当前位置:文档之家› 23第二十三章 加乘原理

23第二十三章 加乘原理

23第二十三章 加乘原理
23第二十三章 加乘原理

第二十三章加乘原理

概念

【加法原理】如果完成一件事有几类方式,在每一类方式中又有不同的方法,那么把每类的方法数相加就得到所有的方法数。

为了完成一件事,有K类方法。第一类方法中有m

1

种不同的做法,第

二类方法中有m

2种不同的做法,……,第k类方法中有m

k

种不同的做法,

则完成这件事共有N=m

1+m

2

+…+m

k

种不同的方法。

【乘法原理】如果完成一件事分为几个步骤,在每一个步骤中又有不同的方法,那么把每步的方法数相乘就得到所有的方法数。

为了完成一件事需要几个步骤,其中,做第一步有m

1

种不同的方法,

做第二步有m

2种不同的方法,……,做第n步有m

n

种不同的方法,那么,

完成这件事一共有N=m

1×m

2

×…×m

n

种不同的方法。

特别提醒:要注意乘法原理与加法原理的区别:乘法原理中,完成某件事情要分成若干个步骤,且一步接一步地去做才能完成。而加法原理中,做某件事情可以有若干类方法,每一类方法中的任何一种具体的做法都可以完成这件事情。我们要熟练掌握加法原理和乘法原理的内容与实质,区别与联系,还要能综合运用这两个原理解决实际问题。

【加乘原理应用】应用加法原理和乘法原理时要注意下面几点:

⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。

⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积。

⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.

加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”。

乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决。我们可以简记为:“乘法分步,步步相关”。

例题

1.计算9+99+999+9999+99999

2.计算199999+19999+1999+199+19

3.计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)

4.计算 9999×2222+3333×3334

5.56×3+56×27+56×96-56×57+56

6.计算98766×98768-98765×98769

7.父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?

8.李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?

9.姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。

10.小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?

11.大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?

12.15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。

13.王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?

14.“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”

15.小宝去给小贝买生日礼物,商店里卖的东西中,有不同的玩具8种,不同的课外书20本,不同的纪念品10种,那么,小宝买一种礼物可以有多少种不同的选法?

16.有不同的语文书6本,数学书4本,英语书3本,科学书2本,从中任取一本,共有多少种取法?

17.阳光小学四年级有3个班,各班分别有男生18人、20人、16人.从中任意选一人当升旗手,有多少种选法?

18.从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?

19.从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?

20.甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?

21.大林和小林共有小人书不超过9本,他们各自有小人书的数目有多少种可能的情况?

22.四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?

23.一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有

________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.

24.把一元钱换成角币,有多少种换法?人民币角币的面值有五角、二角、一角三种.

25.一把硬币全是2分和5分的,这把硬币一共有1元,问这里可能有多少种不同的情况?

26.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?

27.一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购买两种文具,他有多少种不同的选择.

28.袋中有3个红球,4个黄球和5个白球,小明从中任意拿出6个球,他拿出球的情况共有________种可能.(2008年北京“数学解题能力展示”读者评选活动)

29.1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积?

30.1995的数字和是1+9+9+5=24,问:小于2000的四位数中数字和等于26的数共有多少个?

31.2007的数字和是2+0+0+7=9,问:大于2000小于3000的四位数中数字和等于9的数共有多少个?

32.在四位数中,各位数字之和是4的四位数有多少?

33.有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有个.

34.如果一个大于9的整数,其每个数位上的数字都比他右边数位上的数字小,那么我们称它为迎春数.那么,小于2008的迎春数一共有多少个?

35.有些五位数的各位数字均取自1,2,3,4,5,并且任意相邻两位数字(大减小)的差都是1.问这样的五位数共有多少个?

36.A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种?(2005年《小数报》数学邀请赛)

37.一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?

38.甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?

39.如图所示,沿线段从A 到B 有多少条最短路线?

G

F

E

D C B A

40.如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的A 处沿最短的路线走到东北角B 出,由于修路,十字路口C 不能通过,那么共有____种不同走法.

41.如图所示,从A 点到B 点,如果要求经过C 点或D 点的最近路线有多少条?

42.如图1为一幅街道图,从A 出发经过十字路口B ,但不经过C 走到D 的不同的最短路线有条.

43.小王在一年中去少年宫学习56次,如图所示,小王家在P 点,他去少年宫都是走最近的路,且每次去时所走的路线正好互不相同,那么少年宫在________点处.

44.在下图的街道示意图中,有几处街区有积水不能通行,那么从A 到B 的最短路线有多少种?

A

C

A

B 45.在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少条?

B

C

A

46.在下图的街道示意图中,C处因施工不能通行,从A到B的最短路线有多少种?

47.如下表,请读出“我们学习好玩的数学”这9个字,要求你选择的9个字里能连续(即相邻的字在表中也是左右相邻或上下相邻),这里共有多少种完整的“我们学习好玩的数学”的读法.

48.如图,沿着“北京欢迎你”的顺序走(要求只能沿着水平或竖直方向走),

一共有多少种不同的走法?

北京北

北京欢京北

欢迎欢

49.如下表,请读出“我们学习好玩的数学”这9个字,要求你选择的9个字里

能连续(即相邻的字在表中也是左右相邻或上下相邻),这里共有多少种完整

的“我们学习好玩的数学”的读法.

50.在下图中,用水平或者垂直的线段连接相邻的字母,当沿着这些线段行

走是,正好拼出“APPLE”的路线共有多少条?

A

|

A—P—A

| | |

A—P—P—P—A

| | | | |

A—P—P—L—P—P—A

| | | | | | |

A—P—P—L—E—L—P—P—A 51.如图1,用水平线或竖直线连结相邻汉字,沿着这些线读下去,正好可以

读成

“祖国明天更美好”,那么可读成“祖国明天更美好”的路线有条.

52.右图中的“我爱希望杯”有______种不同的读法.

53.如图1所示,科学家“爱因斯坦”的英文名拼写为“Einstein”,按图中箭头所

示方

向有种不同的方法拼出英文单词“Einstein”.

图1

54.图中有10个编好号码的房间,你可以从小号码房间走到相邻的大号码房间,但不能从大号码走到小号码,从1号房间走到10号房间共有多少种不同的走法?

55.国际象棋中“马”的走法如图1所示,位于○位置的“马”只能走到标有×的方格中,类似于中国象棋中的“马走日”.如果“马”在88

的国际象棋棋盘中位

杯杯

杯杯

望望望希

希希爱

我i

于第一行第二列(图2中标有△的位置),要走到第八行第五列(图2中标有@的位置),最短路线有________条.

56.从北京出发有到达东京、莫斯科、巴黎和悉尼的航线,其他城市间的航线如图所示(虚线表示在地球背面的航线),则从北京出发沿航线到达其他所有城市各一次的所有不同路线有多少?

57.一个实心立方体的每个面分成了四部分.如图所示,从顶点P 出发,可找出沿图中相连的线段一步步到达顶点Q 的各种路径.若要求每步沿路径的运动都更加靠近Q ,则从P 到Q 的各种路径的数目为几?

58.一楼梯共10级,规定每步只能跨上一级或两级,要登上第

10

级,共有多少种不同走法?

@图

图1

题@

图2

59.1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法.

60.如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?

答案与解析

1.在涉及所有数字都是9的计算中,常使用凑整法。例如将999化成1000—1去计算。这是小学数学中常用的一种技巧。 9+99+999+9999+99999

=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1) =10+100+1000+10000+100000-5=111110-5=111105

2.此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。不过这里是加1凑整。(如 199+1=200) 199999+19999+1999+199+19

=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5 =200000+20000+2000+200+20-5 =222220-5 =22225

3.题目要求的是从2到1000的偶数之和减去从1到999的奇数之和的差,如果按照常规的运算法则去求解,需要计算两个等差数列之和,比较麻烦。但是观察两个扩号内的对应项,可以发现2-1=4-3=6-5=…1000-999=1,因此可以对算式进行分组运算。

B

A

解:解法一、分组法

(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

=(2-1)+(4-3)+(6-5)+…+(996-995)+(998-997)+(1000-999)

=1+1+1+…+1+1+1(500个1)=500

解法二、等差数列求和

(2+4+6+…+996+998+1000)-(1+3+5+…+995+997+999)

=(2+1000)×500÷2-(1+999)×500÷2

=1002×250-1000×250=(1002-1000)×250=500

4.此题如果直接乘,数字较大,容易出错。如果将9999变为3333×3,规律就出现了。

9999×2222+3333×3334=3333×3×2222+3333×3334

=3333×6666+3333×3334=3333×(6666+3334)=3333×10000=33330000。

5.乘法分配律同样适合于多个乘法算式相加减的情况,在计算加减混合运算时要特别注意,提走公共乘数后乘数前面的符号。同样的,乘法分配率也可以反着用,即将一个乘数凑成一个整数,再补上他们的和或是差。

56×3+56×27+56×96-56×57+56

=56×(32+27+96-57+1) =56×99=56×(100-1) =56×100-56×1=5600-56=5544

6.将乘数进行拆分后可以利用乘法分配律,将98766拆成(98765+1),将98769拆成(98768+1),这样就保证了减号两边都有相同的项。

解:98766×98768-98765×98769

=(98765+1)×98768-98765×(98768+1)

=98765×98768+98768-(98765×98768+98765)

=98765×98768+98768-98765×98768-98765

=98768-98765=3

7.一年前。

8.刘红10岁,李老师28岁。(10+8-8)÷(2-1)=10(岁)。

9.妹妹7岁。姐姐14岁。[27-(3×2)]÷(2+1)=7(岁)。

10.小象10岁,妈妈19岁。(28-1)÷3+1=10(岁)。

11.大熊猫15岁,小熊猫5岁。(28-4×2)÷(3+1)=5(岁)。

12.父亲50岁,儿子20岁。(15+10)÷(7-2)+15=20(岁)

13.王涛 12岁,妈妈34岁。爸爸36岁,奶奶58岁,爷爷 60岁。

提示:爸爸年龄四年前是王涛的4倍,那么现在的年龄是王涛的4倍少12岁。

(200+2+12+12+2)÷(1+5+5+4+4)=12(岁)。

14.把一头牛一天所吃的牧草看作1,那么就有:

(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)

(3)1天新长的草为:(207-162)÷(9-6)=15

(4)牧场上原有的草为:27×6-15×6=72

(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)

所以养21头牛,12天才能把牧场上的草吃尽。

解法二:

1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份)

原有草量:21×8-12×8=72(份)

16头牛可吃:72÷(16-12)=18(天)

2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数

所以最多只能放12头牛。

15.小宝买一种礼物有三类方法:第一类,买玩具,有8种方法;第二类,

买课外书,有20种方法;第三种,买纪念品,有10种方法.根据加法原理,小宝买一种礼物有8+20+10=38种方法.

16.根据加法原理,共有6+4+3+2=15种取法.

17.解决这个问题有3类办法:从一班、二班、三班男生中任选1人,从一

班18名男生中任选1人有18种选法:同理,从二班20名男生中任选1人

有20种选法;从三班16名男生中任意选1人有16种选法;根据加法原理,从四年级3个班中任选一名男生当升旗手的方法有:18201654

++=种.

18.根据第一个数的大小,将和大于10的取法分为9类:

因此,根据加法原理,共有:1+2+3+4+5+4+3+2+1=25种取法使和大于10.

19.两个数和为11的一共有3种取法;两个数和为12的一共有2种取法;两个数和为13的一共有2种取法;两个数和为14的一共有1种取法;

两个数和为15的一共有1种取法;一共有3+2+2+1+1=9种取法.

20.甲厂可以订99、100、101份报纸三种方法.

如果甲厂订99份,乙厂有订100份和101份两种方法,丙厂随之而定.

如果甲厂订100份,乙厂有订99份、100份和101份三种方法,丙厂随之而定.

如果甲厂订101份,乙厂有订99份和100份两种方法,丙厂随之而定.

根据加法原理,一共有2327

++=种订报方法.

21.大林和小林共有9本的话,有10种可能;共有8本的话,有9种可能,……,共有0本的话,有1种可能,所以根据加法原理,一共有

10+9+……+3+2+1=55种可能.

22.设四个学生分别是A,B,C,D,他们做的贺年片分别是a,b,c,d.

先考虑A拿B做的贺年片b的情况(如下表),一共有3种方法.

同样,A拿C或D做的贺年片也有3种方法.

一共有3+3+3=9(种)不同的方法.

23.第一场不管怎么样田忌都必输,田忌只可能在接下来的三场里赢得比赛,若三场全胜,则只有一种出场方法;

若胜两场,则又分为三种情况:

二,三两场胜,此时只能是田忌的一等马赢得齐王的二等马,田忌的二等马赢齐王的三等马,只有这一种情况;

二,四两场胜,此时有三种情况;

三,四两场胜,此时有七种情况;

所以一共有113712

+++=种方法.

24.把一元钱换成角币,有三类分法:①第一类:有五角币2张,只有1种

换法:

②第二类:有五角币1张,则此时二角币可以有0,1,2张,相应的,一角

币有5,3,1张,有3种换法;

③第三类:有五角币0张,则此时二角币可以有0,1,2,3,4,5张,相

应的,一角币有10,8,6,4,2,0张,有6种换法.

所以,根据加法原理,总共的换法有13610

++=种.

25.按5分硬币的个数对硬币情况进行分类:

如果5分硬币有奇数个,那么无论2分硬币有多少个都不能凑成100分.如

表当5分硬币的个数为0~20的偶数时,都有对应个数的2分硬币.所以一

共有11种不同的情况.

26.如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;

如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;

如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部

购买2元饭票,共有22种不同方法;

……

如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全

部购买2元饭票,共有2种方法.

总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差

数列.利用分类计数原理及等差数列求和公式求出所有方法:

26+24+22+…+2=(26+2)×13÷2=182(种).共有182种不同的买法.

27.一共三种文具,要买两种文具.那么就可以分三类了.

第一类:橡皮和圆珠笔 5元5角=55角=11块橡皮(要买两种,所以这个不

考虑)=9块橡皮+1只圆珠笔 =7块橡皮+2只圆珠笔

=5块橡皮+3只圆珠笔

=3块橡皮+4只圆珠笔

=1块橡皮+5只圆珠笔第一类共5种

第二类:橡皮和钢笔 55角=11块橡皮(不做考虑)

=6块橡皮+1只钢笔

=1块橡皮+2只钢笔第二类共2种

第三类:圆珠笔和钢笔 55角=11块橡皮(不做考虑)

=1只钢笔+3只圆珠笔第三类共1种

28.按最少的红球来分类:3红时,黄+白=3,黄可取0,1,2,3共4种.

2红时,黄+白=4,黄可取0,1,2,3,4共5种.

1红时,黄+白=5,黄可取0,1,2,3,4共5种.

0红时,黄+白=6,黄可取0,1,2,3共4种.

共有:4+5+5+4=18(种).

29.按插入乘号的个数进行分类:

⑴若插入一个乘号,4个数字之间有3个空当,选3个空当中的任一空当放

乘号,所以有3种不同的插法,可以得到3个不同的乘积,枚举如下:

?,1 2 34?.

1 2 3 4

?,1 2 3 4

⑵若插入两个乘号,由于必有一个空当不放乘号,所以从3个空档中选2个

空当

插入乘号有3种不同的插法,可以得到3个不同的乘积,枚举如下:

??.

??,1 234

??,1 2 34

12 3 4

⑶若插入三个乘号,则只有1个插法,可以得到l个不同的乘积,枚举如下:

???.

1234

所以,根据加法原理共有3317

++=种不同的乘积.

30.小于2000的四位数千位数字是1,要它数字和为26,只需其余三位数字

和是25.因为十位、个位数字和最多为9+9=18,因此,百位数字至少是7.于是

百位为7时,只有1799,一个;

百位为8时,只有1889,1898,二个;

百位为9时,只有1979,1997,1988,三个;

总计共1+2+3=6个.

31.大于2000小于3000的四位数千位数字是2,要它数字和为9,只需其余

三位数字和是7.因此,百位数字至多是7.于是根据百位数进行分类:

第一类,百位为7时,只有2700一个;

第二类,百位为6时,只有2610,2601两个;

第三类,百位为5时,只有2520,2511,2502三个;

第四类,百位为4时,只有2430,2421,2412,2403四个;

第五类,百位为3时,只有2340,2331,2322,2313,2304五个;

第六类,百位为2时,只有2250,2241,2232,2223,2214、2205六个;

第七类,百位为1时,只有2160,2151,2142,2133,2124、2115、2106

七个;

第八类,百位为0时,只有2070,2061,2052,2043,2034、2025、2016、2007八个;

根据加法原理,总计共1234567836

+++++++=个.

32.以个位数的值为分类标准,可以分成以下几类情况来考虑:

第1类——个位数字是0,满足条件的数共有10个.其中:

⑴十位数字为0,有4000、3100、2200、1300,共4个;

⑵十位数字为1,有3010、2110、1210,共3个;

加乘原理知识点

生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的。那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法。要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。 应用加法原理和乘法原理时要注意下面几点: (1)加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。 (2)乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法等于各步方法数的乘积。 (3)在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练地运用好这两大原理,综合分析,正确作出分类和分步。 加法原理:为了完成一件事,有K类方法。第一类方法中有m1种不同的做法,第二类方法中有m2种不同的做法,……,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+…+mk种不同的方法。 乘法原理:为了完成一件事需要几个步骤,其中,做第一步有m1

种不同的方法,做第二步有m2种不同的方法,

……,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1×m2×…×mn种不同的方法。 特别提醒:要注意乘法原理与加法原理的区别:乘法原理中,完成某件事情要分成若干个步骤,且一步接一步地去做才能完成。而加法原理中,做某件事情可以有若干类方法,每一类方法中的任何一种具体的做法都可以完成这件事情。我们要熟练掌握加法原理和乘法原理的内容与实质,区别与联系,还要能综合运用这两个原理解决实际问题。 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响 .... ....的独立步骤 来完成,这几步是完成这件任务缺一不可的 .....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相乘”. 行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之前的关系。基本公式:路程=速度×时间;速度=路程÷时间;时间=路程÷速度 解题的关键是确定运动过程中的位置和方向。 (1)相遇问题:速度和×相遇时间=路程和 (2)追及问题:速度差×追及时间=路程差

第二十讲 容斥原理讲解学习

第二十讲容斥原理

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题]

[例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈: 其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但: 30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?

第31讲___容斥原理

第31讲容斥原理 例题与方法 例1 在1~100的自然数中,不能被3也不能被5整除的数有多少个? 例2 某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人? 例3 100名学生中,每人至少懂一种外语,其中75人懂法语,83人懂英语,65人懂日语,懂三种语言的有50人,懂两种外语的有多少人? 例4 在1~143这143个自然数中,与143互质的自然数共有多少个? 例5 某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、19人、20人。语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。这个班最多能有多少人? 思考与练习 1.某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。问:两样都不爱好的有多少人? 2.分母是105的最简真分数共有多少个? 3.一个家电维修站有80%工人精通修彩电,有70%的人精通修空调,10%的人两项不熟悉。问:两项都精通的人占白分之几? 4.在1~100的自然数中,既不能被5整除也不能被9整除的数的和是多少? 5.在1~200的自然数中,能被2整除,或能被3整除,或能被5整除的数共有多少个? 6.在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人,最多有多少人? 7.64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。三种杂志都订的有多少人? 8.有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,有83人懂俄语,那么这100位旅客中既懂英语懂俄语的有多少人?

广东省湛江市数学小学奥数系列7-3加乘原理综合应用(二)

广东省湛江市数学小学奥数系列7-3加乘原理综合应用(二) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共41题;共185分) 1. (5分)文艺活动小组有3名男生,4名女生,从男、女生中各选1人做领唱,有多少种选法?(4级) 2. (5分)在下图的街道示意图中,有几处街区有积水不能通行,那么从A到B的最短路线有多少种? 3. (5分)刘佳国庆节到北京旅游,她带了白色和黄色两件上衣,蓝色、黑色和红色3条裤子,她任意拿一件上衣和一条裤子穿上,共有多少种可能? 4. (5分)用数字0,1,2,3,4可以组成多少个小于1000的自然数? 5. (5分)五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号? 6. (5分)在1000到1999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数? 7. (5分)有5个同学,他们每两人互相送一件礼物,一共要送多少件礼物? 8. (5分)如下图,一只蜜蜂从处出发,回到家里处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?

9. (5分) 1、2、3、4四个数字,从小到大排成一行,在这四个数中间,任意插入乘号(最少插一个乘号),可以得到多少个不同的乘积? 10. (5分)有五张卡,分别写有数字1、2、4、5、8.现从中取出3张卡片,并排放在一起,组成一个三位数,问:可以组成多少个不同的偶数? 11. (1分)有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字和等于12.将所有这样的四位数从小到大依次排列,第35个为________. 12. (1分)过年了,妈妈买了7件不同的礼物,要送给亲朋好友的5个孩子每人一件.其中姐姐的儿子小强想从智力拼图和遥控汽车中选一个,朋友的女儿小玉想从学习机和遥控汽车中选一件.那么,妈妈送出这5件礼物共有________种方法. 13. (1分)新来的教学楼管理员拿15把不同的钥匙去开15个教室的站,但是不知哪一把钥匙开哪一个门,他最多试开________ 次,就可将钥匙与教室门锁配对. 14. (1分)先选择策略,再解决问题. 某商店有两种电话机,一种是按键的,一种是转盘的.每种电话机又有红、黄、绿3种颜色.每种颜色的电话机又有方、圆两种形状.一共有________种款式的电话机可供顾客选择? 15. (5分)在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数? 16. (5分)如下图,八面体有12条棱,6个顶点.一只蚂蚁从顶点出发,沿棱爬行,要求恰好经过每一个顶点一次.问共有多少种不同的走法?

第十讲 容斥原理小学五年级奥数

點算的奧秘:容斥原理基本公式 「容斥原理」(Principle of Inclusion and Exclusion)(亦作「排容原理」)是「點算組合學」中的一條重要原理。但凡略為複雜、包含多種限制條件的點算問題,都要用到這條原理。現在首先從一個點算問題說起。 例題1:設某班每名學生都要選修至少一種外語,其中選修英語的學生人數為25,選修法語的學生人數為18,選修德語的學生人數為20,同時選修英語和法語的學生人數為8,同時選修英語和德語的學生人數為13 ,同時選修法語和德語的學生人數為6,而同時選修上述三種外語的學生人數則為3,問該班共有多少名學生? 答1:我們可以把上述問題表達為下圖: 其中紅色、綠色和藍色圓圈分別代表選修英語、法語和德語的學生。根據三個圓圈之間的交叉關係,可把上圖分為七個區域,分別標以A至G七個字母。如果我們用這七個字母分別代表各字母所在區域的學生人數,那麼根據題意,我們有以下七條等式:(1) A+D+E+G = 25;(2) B+D+F+G = 18;(3) C+E+F+G = 20;(4) D+G = 8; (5) E+G = 13;(6) F+G = 6;(7) G = 3。現在我們要求的是A+B+C+D+E+F+G。如何利用以上資料求得答案? 把頭三條等式加起來,我們得到A+B+C+2D+2E+2F+3G = 63。可是這結果包含了多餘的D、E、F和G,必須設法把多餘的部分減去。由於等式(4)-(6)各有一個D、E和F,若從上述結果減去這三條等式,便可以把多餘的D、E和 F減去,得A+B+C+D+E+F = 36。可是這麼一來,本來重覆重現的G卻變被完全減去了,所以最後還得把等式(7)加上去,得最終結果為A+B+C+D+E+F+G = 39,即該班共有39名學生。□ 在以上例題中,給定的資料是三個集合的元素個數以及這些集合之間的交集的元素個數。在該題的解答中,我們交替加上及減去這些給定的資料。如果我們用 S 1、S 2 和S 3 分別代表選修英語、法語和德語學生的集合,那麼我們要求的答案就 是|S 1∪ S 2 ∪ S 3 |,而該題的解答則可以重新表達為

排列组合基本原理和几种类型

课题:___排列组合基本原理和几种类型___ 教学任务 教学流程说明 教学过程设计

资源5、平面上有7个点 共线,则一共可以连成________ 资源6、.8个人排成一排,若甲、乙两人之 排列组合基本原理和几种类型 一、选择: 1、四支足球队争夺冠、亚军,不同的结果有( C ) A.8种B.10种C.12种D.16种 2、.由0,3,5,7,9这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个(B )A.9 B.21 C. 24 D.42

3、五种不同商品在货架上排成一排,其中,A B 两种必须连排,而,C D 两种不能连排,则不同的排法共有(C ) A .12种 B .20种 C .24种 D .48种 4、学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( D ) A .64 B .20 C .18 D .10 5、从9,5,0,1,2,3,7--七个数中,每次选不重复的三个数作为直线方程0ax by c ++=的系数,则倾斜角为钝角的直线共有( C )条. A . 14 B .30 C . 70 D .60 二、填空: 6、4名男生和3名女生排成一行,按下列要求各有多少种排法: (1)男生必须排在一起 4444576p p = ; (2)女生互不相邻 43 451440p p = ; (3)男女生相间 3434144p p = ; (4)女生按指定顺序排列 47840p = . 7、6本不同的书全部送给5人,每人至少1本,有______1800___种不同的送书方法。 8、三名男歌手和两名女歌手联合举行一场演唱会,演出时要求两名女歌手之间恰有一名男歌手,则共有出场方案_____36_____种 9、圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是 ____4 12495C =_____ 10、7人站一排,甲不站排头,也不站排尾,不同的站法种数有 3600 种;甲不站排头,乙不站排尾,不同站法种数有 3720 种 11、远洋轮一根旗杆上用红、蓝、白三面旗帜中,一面,二面或三面表示信号,则最多可组成不同信号有______15________种。 12、从3名男工和7名女工中选派2男3女去做5项不同的工作,若每人各做一项,不同的选派方法有__12600___种。 13、从全班52名学生中选10名学生参加某项活动,如果正、副班长至少有一个在内,那么有_____5547746050__________种选法。 14、4人坐在一排10个座位上,若使每人的两边都有空位,则有____120____种不同的坐法。 15、象棋比赛中,进行单循环比赛其中有2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,比赛开始时参赛者有_____15__人 分析:需要考虑两种情况:第一种,因故退出比赛的两人之间没有进行比赛,则2 2683n C -+=,此方程无正整数解;第二种,因故退出比赛的两人之间进行了比赛,则226183n C -+-=, 解得15n =,所以,比赛开始时参赛者有15人 三、解答: 16、三年级4个班举行班级之间男、女排球单循环赛,问: ① 男女各需比赛多少场?②组织这次比赛共需安排多少场比赛? ① C 24 =6;C 24=6②C 24+ C 2 4=12 答案:

第二十讲容斥基本知识

第二十讲容斥原理(2) [知识提要] 前面讲述过简单的容斥原理,“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。应用于计数集合划分有重叠,无法简单应用加法原理的情况下。 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B两类,那么,具体公式为: A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。 如果被计数的事物有A、B、C三类,那么,具体公式为: A类或B类或C类元素个数= A类元素个数+ B类元素个数+C类元素个数—既是A 类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。 有了以上的容斥原理,一些看起来头绪很多的问题就可以比较方便地得到解决。 [经典例题] [例1]五(1)班有学生42人,参加体育代表队的有30人,参加文艺代表队的25人,并且每个人都至少参加了一个队,这个班两队都参加的有几个人? [分析]我们可以画一个图帮助思考,画两个相交的圆圈:

其中一个表示体育代表队,另一个表示文艺代表队,那么两圆的内部共有42人,而体育代表队的圆中有30人,文艺代表队的图中有25人,但:30+25=55>42,这是因为两队都参加的人被计算了两次,因此55-42=13,即是两队都参加的人数。 [解答]解:(30+25)-42=13(人) 答:两队都参加的有13人。 [评注]可能有很多同学还是刚刚接触容斥原理,所以我们用图形来形象地描绘整个问题。当容斥原理的题目做多了之后,很多基本的题目就不再需要一个一个的画图了。但是,当遇到复杂的问题时,图形还是帮助我们理解和解决问题的一个帮手。 [举一反三] 1、某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人? 2、六年级共有96人,两种刊物每人至少订其中一种,有2 3的人订《少年报》,有1 2 的 人订《数学报》,两种刊物都订的有多少人? 3、森林中住着很多动物,据说狮子大王派仙鹤去统计鸟的种数,蝙蝠跑去说:“我有翅膀,我算鸟类。”仙鹤把蝙蝠统计进去了,结果得出森林中共有80种鸟类,狮子大王又派大象去统计兽类的种数,蝙蝠又跑去说:“我没有羽毛,我应该算兽类。”大家又把蝙蝠算为兽类,统计出森林中共有70种兽类。最后狮子大王问:森林中共有鸟类和兽类多少种?狐狸军师听了仙鹤和大象的统计结果,向狮子大王报告:“森林中鸟类与兽类共计150种。”

加乘原理之综合运用

7-3-1.加乘原理之综合运用 教学目标 1.复习乘法原理和加法原理; 2.培养学生综合运用加法原理和乘法原理的能力. 3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合. 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决. 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决. 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 例题精讲 【例1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友. ⑴如果小明只买一种糖,他有几种选法? ⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?

第一讲:加乘原理初步

四年级(上)奥数 第一讲:加乘原理初步 一:加法原理解题三部曲:二:乘法原理解题三部曲: (1)完成一件事分K类情况;(1)完成一件事分K个必要步骤; (2)类类独立(每一类都能单独完成该事情);(2)步步相关(每步不可单独完成该事)(3)类类相加;(3)步步相乘; 例题1: 商店里有2种巧克力糖:牛奶味、果仁味;有3种水果糖:苹果味、梨味、香蕉味。小C想买一些糖送给她的好朋友: 1、如果小C想买水果糖,有几种糖果可以买呢? 2、要是小C想送给他好朋友一种巧克力加一种水果糖,那有几种方法呢? 例题2: 郑老师和陈老师要从厦门去北京旅游,可以选择坐飞机,当天有4个班次。也可以选择坐火车,当天有7个班次。 1、那么有几种不同的方法到北京? 2、如果郑老师选择坐飞机,陈老师选择坐火车,那么有几种选择方法呢?? 练习1: 如图,从A地去B地有3种方法,从B地去C地有5种走法,那么小丁从A 地经B地去C地一共有多少种不同的走法? C

老师需要从厦门出发,依次到福州,上海游玩,从厦门到福州可以坐大巴,坐火车,坐飞机;从福州到上海可以坐船,坐飞机,坐动车,坐船。那么请问老师从厦门到达南京有几种不同的交通方式呢?【要求:思维导图】 如果老师不仅要经过福州,上海,还要从上海去南京(可以坐大巴,坐飞机,坐动车,自驾),那么从厦门到南京有几种不同的交通方式呢?【要求:思维导图】 例题3:(★) 锋锋去肯德基吃饭,发现店里的菜单上只有3种不同的汉堡、4种不同的饮料和5种不同的小吃。 (1)如果锋锋想从汉堡和饮料中各选1种作为午餐,请问他一共可以搭配出多少种不同的午餐组合? (2)如果肯德基为了吸引客人,决定从汉堡、饮料和小吃中各选1种组成套餐,请问肯德基一共能提供多少种不同的套餐组合? (3)后来肯德基发现像妞妞这样不喜欢小吃的顾客有很多,为了方便这些顾客,他们决定改良套餐结构:新的套餐中每款都包含一种汉堡和一种饮料,但是小吃可选可不选。改良后肯德基一共能提供多少种不同的套餐组合? 练习3: (1)晓晨出门前要选一套衣服。他有5件上衣,3条不同的裤子,那么请问晓晨有()种不同的搭配方法。 (2)小梅在出门前也要选一身衣服,小梅说女生,她既有裤子,也有裙子,她有10件不同的上衣,4条裤子,6条不同的裙子,那么小梅有()种不一样的搭配方法呢?

小学数学《加乘原理综合》练习题

小学数学《加乘原理综合》练习题 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决。 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决。 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和。 ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步。 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”。 乘法原理运用的范围:这件事要分几个彼此互不影响 ....来完成,这几步是完成这件任务 ....的独立步骤 缺一不可的 .....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。 模块一:简单加乘原理综合应用 【例 1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友。 ⑴如果小明只买一种糖,他有几种选法? ⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法? 【巩固】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择? 【例 2】某信号兵用红,黄,蓝,绿四面旗中的三面从上到下挂在旗杆上的三个位置表示信号.每次可挂一面,二面或三面,并且不同的顺序,不同的位置表示不同的信号.一共可以表示出多 少种不同的信号? 【巩固】五面五种颜色的小旗,任意取出一面、两面或三面排成一行表示各种信号,问:共可以表示多少种不同的信号? 【例 3】五种颜色不同的信号旗,各有5面,任意取出三面排成一行,表示一种信号,问:共可以表示多少种不同的信号? 【例 4】奥苏旺大陆上的居民使用的文字非常独特,他们文字的每个单词都由5个字母a、b、c、d、e组成,并且所有的单词都有着如下的规律,⑴字母e不打头,⑵单词中每个字母a后边必 然紧跟着字母b,⑶c和d不会出现在同一个字母之中,那么由四个字母构成的单词一共有

排列组合的基本理论和公式

排列组合的基本理论和公式 排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合. (一)两个基本原理是排列和组合的基础 (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法. (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1 种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. (二)排列和排列数 (1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法. (2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列 当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n! (三)组合和组合数 (1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合. 从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合. (2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个

容斥原理讲解

容斥原理 在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重 复,这种计数的方法称为容斥原理。 例、一次期末考试,某班有15人数学得满分,有12人 语文得满分,并且有4人语、数都是满分,那么这个班 至少有一门得满分的同学有多少人? 结论:(公式一) 如果被计数的事物有A、B两类,那么: (A类和B类)事物个数= A个数+ B个数—既是A类又是B类的事物个数。 A∪B=A+B-A∩B 例题1、某班学生每人家里至少有空调和 电脑两种电器中的一种,已知家中有空调 的有41人,有电脑的有34人,二者都有 的有27人,这个班有学生多少人? 例题2、一个班有45名学生,订阅《小学生数学报》 的有15人,订阅《今日少年报》的有10人, 两种报纸都订阅的有6人。 (1)订阅报纸的总人数是多少? (2)两种报纸都没订阅的有多少人? 例题3、在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个? 例、某校5(1)班,每人在暑假里都参加体育训练队, 其中参加足球队的有25人,参加排球队的有22人, 参加游泳队的有34人,足球、排球都参加的有12人, 足球、游泳都参加的有18人,排球、游泳都参加 的有14人,三项都参加的有8人,这个班有多少人?

那么根据题意,我们有以下七条等式: (1)A+D+E+G =25; (2) B+D+F+G =34; (3) C+E+F+G = 22; (4) D+G =18; (5) E+G =12; (6) F+G =14; (7) G = 8。 现在我们要求的是A+B+C+D+E+F+G=? 把头三条等式加起来,我们得到: A+B+C+2D+2E+2F+3G = 81 结果包含了多余的D、E、F和G,必须设法把多余的部分减去。 由于等式(4) (5) (6)各有一个D、E和F, 减去这三条等式,便可以把多余的D、E和 F减去, 得A+B+C+D+E+F = 37。可是这么一来, 本来重复重现的G却变被完全减去了,所以最后还得把等式(7)加上去, 得最终结果为A+B+C+D+E+F+G = 45,即该班共有45名学生。 结论(公式二) 如果被计数的事物有A、B、C三类,那么,A类和B类和C类事物个数= A类事物个数+ B类事物个数+C类事物个数—既是A类又是B类的事物个数—既是A类又是C类的事物个数—既是B类又是C类的事物个数+既是A类又是B类而且是C类的事物个数。 A∪B∪C=A+B+C-A∩B-A∩C-B∩C+ A∩ B∩C 例题4、设某班每名学生都要选修至少一种外语,其中选修英语的学生人数为25,选修法语的学生人数为18,选修德语的学生人数为20,同时选修英语和法语的学生人数为8,同时选修英语和德语的学生人数为13 ,同时选修法语和德语的学生人数为6,而同时选修上述三种外语的学生人数则为3,问该班共有多少名学生? 例题5、在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水, 4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的没有,只要汽水和雪碧的有1人;三样都要的有1人。问:共有几个小朋友去了冷饮店?

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个) 【例题解析】 1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

小学数学 加乘原理综合应用 完整版教案 例题+练习+答案

加乘原理 在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响 ....来完成,这 ....的独立步骤 几步是完成这件任务缺一不可的 .....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 例题精讲 第一板块、简单加乘原理综合应用 【例题1】商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友. ⑴如果小明只买一种糖,他有几种选法? ⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法? ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种 有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有2+3=5种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有3×2=6种方法. 【巩固】从北京到广州可以选择直达的飞机和火车,也可以选择中途在上海或者武汉作停留,已知北京到上海、武汉和上海、武汉到广州除了有飞机和火车两种交通方式外还有汽车.问,从北京到广州一共有多少种交通方式供选择? 从北京转道上海到广州一共有3×3=9种方法,从北京转道武汉到广州一共也有3×3=9种方法供选择,从北京直接去广州有2种方法,所以一共有9+9+2=20种方法. 【例题2】从智慧学校到王明家有3条路可走,从王明家到张老师家有2条路可走,从智慧学校到张老师家有3条路可走,那么从智慧学校到张老师家共有多少种走法? 根据乘法原理,经过王明家到张老师家的走法一共有3×2=6种方法,从智慧学校直接去张老师

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

7-3-1 加乘原理之综合运用.学生版

1.复习乘法原理和加法原理; 2.培养学生综合运用加法原理和乘法原理的能力. 3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合. 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决. 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决. 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些 糖送给他的小朋友. ⑴如果小明只买一种糖,他有几种选法? ⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法? 【考点】加乘原理之综合运用 【难度】1星 【题型】解答 【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种 有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法. ⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326?=种方法. 【答案】⑴5 ⑵6 【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有 _______________个,其中的真分数有________________个。 教学目标 例题精讲 知识要点 7-3-1.加乘原理之综合运用

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

小学奥数- 加乘原理之数字问题(一)

7-3-2.加乘原理之数字问题(一) 教学目标 1.复习乘法原理和加法原理; 2.培养学生综合运用加法原理和乘法原理的能力. 3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题. 在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合. 知识要点 一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决. 还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决. 二、加乘原理应用 应用加法原理和乘法原理时要注意下面几点: ⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和. ⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积. ⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 乘法原理运用的范围:这件事要分几个彼此互不影响 ... ....的独立步骤 ....来完成,这几步是完成这件任务缺一不 可的 ..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 例题精讲 【例1】由数字1,2,3可以组成多少个没有重复数字的数? 【例2】用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是。 【巩固】由数字0,3,6组成的所有三位数的和是__________。

相关主题
文本预览
相关文档 最新文档