouth 锚唇 anchor recess锚穴 anchor shackle 锚卸扣 anchor stock 锚杆

angle bar 角钢 angle of attack 攻角 angle plate 角钢 angled deck 斜角甲板 anticipated loads encountered at sea 在波浪中遭遇到的预期载荷anti-pitching fins 减纵摇鳍 antiroll fins 减摇鳍 anti-rolling tank 减摇水舱 appendage 附体 artisan 技工 assembly line 装配流水线 at-sea replenishment 海上补给 augment of resistance 阻力增额 auxiliary systems 辅机系统 auxiliary tank 调节水舱 axial advance 轴向进速 backing structure 垫衬结构 back-up member 焊接垫板 balance weight 平衡锤 ball bearing 滚珠轴承 ball valve 球阀 ballast tank 压载水舱 bar 型材 bar keel 棒龙骨,方龙骨,矩形龙骨 barge 驳船 baseline 基线 basic design 基本设计 batten 压条,板条 beam 船宽,梁 beam bracket 横梁肘板 beam knee 横梁肘板 bed-plate girder 基座纵桁 bending-moment curves 弯矩曲线 Benoulli's law 伯努利定律 berth term 停泊期 bevel 折角 bidder 投标人

减阻涂料现状及发展趋势

减阻涂料现状及发展趋势(2) 目前内减阻涂层技术处于领先地位的国家包括美国、德国、英国、意大利等欧美国家,在进入20世纪80年代以后,国外大口径长输天然气管道已普遍采用内涂层减阻技术来提高输气压力,增加输气量。 我国输气管道的建设和运行已有几十年的历史,在此期间,我国石油工程科研单位和油田进行了许多管道内涂层技术研究。石油工程研究院对适合应用于大口径管道的减阻内涂层进行了专项调研。管道局和工程院的技术专家对内涂层的减阻效果进行了定量的经济性分析。1997年,石油工程建设施工专业标准化委员会制定了《钢质管道融结环氧粉末内涂层技术标准》和《液体环氧涂料内防腐涂层钢管技术条件》2个行业标准,使国内的内涂层技术逐步走向规范化。但是与国外相比,在涂料生产、涂覆工艺、施工机具、施工标准规范和涂层质量检验等方面还存在一定的差距,需要加快相关技术的研究工作,以满足我国长输天然气管道建设的需要。 3 研究发展状况 涂料是管道内涂层的物质基础,总的来说,可用作管道内减阻涂料的涂料品种很多,包括环氧树脂涂料、环氧聚氨酯涂料、环氧酚醛涂料以及煤焦油环氧涂料等,但是由于各种涂料的性能有所不同,因此,应针对管线的不同要求筛选最适合的内减阻涂料类型。 我们认为,长输天然气管道减阻内涂层用涂料应具备以下特点:

(1)涂层表面光滑平整。即涂层的表面粗糙度要小,这样涂层才具有良好的减阻效果。"西气东输"要求涂层表面的平均粗糙度小于10Pm。 (2)耐磨性和硬度。由于减阻类涂层较薄,一般仅为38-80μm,因此较好的耐磨性和硬度可以保证涂层能够承受管道内砂砾和清管器所造成的磨损。 (3)附着力。良好的附着力可保证涂层在储运、弯管、敷设和清管、运行过程中不脱落 (4)耐压性。能够承受气压和水压的反复变化。 (5)易于涂装。即可在常温常湿条件下,采用普通喷涂技术施工, (6)耐热性。由于管道的环氧粉末外防腐层施工需要240℃左右的高温,因此若采用"先内后外"的施工方式,要求内涂层应能耐受短期高温。 通过分析发现,环氧树脂是生产减阻涂料的最佳成膜基料,针对输气管线而言,环氧树脂具有以下几个特点: (1)附着力极好。环氧树脂分子结构中含有大量的羟基和醚基等极性基团,加之在固化过程中活泼的环氧基能与界面金属原子反应形成极为牢固的化学键,增强了涂层与基材的附着力。 (2)优异的耐磨性和耐腐蚀性。环氧树脂中的苯环和固化后涂层的交联密度较高,使涂层坚硬、柔韧性好、抗渗透性强、耐水耐溶剂性好。此外,由于主链结构中的醚键具有较高的化学稳定性,使涂层抗酸、碱性能好。

气泡减阻

Click here for quick links to Annual Reviews content online, including: ? Other articles in this volume ? Top cited articles ? Top downloaded articles ? Our comprehensive search Further ANNUAL REVIEWS

PIV:particle image velocimetry DNS:direct numerical simulation HWA:hot-wire anemometry LDV:laser-Doppler velocimetry 1.INTRODUCTION In the past three decades,particle image velocimetry (PIV)has become a standard tool in exper-imental ?uid mechanics.The principal characteristic that has made it so useful is its ability to measure the instantaneous velocity ?eld simultaneously at many points,typically of the order of 103–105,with spatial resolution suf?cient to permit the computation of the instantaneous ?uid vorticity and rate of strain.To date,PIV is the only experimental method that provides such information in rapidly evolving ?ows.PIV measurements are most commonly snapshots of the two-or three-component velocity vector ?eld on a planar cross section of the ?ow,but in recent years new developments have made it possible to measure the velocity over volumetric domains and to measure sequences of velocity in time at rates suf?cient to resolve the temporal evolution.Undoubtedly,PIV has signi?cantly advanced experimental ?uid mechanics,especially the study of ?ows in complex geometries and turbulent ?ows,providing resolution and detail that can compete with modern numerical methods,such as direct numerical simulation (DNS)(Moin &Mahesh 1998).Applications of PIV range from creeping ?ows (Santiago et al.1998)to detonations last-ing only a few tens of microseconds (Murphy &Adrian 2011),from nanoscale ?ow phenomena (Stone et al.2002,Zettner &Yoda 2003)to motion in the atmosphere of Jupiter (Tokumaru &Dimotakis 1995),and from the motion in the beating heart of vertebrate embryos (Hove et al.2003,Vennemann et al.2006)to the accidental release of oil at the bottom of the Gulf of Mexico (McNutt et al.2011,2012).The evolution of PIV into the currently dominant method for mea-suring velocity is illustrated in Figure 1.Since its invention,it has largely superseded the two most important methods of measuring point-wise velocity,hot-wire anemometry (HWA)and laser-Doppler velocimetry (LDV).These methods have strengths that PIV has not been able to duplicate thus far.HWA has a superb signal-to-noise ratio,which makes it ideally suited to study low-intensity turbulent ?ows and their spectra,whereas LDV is well suited to high-intensity ?uc-tuations with respect to the mean and accurate measurements of long-time average,single-point statistics.But neither provides the spatial derivatives,?ow visualization,and capability for the spatial correlation offered by PIV,and Figure 1is perhaps best interpreted as an indicator of the importance of those capabilities in modern experimental ?uid mechanics. 19601970198019902000 1 2 3 4 R e l a t i v e o c c u r r e n c e (a r b i t r a r y u n i t s ) HWA LDV PIV Figure 1 The occurrence of the trigrams hot wire anemometry (HWA),laser Doppler velocimetry (LDV),and particle image velocimetry (PIV)in Google Books (https://www.doczj.com/doc/f89687556.html, )between 1952and 2008.We note that a previous review on PIV in this journal (Adrian 1991)appeared when there was no obvious prevalence for any of the three main measurement methods.In the two decades since,PIV has become the dominant approach in experimental ?uid mechanics.Data taken from Google Ngrams. 410 Westerweel · Elsinga · Adrian A n n u . R e v . F l u i d M e c h . 2013.45:409-436. D o w n l o a d e d f r o m w w w .a n n u a l r e v i e w s .o r g b y M i c h i g a n S t a t e U n i v e r s i t y L i b r a r y o n 01/03/14. F o r p e r s o n a l u s e o n l y .

肋条减阻

A辑第14卷第3期 水动力学研究与进展 Ser.A,V o l.14,N o.3 1999年9月 JOU RNAL O F H YDROD YNAM I CS Sep.,1999 肋条减阻① 梁在潮 梁 利 (武汉水利电力大学,武汉430072) 摘 要 随着世界上能源消耗的不断上升,使人们不得不认真考虑如何有效的保护有限的能 源,探求节约能源的新技术和新方法。湍流减阻就是在这种应用背景下提出的新课题。经过二十多 年的努力,特别是湍流理论的发展,使得湍流减阻理论和应用得到了突破性的进展。就减阻技术 讲,有肋条减阻、聚合物减阻、大涡破碎减阻、吹气和吸气减阻、微气泡减阻等,这些减阻技术一个 共同的考虑,就是要控制边界层内的湍流结构,特别是拟序结构,减少湍能的耗损,以达到减阻的 目的。肋条减阻已在世界范围内广泛使用,但其减阻机理和使用条件,还有许多问题尚待解决,本 文较为系统地总结和分析了肋条减阻的研究成果,对肋条减阻的机理进行了分析,并对其工程应 用提出了建议。 湍流,肋条减阻,减阻技术 分类号 O357.5 1 肋条减阻概念的形成 肋条表面(表面上有纵向槽)可减小湍流表面摩阻的设想,是受下面一种或几种概念的启发而形成的。(1)改变边壁条件,有可能减小表面摩阻;(2)方形管道的角流,有减小表面摩阻的性能;(3)三角形管道的内角,有引起部分流动层流化的性能;(4)快速游动的鲨鱼,可能有改变边界层特性的表皮结构。 早在七十年代初,L iu和L angley进行了如图1所示的矩形肋条改变低速条带结构的试 验,图2为其猝发频率变化值。图中d+=d uΣΜ,s+=suΣΜ,h+=huΣΜ为无量纲值,d和s分别为低速条带宽和条带间距宽,h为肋条高;uΣ为表面摩阻速度;Μ为流体运动粘性系数;f和f s分别为矩形肋表面和光滑表面的猝发频率。图中三个黑点是L iu的试验点。这些点明显地表明猝发频率减少了20~25%;而当s+<100为,猝发频率迅速增大,这意味着s+<100为制约低速条带增长的重要区域;他们的试验还表明,当h+=47~70时,D D s=0.97,即阻力减少3~4?,D和D s分别为矩形肋表面和光滑表面的阻力,也即阻力减少3~4%。当h+=111时,阻力却增加15?。因此,边壁表面加肋能否减阻,与采用的肋高h+和间隔宽s+有重要关系。 1970年John son对鲨鱼的阻力特性进行过研究,他将死鲨鱼在水中拖曳,测量其阻力,得到的结果是,死鲨鱼在水中的阻力高于海豚的阻力8~10倍,他认为褐色鲨鱼的阻力大,是由 ①本文于1997年7月16日收到。

相关主题
文本预览
相关文档 最新文档