当前位置:文档之家› 指数函数定义3

指数函数定义3

布置作业P40 2.(1)(2) 3. (1)

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A 版,数学必修1 教学内容:第二章,基本初等函数(I ),2.1.2指数函数及其性质 教学目标 1. 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 2. 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 3. 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数)0()2 1 (5730≥=t P t 的解析式与问题1中函数 )20,(073.1* ≤∈=x N x y x 的解析式有什么共同特征? 师生活动:教师提出问题引导学生把对应关系概括到x a y =的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R 3.剖析概念 (1)规定底数a 大于零且不等于1的理由: 如果a =0,?????≤>无意义 时,当; 恒等于时,当x x a x a x 000 如果,2 1 ,41,)4(,0= -=

幂函数、指数函数及其性质

第8课 幂函数、指数函数及其性质 【考点导读】 1.了解幂函数的概念,结合函数y x =,2y x =,3 y x =,1 y x =,1 2y x =的图像了解它们 的变化情况; 2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性; 3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】 1.指数函数()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是(1,2). 2.把函数()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =222x -+. 3.函数2 20.3 x x y --=的定义域为___R __;单调递增区间1 (,]2 -∞-;值域1 4(0,0.3]. 4.已知函数1()41x f x a =+ +是奇函数,则实数a 的取值1 2 -. 5.要使1 1 () 2 x y m -=+的图像不经过第一象限,则实数m 的取值范围2m ≤-. 6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为1(,0)2 . 【范例解析】 例1.比较各组值的大小: (1)0.2 0.4 ,0.20.2 ,0.2 2 , 1.6 2; (2)b a -,b a ,a a ,其中01a b <<<; (3)131()2,1 21 ()3 . 分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性. 解:(1) 0.20.200.20.40.41<<=,而0.2 1.6122<<, 0.20.20.2 1.60.20.422∴<<<. (2)01a <<且b a b -<<,b a b a a a -∴>>. (3)111 32 2111()()()223 >>. 点评:比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注 意通过0,1等数进行间接分类. 例2.已知定义域为R 的函数12()2x x b f x a +-+=+是奇函数,求,a b 的值;

指数函数第3课时指数与指数幂的运算(三)

指数函数第3课时指数与指数幂的运算(三) (一)教学目标 1.知识与技能: 能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法: 通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观 (1)培养学生观察、分析问题的能力; (2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点 1.重点:运用有理指数幂性质进行化简,求值. 2.难点:有理指数幂性质的灵活应用. (三)教学方法 1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化. 2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程. (四)教学过程 教学环节教学内容师生互动设计意 图 复习引入复习 1.分数指数幂的概念. * (0,,) m n m n a a a m n N =>∈ * 1 (0,,) m n m n a a m n N a - =>∈ 2.分数指数幂的运算性质. (0,,) r s r s a a a a r R s R + ?=>∈∈ ()(0,,) r s rs a a a r R s R =>∈∈ ()(0,) r r r a b a b a r R ?=>∈ 师:提出问题 生:复习回顾 师:总结完善 复 习旧 知,为 新课作 铺垫.

应用举例 例1.(P56,例4)计算下列各式 (式中字母都是正数) (1) 2115 11 3366 22 (2)(6)(3) a b a b a b -÷- (2) 3 1 8 8 4 () m n- 学生思考,口答,教师板演、点 评. 例 1 (先由学生观察以上两个 式子的特征,然后分析、提问、解答) 分析:四则运算的顺序是先算乘 方,再算乘除,最后算加减,有括号 的先算括号的.整数幂的运算性质 及运算规律扩充到分数指数幂后,其 运算顺序仍符合我们以前的四则运 算顺序. 我们看到(1)小题是单项式的 乘除运算;(2)小题是乘方形式的 运算,它们应让如何计算呢? 其实,第(1)小题是单项式的 乘除法,可以用单项式的运算顺序进 行. 第(2)小题是乘方运算,可先 按积的乘方计算,再按幂的乘方进行 计算. 解:(1)原式 = 211115 326236 [2(6)(3)]a b +-+- ?-÷- =0 4ab =4a (2)原式= 3 1 88 8 4 ()() m n- =23 m n- 通 过这二 个例题 的解 答,巩 固所学 的分数 指数幂 与根式 的互 化,以 及分数 指数幂 的求 值,提 高运算 能力.

指数与指数函数(3)

指数与指数函数080612 一、考题选析: 例1、(07江苏)设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时, ()31x f x =-,则有( ) A.132323f f f ?? ???? << ? ? ??????? B.231323f f f ?????? << ? ? ??????? C.213332f f f ?????? << ? ? ??????? D.321233f f f ?????? << ? ? ??????? 例2、(07上海春)若21,x x 为方程1 1 )2 1(2+-=x x 的两个实数解,则=+21x x ; 例3、(05全国Ⅱ)设函数11 ()2 x x f x +--=,求使()f x ≥x 取值范围. 例4、(05江西10)已知实数a , b 满足等式,)3 1()2 1 (b a =下列五个关系式 ①0, 225()()4 x g x a e =+ 。若存在12,[0,4]ξξ∈使得12()()1f g ξξ-<成立,求a 的取值范围。 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。 解:(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3- x , 由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a , 则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3 -x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3- x . 令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则 在区间(-∞,3)上,f `(x)<0, f (x)为减函数;

指数函数及其性质

2.1.2 指数函数及其性质(一) 一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数 的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质, 本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。 二、问题引领: 1、指数函数的概念、图象和性质

2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数 ,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与 0、1的大小关系为01a b c d <<<<<。 三、典例剖析: 例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。 分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。根据函数图象过点()2,π这一条件,可以求得底数a 的值。 解: ()x a x f =的图象经过点()2,π, ()2f π∴= 即2 a π=,解得1 2 a π= ()2x f x π∴=,即:()( )()10 12 1 01,12f f f ππππ -====-== 。 点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。 例题2:1、设1111333b a ???? <<< ? ????? ,求,,a b a a a b 的大小关系。 2、 比较235 4 0.5,1.2,1的大小。 分析:利用指数函数的单调性和特殊点比较大小。 解:1、因为函数13x y ?? = ??? 在R 上为减函数,又由1111333b a ????<<< ? ?????, 所以得:01a b <<<, 因为当01a <<时,函数x y a =为减函数,又a b <, 所以a b a a >,因为函数x y a =与x y b =在R 上同为减函数且当0x >时, 随着x 的增大,函数x y a =比函数x y b =减小的快,所以a a a b <, 即b a a a a b <<。

2.1.2-1指数函数的概念

2. 1.2-1指数函数的概念教案 【教学目标】 1. 理解指数函数的概念, 能画出具体指数函数的图像; 2. 在理解指数函数概念、性质的基础上, 能应用所学知识解决简单的数学问题; 3. 通过类比, 回顾归纳从图象和解析式两个角度研究函数性质的方法; 4. 感受数学思想方法之美, 体会数学思想方法只重要 【教学重难点】 教学重点:指数函数概念、图象和性质 教学难点:对底数的分类, 如何由图象、解析式归纳指数函数的性质 【教学过程】 1、创设情境、提出问题 师:如果让1号同学准备2粒米, 2号同学准备4粒米, 3号同学准备6粒米, 4号同学准备8粒米, ……, 按这样的规律, 50号同学该准备多少粒米? 学生:回答粒数 师:如果改成1号同学准备2粒米, 2号同学准备4粒米, 3号同学准备8粒米, 4号同学准备16粒米, ……, 按这样的规律, 51号同学该准备多少粒米? 师:大家能否估计一下50好同学准备的米有多重吗? 教师公布事先估算的数据:51号同学准备的大米约有1.2亿吨 师:1.2亿吨是什么概念?相当于2007~2008年度我国全年的大米产量! 以上两个问题中, 每位同学所需准备的米粒数用y 表示, 每位同学的座号数用x 表示, y 与x 之间的关系分别是什么? 学生很容易得出y=2x 和y =2x (* x N ∈)学生可能漏掉x 的范围, 教师要引导学生思考具体问题中x 的取值范围。 2、新知探究 (1)指数函数的定义 师:在本章开头的问题中, 也有一个与y =2x 类似的关系式 1.073x y =(* x N ∈且x 20≤) 请思考以下问题①y =2x (* x N ∈)和 1.073x y =(* x N ∈且x 20≤)这两个解析式有 什么共同特征?②他们能否构成函数?③是我们学过的哪个函数?如果不是, 你能否根据该函数的特征给它起个恰当的名字?引导学生观察, 两个函数中底数是常数, 指数是自变量. 师:把这两个函数归为一般形式就是我们今天要学习的函数, 我们把它称作指数函数. (2)让学生讨论并给出指数函数的的定义。对底数得分类, 可将问题分解为: ①若a<0,会有什么问题? ②若a=0, 会有什么问题? ③若a=1, 又会怎样? 学生讨论教师适时点拨形成对问题的严谨认识 师:为了避免上述各种情况的发生, 所以规定a>0且a ≠1

(整理)3 指数函数的概念及图像和性质.

§3 指数函数的概念及图像和性质(共3课时) 一. 教学目标: 1.知识与技能 (1)理解指数函数的概念和意义; (2)2x y =与1()2 x y =的图象和性质; (3)理解和掌握指数函数的图象和性质; (4)指数函数底数a 对图象的影响; (5)底数a 对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小 (6)体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观 (1)让学生了解数学来自生活,数学又服务于生活的哲理. (2)培养学生观察问题,分析问题的能力. 二.重、难点 重点: (1)指数函数的概念和性质及其应用. (2)指数函数底数a 对图象的影响; (3)利用指数函数单调性熟练比较几个指数幂的大小 难点: (1)利用函数单调性比较指数幂的大小 (2)指数函数性质的归纳,概括及其应用. 三、教法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体. 四、教学过程 第一课时 讲授新课 指数函数的定义 一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2 y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .

00 0,0x x a a x a ?>?=?≤??x 当时,等于若当时,无意义 若a <0,如1 (2),,8 x y x x =-= 1 先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的 形式才能称为指数函数,5 ,,3,31x x x a y x y y +===+1 x x 为常数,象y=2-3,y=2等等,不符 合(01)x y a a a =>≠且的形式,所以不是指数函数 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 先来研究a >1的情况 下面我们通过用计算机完成以下表格,并且用计算机画出函数2x y =的图象 再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2 x y =的图象. x

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>= n N n m a a a n m n m )1,,,0(1 1 * >∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]43 的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将3 22-化为分数指数幂的形式为 ( ) A .21 2- B .31 2- C .2 12 - - D .65 2-

3.下列等式一定成立的是 ( ) A .2 33 1a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .61 3 12 1a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0 =1 ③y x y x +=+34 33 4 ④6 2 3)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 2 1212121212-----?????????? +++++ ? ? ? ? ????? ??????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 13212--??- ? ?? C .1 3212-- D .1 321 122-??- ??? 6 .4 4 ? ? ? ? 等 于 ( ) A .16 a B .8 a C .4 a D .2a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)43 1.1,43 4.1,32 1.1 (2)4 316.0- ,2 35 .0- ,8325.6 (3)53 2 )1(+a ,43 2 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

指数函数的概念及其性质(含答案)

指数函数的概念及其性质 一、单选题(共11道,每道9分) 1.若函数满足,则的值为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:指数函数的解析式及运算 2.若函数是指数函数,则的值为( ) A.2 B. C. D.-2 答案:B 解题思路:

试题难度:三颗星知识点:指数函数的解析式及运算 3.函数的定义域是( ) A.(-∞,2] B.["0,2"] C.(-∞,2) D.(0,2] 答案:A 解题思路: 试题难度:三颗星知识点:指数函数的定义域 4.函数的值域是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:指数函数的值域 5.若,则函数的值域是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:指数函数的值域 6.若函数的图象恒过定点(1,2),则b的值

A.0 B.1 C.2 D.3 答案:C 解题思路: 试题难度:三颗星知识点:指数函数的图象与性质 7.不论a是何值,函数恒过一定点,这个定点坐标是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:指数函数的图象与性质 8.若函数的图象在第一、三、四象限,则有

A., B., C., D., 答案:D 解题思路: 试题难度:三颗星知识点:指数函数的图象与性质 9.函数在上是( ) A.单调递减无最小值 B.单调递减有最小值 C.单调递增无最大值 D.单调递增有最大值 答案:A 解题思路:

试题难度:三颗星知识点:指数函数单调性的应用 10.函数在上的最小值为( ) A.-1 B.0 C.2 D.10 答案:C 解题思路: 试题难度:三颗星知识点:指数函数单调性的应用 11.已知函数,,若有,则b的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:指数函数综合题

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

指数函数及其性质 优秀教案

指数函数及其性质 【教学目标】 1.知识与技能通过实际问题了解指数函数的实际背景;理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质。体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观:让学生了解数学来自生活,数学又服务于生活的哲理。培养学 生观察问题,分析问题的能力。 3.过程与方法:展示函数图象,让学生通过观察,进而研究指数函数的性质。 【教学重难点】 重点:指数函数的概念和性质及其应用。 难点:指数函数性质的归纳,概括及其应用。 【学法与教具】 1.学法:观察法、讲授法及讨论法。 2.教具:多媒体。 【教学过程】 【第一课时】 一、情境设置 ①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)x y x x =∈≤与问题(2) t 1中时间t和C-14含量P的对应关系P=[(2 ,请问这两个函数有什么共同特征。 ②这两个函数有什么共同特征 15730 1][()]2 t P =t 57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数, 即都可以用x y a =(a >0且a ≠1来表示)。 二、讲授新课 指数函数的定义 一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2x y =-

(4)x y π= (5)2y x = (6)24y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R 。 00 0,0x x a a x a ?>?=?≤?? x 当时,等于若当时,无意义 若a <0,如 1(2),,8 x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在。 若a =1,11,x y == 是一个常量,没有研究的意义,只有满足(0,1)x y a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1 x x 为常数,象y=2-3,y=2等等,不符合 ( 1)x y a a a =>≠且的形式,所以不是指数函数。 我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究。 下面我们通过 先来研究a >1的情况 用计算机完成以下表格,并且用计算机画出函数2x y =的图象 研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()2 x y =的图象。

指数函数及其性质(一)

数学·必修1(人教A 版) 2.1.3 指数函数及其性质(一) ?基础达标 1.函数f (x )=1-2x 的定义域是( ) A .(-∞,0) B .[0,+∞) C .(-∞,0] D .(-∞,+∞) 解析:由1-2x ≥0,得2x ≤1,由指数函数y =2x 的性质可知x ≤0. 答案:C 2.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个,……每天分裂一次,现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器的一半时需要的天数是( ) A .5天 B .6天 C .8天 D .9天 答案:D 3.若0<a <1,b <-2,则函数y =a x +b 的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:A 4.函数=y ? ????123x -1-18的定义域是________.

6.某厂去年生产某种规格的电子元件a个,计划从今年开始的m年内,每年生产此种元件的产量比上一年增长p%,此种规格电子元件年产量y随年数x变化的函数关系是____________________.答案:y=a(1+p%)x(0≤x≤m) ?巩固提高 7.已知a,b>1,f(x)=a x,g(x)=b x,当f(x1)=g(x2)=2时,有x1>x2,则a,b的大小关系是() A.a=b B.a>b C.a<b D.不能确定 解析:∵a>1,b>1, 由图示知b>a.

答案:C . 9.若函数f(x)=a x-1+3恒过定点P,试求点P的坐标. 分析:研究f(x)=a x的图象和f(x)=a x-1+3图象的关系,由指数函数恒过(0,1)点推导. 解析:将指数函数y=a x(a>0,且a≠1)的图象沿x轴右移一个单位,再沿y轴向上平移3个单位,即可得到y=a x-1+3的图象,因为y=a x的图象恒过(0,1),故相应的y=a x-1+3恒过定点(1,4).

练习3 指数函数(解析版)

练习4 指数函数 1.(2020·贵溪市实验中学高二期中)计算()25314 33434a b a b a b -----?????-÷ ? ????? 得( ) A .2 32 b - B . 232 b C .23b D .23b - 【答案】D 【解析】原式 () 25131423333a b b ??-+-- ?----?? =-=-故选: D 2.(2020·沙坪坝·重庆南开中学高一期中)网络上盛极一时的数学恒等式“301.01 1.4≈,3651.0137.8≈, 7301.011427.6≈”形象地向我们展示了通过努力每天进步1%,就会在一个月、一年以及两年后产生巨大差 异.虽然这是一种理想化的算法,但它也让我们直观地感受到了“小小的改变和时间累积的力量”.小明是以为极其勤奋努力的同学,假设他每天进步2.01%,那么30天后小明的学习成果约为原来的( )倍. A .1.69 B .1.78 C .1.96 D .2.8 【答案】C 【解析】() 30 10.0201+=()3021.01??=??()2 30 21.01 1.4 1.96??≈=?? .故选:C . 3.(2020·镇江正兴教育发展有限公司高一期中)如果指数函数x y a =(0a >且1a ≠)在[]1,1x ∈-上的最 大值与最小值的差为8 3 ,则实数a =( ) A .3 B .13 C .2或12 D .3或 1 3 【答案】D 【解析】当01a <<时,x y a =在[]1,1x ∈-单调递减,则1 8 3a a --= ,解得3a =-(舍去)或13a =; 当1a >时,x y a =在[]1,1x ∈-单调递增,则183a a --=,解得13 a =-(舍去)或3a =, 综上,3a =或1 3 .故选:D. 4.(2020·浙江高一单元测试)如图,是指数函数①x y a =、②x y b =、③x y c =、④x y d =的图象,则( )

指数函数及其性质题型及解析

指数函数及其性质题型及解析 1.下列函数中,是指数函数的是() ①y=(-2)x②y=()x③y=x2 ④y=x-1⑤y=5x+1⑥y=x4⑦y=3x⑧y=﹣2?3x ⑨y=πx⑩y=(-3)x 分析:根据指数函数y=a x(a>0且a≠1)的定义进行判断即可. 解:根据指数函数y=a x(a>0且a≠1)的定义,得; ①中y=(﹣2)x底数﹣2<0,不是指数函数,②中y=是指数函数,③,④都是幂函数,不是指数函数; ⑤y=5x+1不是指数函数;⑥y=x4是幂函数,不是指数函数;⑦y=3x是指数函数;⑧y=﹣2?3x不是指数函数. ⑨满足指数函数的定义,故正确;⑩﹣3<0,不是指数函数,故错误. 2.为了得到函数y=2x﹣3﹣1的图象,只需把函数y=2x上所有点() A.向右平移3个单位长度,再向下平移1个单位长度 B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度 D.向左平移3个单位长度,再向上平移1个单位长度分析:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”. 解:函数图象的平移问题:在x上的变化符合“左加右减”,而在y上的变化符合“上加下减”.把函数y=2x 的图象向右平移3个单位长度得到函数y=2x﹣3的图象,再将所得图象再向下平移1个单位长度,得到函数y=2x﹣3﹣1的图象,故选A 3.若指数函数的图象经过点(2/3,4),求该函数的解析式及f(﹣1/2)的值 分析:设出指数函数的解析式,利用函数图象经过点的坐标求出函数解析式,再计算f(﹣1/2)的值 解:设指数函数y=f(x)=a x(a>0且a≠1),且函数的图象经过点(2/3,4),∴=4,解得a=8; ∴该函数的解析式为y=f(x)=8x,∴f(﹣)=== 4.①若函数y=(3a﹣1)x为指数函数,求a的取值范围 分析:由函数y=(3a﹣1)x为指数函数,知,由此能求出a的取值范围;根据指数函数的定义可得 求解即可 , 解:∵函数y=(3a﹣1)x为指数函数,∴,解得a>,且a,∴a的取值范围为(,)∪(,+∞). ②函数y=(2a2﹣3a+2)a x是指数函数,求a的取值 解:若函数y=(2a2﹣3a+2)a x是指数函数,则解得:a= 5.已知x>0,指数函数y=(a2﹣8)x的值恒大于1,求实数a的取值范围 分析:利用指数函数的性质,可知其底数a2﹣8>1,解之即得实数a的取值范围 解:因为x>0,指数函数y=(a2﹣8)x的值大于1恒成立,∴a2﹣8>1,即a2>9,解得a>3或a<﹣3. ∴实数a的取值范围是(﹣∞,﹣3)∪(3,+∞) 6.已知指数函数f(x)=(a﹣1)x.(1)若f(x)在R上是增函数,求a的取值范围(2)若f(x)是R上的减函数,求a的取值范围 分析:根据指数函数的图象和性质,即可得到答案.欲使得指数函数f(x)=(a﹣1)x是R上的增函数,只须其底数大于1即可,从而求得a的取值范围.欲使得指数函数f(x)=(a﹣1)x是R上的减函数,只须其底数小于1即可,从而求得a的取值范围 解:(1)指数函数f(x)=(a﹣1)x在R上是增函数,∴a﹣1>1,即a>2,故a的取值范围是(2,+∞)(2)指数函数f(x)=(a﹣1)x在R上是减函数,∴0<a﹣1<1,即1<a<2,故a的取值范围是(1,2)7.在同一坐标系作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系 (1)y=2x+1与y=2x+2;(2)y=2x﹣1与y=2x﹣2;(3)y=2x﹣1与y=2x+1. 分析:(1)y=2x+1的图象由函数y=2x的图象向左平移1单位得到;y=2x+2的图象由函数y=2x的图象向左平移2单位得到;(2)y=2x﹣1的图象由函数y=2x的图象向右平移1个单位得到;y=2x﹣2的图象由函数y=2x的图象向右平移

指数函数及其性质

2.1.2 指数函数及其性质 整体设计 教学分析 有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质. 教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫. 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值. 根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持. 三维目标 1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想. 2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力. 3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美. 重点难点 教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 课时安排 3课时 教学过程 第1课时指数函数及其性质(1) 导入新课 思路1.用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢y与漂洗次数x的关系式,它是函数关系式吗?若是,请计算若要使存留的污垢不超过原有的,则至少要漂洗几次?教师引导学生分析,列出关系式y=()x,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫指数函数,引出本节课题. 思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,16,27,49.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1, ,2,9,,先建立平面直角坐标系,再描点,最后连线.点出本节课题. 思路3.在本章的开头,问题(2)中时间t和碳14含量P的对应关系P=[()]t,如果我们用x 表示时间,y表示碳14的含量,则上述关系可表示为y=[()]x,这是我们习惯上的函数形式,像这种自变量在指数的位置上的函数,我们称为指数函数,下面我们给出指数函数的确切概念,从而引出课题. 推进新课 新知探究

知识讲解_指数函数及其性质_基础

指数函数及其性质 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>? ?≤??x x 时,a 恒等于,时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)

① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1,a a a a ?-+=?>≠? 且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断; (2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x . 举一反三: 【变式1】指出下列函数哪些是指数函数? (1)4x y =;(2)4 y x =;(3)4x y =-;(4)(4)x y =-; (5)1 (21)(1)2 x y a a a =-> ≠且;(6)4x y -=.

相关主题
文本预览