当前位置:文档之家› 粮食存储环境品质监测系统设计

粮食存储环境品质监测系统设计

粮食存储环境品质监测系统设计
粮食存储环境品质监测系统设计

现代检测技术

大型作业

(2014/2015学年第1学期)

课题名称粮食存储环境品质监测系统设计院(系)自动化工程学院

专业

小组成员

时间

指导老师

一.设计背景及意义

“国以民为本,民以食为天”,“兵马未动,粮草先行”,这些都充分说明粮食对国家的重要性。储粮是为了防备战争、保证非农业人口的粮食消费需求、调节国内粮食供求平衡、稳定粮食市场价格、应对重大自然灾害及其它突发性事件而采取的有效措施。因此,粮食的科学储藏具有重要的战略意义和经济意义。

我国是世界上最大的粮食生产、储藏及消费大国,粮食储藏是国家为防备战争、灾荒及其他突发性事件而采取的有效措施,因此粮食的安全储藏是关系到国计民生的战略大事。在粮食的储藏的过程中,由于粮仓温湿度异常而造成粮食变质,带来的经济损失是惊人的。粮食在贮藏过程中,会因为受温度、湿度、氧气、微生物及昆虫等因素的影响,从而造成其质量的不良改变。目前我国许多粮食仓储单位采用测温仪器与人工抄录、管理相结合的传统方法,消耗了大量的人力和财力,并且效果不佳,发霉变质等现象大量存在。因此设计粮食储存品质监测系统,可以提高工作效率,实现粮仓数据的实时监控,是仓储单位亟待解决的重要问题。

粮食在贮藏过程中,会因为受温度、湿度、压力、2

CO、微生物及昆虫等因素的影响,从而造成其质量的不良改变。对粮食贮藏过程中的影响参数进行实时监测、分析,是保障粮食储存品质的有效手段。在此,通过采用CAN总线的数据采集系统对影响粮食贮藏过程中的参数进行实时采集、分析,当发现不良变化时,能够及时发出预警信息,保证粮食储存的安全。

粮食储存品质监测系统是利用现场的前沿机检测粮食储备库中粮食的基本情况,并结合其他粮情信息(如入仓时间、品种、仓型、天气状况等)进行综合分析,然后通过控制电机启停,达到对相应参数的控制。利用监控室的上位机对粮仓进行监控,用户可方便地构造自己需要的数据采集系统,在任何时候把粮仓现场的信息实时地传到控制室,管理人员不需要深入现场,就可以按照所需的要求对粮仓内的情况进行控制,还可以查看历史数据,优化现场作业,提高了生产效率,增强了国家粮食储备安全水平,以获得实时粮仓管理,实现自动化、智能化,为实现我国粮仓管理现代化更近了一步。

二.设计内容

2.1 系统总体结构规划

影响粮库储粮安全性的参数主要有粮堆温度、湿度、压力和2

CO等,及时监测这些参数、准确分析这些参数的变化并及时采取相应处理措施,对于提高仓储质量、减少粮食损耗具有重要意义。这里我们采用分布式监控网络,主要分为上位机和下位机两部分。而上位机按功能分由现场上位监控管理机,远程监控管理机和CAN通讯适配器组成,下位机则由CAN节点和现场参数采集和控制组成。

系统总体结构

CAN总线(Controller Area Network)即控制器局域网,由德国BOSCH公司20世纪80年代推出,是国际上应用最广泛的现场总线之一。CAN 具有下列主要特性:多主站依据优先权进行总线访问;无破坏性的基于优先权的仲裁;借助接收滤波的多地址帧传送;全系统数据相容性;废除了常用的地址编码,而代之以对通信数据块进行编码;可靠的错误处理和检错机制,极强的错误检测能力,发送期间若丢失仲裁或由于出错而遭破坏的帧可自动重发送;暂时错误和永久性故障节点的判别以及故障节点的自动脱离;可以根据用户的需要,改变总线上分机的数量,理论上可连无数个分机;CAN总线的接收数据长度最多为8个字节,因而不存在占用总线时间过长的问题,可以保证通信的实时性。从而确保系统的可靠运行。

考虑到C AN 总线技术具有先进的多主网络结构和通信距离远、成本低、可靠性高、系统容量大、安装方便、维护费用低、性价比高等优点,用在库区较大、仓库分布较分散的大型粮仓的温湿度监控系统是一种合理而新颖的尝试。

数据采集服务器主要完成监测网络系统的参数设置、粮库的状态查询、数据处理、粮情分析和报表打印等功能。同时,该服务器与Internet网络互联,各职能管理部门通过互联网

可以在任何时间、任何地点浏览数据信息,为管理部门的决策提供依据。

智能节点由微控制器、数据采集电路和CAN总线接口电路构成。智能节点不仅要实时监测粮库内各个测试点的温度、湿度、2

CO、压力等信息,并保存和显示结果。还要根据数据采集服务器的要求上传数据。

CAN/USB转换器负责把数据采集服务器的数据,通过USB接口的输出命令转换成CAN总线数据格式后,下传到CAN总线;或者将智能节点通过CAN总线上传的数据转换成USB数据格式后,再送到数据采集服务器。

2.2 系统功能

下位机节点通过一定时间间隔把含有地址,温度,湿度,压力等数据量的报文向CAN总线发送,总线通过自身仲裁确定先把优先级最高的数据放到总线上,然后自动仲裁依次发送低优先级的报文到CAN总线。由于CAN总线的信息存取利用了广播式的存取工作方式,报文可以在任何时候由任何节点发送到空闲的总线上,每个节点的CAN总线接口接收总线上出现的所有信息,通过每个节点的报文滤波和地址匹配,只有上位机能实现所有报文的接收。同时上位机可随时发送信息到CAN总线,只有地址匹配的节点才能收到信息。同时通过这种方式实现粮库的参数反馈控制。

2.2.1 智能节点原理

智能节点温度、湿度、压力、2

CO、水、烟雾、入侵物:控制电路采用单总线数据通信方式。它采用单根信号线完成数据的双向传输,具有节省I/0引脚资源、结构简单、成本低廉、便于总线扩展和维护。温度检测采用单总线数字温度传感器DS18B20,它不仅能直接输出串行数字信号,而且具有微型化、低功耗、高性能,易于微处理器连接和抗干扰能力强等优点。传感器检测到的湿度、压力、2

CO、水、烟雾、入侵物:信号经过调理电路处理后,可以通过单总线A/D转换模块(DS2450)输出的串行数字信号与单总线数字温度传感器DS18B20输出的串行数字信号使用同一线路连接,这样可以大大简化布线的难度。

智能节点控制电路结构图

2.2.2 CAN节点的组成

2.3 元件选型

2.3.1传感器选型

1.温度传感器

低温储藏使粮食的呼吸活动大大减弱,可延缓粮食的陈化,保持粮食的新鲜度并降低储粮自然减量损失。粮食在10℃时储藏,由于呼吸产生的干物质损失要比在20℃和30℃时储藏分别少4倍和15倍。当粮温达到13℃时,害虫的繁殖和活动就基本停止,粮温降至10℃时完全停止,因此低温储藏可以避免粮食遭受虫害而造成的损失。

DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

主要特点:

(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;

(2)在使用中不需要任何外围元件;

(3)可用数据线供电,电压范围:+3.0~+5.5V;

(4)测温范围:-55~+125℃。固有测温分辨率为0.5℃;

(5)通过编程可实现9~12位的数字读数方式;

(6)用户可自设定非易失性的报警上下限值;

(7)多个DS18B20可以并联在惟一的三线上,实现多点测温;

(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;

2.湿度传感器

粮食在通常储藏过程中,含水量一般在12%以下为安全状态,不会产生温度突变,一旦粮仓进水、结露等使粮食的含水量达到20%以上时,由于粮粒受潮,胚芽萌发,新陈代谢加快而产生呼吸热,使局部粮食温度突然升高,必然引起粮食“发烧”和霉变,并可能形成连锁反应,从而造成不可挽回的损失。常温下稻谷储藏的安全水分是13.5~14%。

测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。电容式、电阻式和湿涨式湿敏原件分别是根据其高分子材料吸湿后的介电常数、电阻率和体积随之发生变化而进行湿度测量的。下面介绍HS1100/HS1101湿度传感器及其应用。湿度检测采用HS1101型湿度传感器,HS1101是HUMIREL公司生产的变容式相对湿度传感器,HS1101 湿敏电容是基于独特工艺设计的电容元件。

主要特点:

(1)高精度:±2%RH,极好的输出线性;

(2)宽量程:1—99%RH,宽工作温度-40—100℃;

(3)湿度输出受温度影响小,常温使用不需温度补偿;

(4)响应速度快:5秒;浸水或结露后迅速恢复10秒;

(5)抗静电,防灰尘,有效抵抗各种腐蚀性物质;

(6)长期稳定性可靠性好:0.5%RH/年;

3.压力传感器

粮仓储粮数量是国家粮食数量安全及粮食库存检查的一项重要内容。现有的粮仓储粮数量检测方法主要包括称重法和测量计算法,称重法效率低、工作量大、成本高,难以广泛应用,而测量计算法具有较大的不确定性,因此开发方便"快捷"准确的国家粮食储藏数量监测技术势在必行。针对粮仓压强分布的随机性,利用对粮堆底面和侧面压力的测量从而得出粮仓储量数量的检测方法是可行的。

CPS181是采用陶瓷材料经特殊工艺精制而成的干式陶瓷压阻压力传感器,陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。CPS181干式陶瓷压力传感器被广泛地应用在:过程控制、环境控制、液压和气动设备、伺服阀门和传动、化学制品和化学工业及医用仪表等众多领域。它的尺寸小,直径18mm,量程范围1~600bar,价格低,被广泛的应用在各种测量压力的场合。主要特点:

(1)坚固的陶瓷敏感膜片、卓越的抗腐蚀、抗磨损性能;

(2)高精度、高稳定性;

(3)宽的工作温度范围:-40~135℃;

(4)体积小巧,易封装,尺寸:18×5.25×8.05mm;

(5)量程范围:100kPa~60Mpa;

(6)综合误差(包括:线性、迟滞、重复性):0.2~0.4FS%;

(7)零点输出:0±0.2mV,满量程输出:2.0~4.8mV;

CO传感器

4.2

气体浓度监侧试验研究小麦自身呼吸及昆虫和霉菌活动产生2

CO气体的特点。结果表明安全水分小麦呼吸水平较低,6个月中检侧的2

CO浓度最高值仅为0.06%。昆虫活动可显著提高粮堆中的2

CO气体浓度;另外发现安全水分的粮食自身呼吸作用微弱,产生2

CO气体量很少,不会影响虫霉活动的监测.当粮堆中有昆虫或霉菌进行生长活动时,不仅在生长部位可检测到2

CO气体还可以通过扩散作用,快速向周边传导,CO气体浓度的显著升高,其产生的2

可以在虫霉活动点以外的部位检测到2

CO气体浓度的变化。因此,可以通过在粮堆中设置适当的监测点,准确、灵敏地监测粮堆中的虫霉活动。与粮堆侧温方法相比,当模拟霉变点的温度随着霉菌的活动升高16℃时,水平相距1 m和2m的部位未检侧到温度的显著变化

(p>0.05)。因此,在粮仓中采用侧定2

CO气体的方法监侧虫霉活动可显著提高监侧灵敏度。

红外2

CO进行探测,具有很好CO传感器利用非色散红外(NDIR)原理对空气中存在的2

的选择性,无氧气依赖性,广泛应用于存在可燃性、爆炸性气体的各种场合。

英国Clairair公司高分辨率红外2

CO气

CO传感器Prime2传感器利用 NDIR技术检测2

体浓度。该传感器内部有一个红外光源,一个双元件红外探测器,一个独特的光波导让气体扩散进去,ARM7内核微处理器,输出电压与电源极性无关。内部的集成电路可以实现的功能如驱动光器件,提取检测信号,把信号强度转化为浓度,进行温度补偿和量化输出值等。在催化燃烧配置时,Prime2可以在满足电源供电要求的条件下,不改变电路并完全替代催化燃烧传感器。当Prime2用于恒流催化燃烧电路时,外围元件需要满足电源要求。

主要特点:

(1)工作不受供电极性影响;

(2)线性电压输出或模拟催化燃烧电桥输出;

(3)工作电压范围 3.0V-5.0V;

(4)工作电流典型值为 80mA;

(5)最新的 MEMS 探测器技术;

(6)量程:从0-5000ppm2

CO;

CO到0-10%Vol2

(7)全金属结构,绝缘外壳;

(8)体积小;

(9)灵活的电路访问设置;

(10)用户可以通过硬件连接进行标定;

(11)宽温度工作范围;

(12)快速响应;

5.红外传感器

红外传感器是将红外辐射转换为电能的装置是利用红外线来进行数据处理的一种传感器,有灵敏度高等优点,红外线传感器可以控制驱动装置的运行。利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,反应快等优点。红外测距传感器利用红外信号遇到障碍物距离的不同反射的强度也不同的原理,进行障碍物远近的检测。红外测距传感器具有一对红外信号发射与接收二极管,发射管发射特定频率的红外信号,接收管接收这种频率的红外信号,当红外的检测方向遇到障碍物时,红外信号反射回来被接收管接收,经过处理之后,通过数字传感器接口返回到中央处理器主机,中央处理器即可利用红外的返回信号来识别周围环境的变化。在粮仓里可以用来探测扫描一定范围内的物体活动情况(如鼠害等)。

RE200B采用TO-5封装形式,正常工作直流电压3-10V;信号输出电压最小值2.5V,典型值4V;噪声输出电压最大250mV, 典型值90 mV, 频率响应0.3Hz—3Hz, 增益±10Bb。该传感器探测范围平视角138度,仰视角125度。在传感器前安装菲涅尔透镜可以增大探测范围, 增强传感器工作的稳定性。此传感器工作在7—14um的红外光谱之间。正常工作周围环境温度范围- 300—700, 储存温度-400—800。

6.烟雾传感器

烟雾传感器就是通过监测烟雾的浓度来实现火灾防范的烟雾报警器内部采用离子式烟雾传感离子式烟雾传感器是一种技术先进工作稳定可靠的传感器被广泛运用到各种消防报警系统中性能远优于气敏电阻类的火灾报警器。在粮仓监控系统中用于探测火灾或不明烟尘。

MQ-2气体传感器所使用的气敏材料是在清洁空气中电导率较低的二氧化锡(SnO2)。当传感器所处环境中存在可燃气体时,传感器的电导率随空气中可燃气体浓度的增加而增大。使用简单的电路即可将电导率的变化转换为与该气体浓度相对应的输出信号。 MQ-2气体传感

器对液化气、丙烷、氢气的灵敏度高,对天然气和其它可燃蒸汽的检测也很理想。这种传感器可检测多种可燃性气体,是一款适合多种应用的低成本传感器。

技术指标:

(1)检测气体:可燃气体,烟雾;

(2)检测浓度:300-10000pm(可燃气体);

(3)温度湿度:20℃+/-2℃,65%+/-5%RH;

(4)预热时间:不少于48小时;

7.水浸传感器

水浸传感器是基于液体导电原理,用电极探测是否有水存在,再用传感器转换成干接点输出。通常为常开,如果想要常闭的需要提前预定,预定时间为3天。用来检测渗水或溢水情况。

线式水浸传感器VEC-A-10,线式水浸传感器(漏水检测传感器),专为机房环境、空调管道、粮仓监控系统,地下室水浸检测设计,稳定性好,安装简单轻松。

技术指标:

(1)继电器接点:常开接点;

(2)接点容量:DC30V,1A;

(3)整机功耗:<1VA(DC12V时);

(4)引线长度:<150M;

(5)绝缘电阻:≥2MΩ;

(6)探测灵敏度:<50KΩ;

(7)工作环境:10~50℃,20%~90%无凝露;

(8)工作电压:12VDC;

2.3.2控制器选型

为了设计此系统,我们采用了AT89S51单片机作为控制芯片,在前向通道中是一个非电信号的电量采集过程。它由传感器采集非电信号,从传感器出来经过功率放大过程,使信号放大,再经过模/数转换成为计算机能识别的数字信号,再送入计算机系统的相应端口。

由于AT89S51中只有4k Bytes Flash片内程序存储器和128 bytes的随机存取数据存储器,且数据存储器也不能满足要求,经扩展6264来达到存储器的要求,其结果通过显示器来进行显示输出。

1.AT89S51的内部结构

AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。

此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

主要特征:

(1)8031CPU与MCS-51兼容;

(2)4K字节可编程FLASH存储器;

(3)全静态工作:0Hz-24KHz;

(4)三级程序存储器保密锁定;

(5)128*8位内部RAM;

(6)32条可编程I/O线;

(7)两个16位定时器/计数器;

(8)6个中断源;

(9)可编程串行通道;

(10)低功耗的闲置和掉电模式;

(11)片内振荡器和时钟电路;

2.AT89S51引脚图

2.3.3执行器选型

工作原理由于工艺决定,进仓之前已经将湿度控制在了安全限以内,而且仓是密闭的所以湿度变化不明显,所以湿度的升高可能性极小。测量过程是先温度后湿度与2

CO浓度的顺序。首先对温度进行采样,每个温度点采样5次,计算平均值作为采样值送入显示和存储的相应单元进行存储和传感器的编号和温度的显示,然后判断温度是否超过设定温度,如果温度超标则报警并根据传感器的位置判断启动通风设备或加热设备,如果不超标就继续检测下一个点的温度,直到整个粮仓的温度全部测量完成,然后计算和显示仓的平均温度。然后对各个点的湿度进行测量并且显示,也是按照每个点测量5次然后取平均值的方法计算,来减少干扰因素带来的误差,各个点的湿度测量完成后计算并显示仓的平均湿度。同样与设定的参考值(如2

CO浓度等)比较如果超标就报警,并且起动风扇进行通风处理。然后系统返回再进行温度和湿度的巡回测量和显示。

2.4系统布局

粮仓立柱局部结构图

立柱设计为内外双层结构。外层固定一个直径略大于该立柱的网孔立柱,用于防止粮食进入立柱上的通风口以及避免粮食对立柱转动产生阻力。网孔立柱内侧设置通风槽和温湿度检测节点。该系统采用的立柱式鼓风通道可以精确控制通风立柱的转向,从而实现智能通风。当温度传感器节点检测到粮仓内部某处因粮食霉变或虫蛀等原因使温度异常而需要通风时,监控中心自动远程控制步进电机,从而带动内层立柱转动,使立柱上的通风槽对准温度异常方位进行精确通风。直至温度正常后,自动停止通风。

2.4.1温湿度等传感器布置

传感器节点的选择和布局目前,我国各大粮仓大多采用电缆内部安装热电偶和热电阻等测温元件,测温元件随电缆竖直插入粮食内部,传感器的安装费时费力,测量精度不高。本系统采用的传感器,接线简单,使用方便,适用于各种狭小空间设备数字测温和控制领域。其在与微处理器连接时,可实现微处理器与之的双向通讯,并支持多点组网功能,实现多点测温测湿。因此,可以有效实现本系统功能,方便、准确地读取数据信息。依据国家标准,

传感器,湿度粮温传感器的密度为仓内水平方向不大于5m,垂直方向不大于1.2m。CO

2

传感器均布置在一点。本传感器可均匀分布各点进行测量,为方便操作,温湿度传感器,CO

2

系统在每个立柱的竖直方向均匀布置3层传感器,每层放置3个且各自相差120°的节点,与之连接的传感器引伸至立柱外,直接检测粮食温度参数。水浸传感器是基于液体导电原理,用电极探测是否有水存在,再用传感器转换成干接点输出,水浸传感器安装在水流向的地方,低水位地方。烟雾传感器根据检测的烟雾浓度来判断是否发生火灾,能做到及时监测火灾发生分布安装在房间的顶部。红外线传感器可以对侵入粮仓的老鼠等入侵物进行检测进行检测,分布安装在粮仓底部四周。

2.4.2粮仓压力传感器布置

由于粮食数量巨大,价格低,要求粮堆数量在线检测设备成本低、简单方便。因此,传感器的布置应满足:1)经济性原则,即传感器数量应尽可能少。2)可行性原则,满足通常进粮方式的要求,方便出进粮并避免损坏传感器。基于这些考虑,本项目提出的粮仓底面侧面压力传感器布置模型如图所示。

压力传感器布置模型图

对于如图所示的粮仓底面压力传感器布置,各传感器距侧面墙距离d应相等,以便于侧面摩擦力作用的补偿,扩大粮仓数量检测模型的适用范围;在保证不影响粮仓进粮等操作的情况下,传感器距侧面墙距离d应尽可能大,以尽可能降低其临近侧面摩擦力作用。由于粮仓宽度一般在7 m左右,因此d=2一3.5 m为妥。各个传感器间距应不小于2 m,以便于消除底面压强的随机性。传感器应尽可能远离进粮口,以避免进粮冲击造成传感器损坏,降低传感器输出值的波动。对于图示的粮仓侧面压力传感器布置,压力传感器按2列多行布置,应尽可能远离进粮口,列间距L应大于1.5 m,各行依装粮高度沿上下均匀分布,行间距h 应大于1.5 m,以便于消除底面压强的随机性。底部压力传感器距地面为h/2,顶部压力传感器距粮堆顶部应大于1 m,以保证侧面压强检测的有效性。

2.5模拟量数字量的输入输出

各传感器经过检测模拟信号将其转化为电压信号从而传送给微处理器处理其输入输出如下表:

AI 温度湿度CO2 气体烟雾压力红外线

DO 电压电压电压电压电压电压

2.6系统模块

2.6.1转换器模块

为了把温度、湿度等量检测电路测出的模拟信号转换成数字量送CPU处理,本系统选用了双积分A/D转换器MC14433。它精度高,分辨率达1/1999。由于MC14433只有一路输入,而本系统检测的多路温度与湿度信号输入,故选用多路选择电子开关,可输入多路模拟量。MC14433 A/D 转换器由于双积分方法二次积分时间比较长,所以A/D转换速度慢,但精度可以做得比较高;对周期信号变化的干扰信号积分为零,抗干扰性能也比较好。

目前,国内外双积分A/D转换器集成电路芯片很多,大部分是用于数字测量仪器上。常用的有3.5位双积分A/D装换器MC14433和4.5位双积分A/D转换器ICL7135

MC14433是三位半双积分型的A/D转换器,具有精度高,抗干扰性能好的优点,其缺点是转换速率低,约1—10次/秒。在不要求高速转换的场合,例如,在低速数据采集系统中,被广泛采用。MC14433A/D转换器与国内产品5G14433完全相同,可以互换。MC14433A/D转换器的被转换电压量程为199.9mV或1.999V。转换完的数据以BCD码的形式分四次送出。是转

换速率低,约1—10次/秒。在不要求高速转换的场合,例如,在低速数据采集系统中,被广泛采用。MC14433A/D转换器与国内产品5G14433完全相同,可以互换。MC14433A/D转换器的被转换电压量程为199.9mV或1.999V。转换完的数据以BCD码的形式分四次送出。

Q0---Q3: BCD码输出线。其中Q0为最低位,Q3 为最高位。当DS2、DS3和DS4选通期间,输出三位完整的BCD码数,但在DS1选通期间,输出端Q0-------Q3 除了表示个位的0或1外,还表示了转化值的正负极性和欠量程还是过量程。

Q3 表示1/2位,Q3=“0”对应1,反之对应0。

Q2 表示极性,Q2=“1”为正极性,反之为负极性。

Q0=“1”表示超量程:当Q3=“0”时,表示过量程;当Q3=“1”时,表示欠量程;

2.6.2控制器模块

MCP2515 是 Microchip 公司的一款独立 CAN 控制器,完全支持 CAN V2.0B 技术规范。该器件能发送和接收标准和扩展数据帧以及远程帧。MCP2515 自带的两个验收屏蔽寄存器和六个验收滤波寄存器可以过滤掉不想要的报文,因此减少了主单片机(MCU)的管理负担。MCP2515与MCU的连接是通过业界标准串行外设接口来实现的。MCP2515的操作简单,使用方便,可以简化需要与CAN 总线连接的应用。

MCP2515 的结构框图

MCP2515 该器件主要由三个部分组成:

(1)CAN模块,包括 CAN 协议引擎、验收滤波寄存器、验收屏蔽寄存器、发送和接收缓冲器;

(2)用于配置该器件及其运行的控制逻辑和寄存器;

(3)SPI协议;

单片机通过MCP2515的SPI接口与CAN总线通信,将采集到的数据发送到 MCP2515,进而再发送到CAN总线。对于接收数据,则采用中断方式。一旦中断发生,即将接收的数据自动装载到相应的报文寄存器中。此时还可利用屏蔽滤波寄存器对接收报文的标识符和预先在接收缓冲器初始化时设定的标识符进行有选择的逐位比较,只有标识符匹配的报文才能进入接收缓冲器。从而使下位机以单片机为智能控制器,在粮仓温湿度控制系统中,通过温湿度传感器来采集粮仓内的温度、湿度,经过单片机处理后发出信号,控制风机、加湿器、去湿器的打开和关闭,以达到自动调节的功能。

TJA1050是CAN控制器和物理总线之间的接口。TJA1050可以为总线提供不同的发送性能,为CAN控制器提供不同的接收性能。TJA1050是PCA82C250高速CAN收发器的后继产品。所做的改进为:CANH和CANL理想配合,使电磁辐射减到更低;在有不上电节点时,性能有所改进。TJA1050内部功能框图如下图所示。

上位机管理采用普通 PC 机,通过 USB-CAN 转换模块与现场 CAN 总线相连,主要负责参数设定,数据的处理、保存和显示,以及对下位监控机的管理等功能。USB-CAN 转换模块是系统中的重要部分,它的性能如何将直接影响着本系统的工作品质。

USB-CAN 转换模块带有 USB2.0 接口和 1 路 CAN 接口,USB2.0 接口的最高传输速率可达 12MB/s,并且支持双向数据传输,完全满足 CAN 总线的传输波特率的范围及传输方向要求。可进行收、发双向透传。主要特点:传输协议非常简洁、透明,支持进行二次开发。USB 虚拟串口,可以在各种操作系统下,像使用普通串口一样方便地使用。USB-CAN 转换模块的内部结构框图和实物图分别如下图所示。

USB-CAN 结构图

系统中,单片机通过SPI接口控制 MCP2515,将要发送的数据转化成特定格式(标准和扩展数据帧或远程帧)发送到CAN总线上进而传给上位机,同时从CAN总线上读取上位机发来的数据,通过设置验收屏蔽寄存器和验收滤波寄存器,由选择性地接收上位机发给该智能节点的数据。使用时,只需要对MCP2515 某些寄存器进行设置,光电耦合和高速CAN 收发器对用户是透明的,操作简单。

2.7系统模块连接

2.7.1 MC14433与AT89S51单片机的接口设计

由于MC14433的A/D转换结果是动态分时输出的BCD码,Q0~Q3HE DS1~DS4都不是总线式的。因此,MCS-51单片机只能通过并行I/O接口或扩展I/O接口与其相连。对于8031单片机的应用系统来说,MC14433可以直接和其P1口或扩展I/O口8155/8255相连。下面是MC14433与AT89S51单片机P1口直接相连的硬件接口,接口电路如图3.13所示(J1为网络接口,接单片机P1口)。

MC14433与8031单片机P1口直接相连的硬件接口

2.7.2 报警电路

计算机采集的数据或记过计算机进行数据处理、数字滤波,标度变换之后,与该参数上下限给定值进行比较,如果高于上限值(或低于下限值)则进行报警,否则就作为采样的正常值,进行显示和控制。

本设计采用峰鸣音报警电路。峰鸣音报警接口电路的设计只需购买市售的压电式蜂鸣器,然后通过AT89S51的1根口线经驱动器驱动蜂鸣音发声。压电式蜂鸣器约需10mA的驱动电流,可以使用TTL系列集成电路7406或7407低电平驱动,也可以用一个晶体三极管驱动。在图中,P3.2接晶体管基极输入端。当P3.2输出高电平“1”时,晶体管导通,压电蜂鸣器两端获得约+5V电压而鸣叫;当P3.2输出低电平“0”时,三极管截止,蜂鸣器停止发声。图3.19是一个简单的使用三极管驱动的峰鸣音报警电路:

本设计是为在温湿度测量中对温湿度的上下限超出是的提示报警,接口位于单片机AT89S51的P3.2口,但温湿度过限时,P3.2口被置0,本系统开始工作。

2.7.3 AT89S51与分站,分站与PC连接通信电路

粮仓中测控器与分站单片机之间通信采用CAN总线通信,AT89S51通过CAN总线将各探测器数据上传至分站单片机中。

单片机与分站通信电路

分站与PC 机联机通信电路

2.8框图

2.8.1系统框图(以温湿度为例)

PC

上位机

分站 0#

0#

测控器

粮仓 0#

分站

N #

湿度

温度 风扇

CAM

CAN

N#

测控器

粮仓 N#

湿度

温度 风扇

N# 测控器

粮仓 N#

湿度

温度

风扇

N#

测控器

粮仓 N#

风扇

温度 湿度

CAN

2.8.2粮仓框图

2.8.3系统原理图(以温湿度为例)

分站

单片机

A/D 转换器

多 路 模 拟

开 关

温度传感器

单元

湿度传感器

单元 风扇 单元

数据存储器 扩展

测控器

传感器

三.预期目标

此粮仓存储环境品质测控系统,着眼于通过应用CAN总线通信网络的方式满足减少建设和维护成本的要求,实现全部粮仓的存储环境品质信息采集,通过CAN总线汇总于粮仓控制室,并允许由粮仓控制室发送相关命令完成相应的控制功能。使工作人员在控制室就可以实时掌握各仓室的温度、湿度、2

CO等实时信息,并远程发送通风命令加以干预,以此减少粮仓运营中为维持粮食质量付出的人力和财力,提高粮食存储的效益。对粮食存储环境,本系统信息采集传感器使用的是智能温度传感器DS18B20,变容式相对湿度传感器HS1101,CPS181干式陶瓷压力传感器以及高分辨率红外传感器Prime2,此传感器与以AT89S51芯片为核心的系统共同组成了信息采集的硬件电路。

四.成本分析

序号设备名称数量型号报价

1 温度传感器若干DS18B206-12元

2 湿度传感器若干HS11019元

3 压力传感器若干CPS1811-4元

CO传感器若干NDIR1-3元

4 2

5 红外传感器若干RE200B2-4元

6 烟雾传感器若干MQ-25-10元

7 水浸传感器若干VEC-A-108-10元

8 控制器若干AT89S51单片机5元

9 A/D转换器若干MC144338-10元

10 压力变送器若干TSK-TG10115-20元

11 温湿度变送器若干LTM8701-TR15-20元

12 CAN 控制器若干MCP25155-10元

13 CAN总线6元/米

粮食安全储存守则—【安全资料】.doc

粮食安全储存守则 为了贯彻执行“预防为主、综合防治”的安全储粮方针,强化落实“谁储粮、谁负责,谁坏粮、谁担责”的粮油储存安全责任,规范粮库安全储粮作业与管理行为,确保粮油安全储存,依据《粮油仓储管理办法》《粮油储藏技术规范》《粮油储存安全责任暂行规定》等制度标准规范,制订本守则。 本守则是从事粮油仓储活动必须遵守的行为准则,适用于各类粮油仓储单位。 第一章粮食入仓与质量控制 1.入仓作业准备 粮食入仓前,仓储管理部门要检查仓房,确认仓房无破损、渗漏、返潮等现象,门窗和照明灯等能正常使用;要清洁仓房,有活虫时进行空仓杀虫,采用国家允许使用的杀虫剂进行杀虫处理,制定空仓杀虫方案,经批准后实施,做好隔离工作。空仓杀虫药剂及用量见表1。设备管理部门要清洁和调试设备,确保作业期间输送清理和仓储工艺等设备正常运行。 表1 空仓杀虫药剂及用量 种类食品级惰性粉磷化铝敌敌畏溴氰菊酯 用量3~5 g/m2 3~6 g/m3 0.1~0.2 g/m3 0.1~2 g/m3 注:敌敌畏仅用于空仓和环境杀虫,严禁喷施或落入储粮中;溴氰菊酯应以烟雾剂形式用于空仓杀虫。

2.入仓粮食质量要求 入粮时,按批量扦取样品,检测粮食水分和杂质含量。入仓粮食水分含量宜控制在当地安全水分以下,杂质含量应严格控制在1.0%以内。对于水分、杂质含量超标的粮食,应经过干燥、清理,达到要求后,方可入仓。 入仓粮食应按种类、等级、收获年度分开储藏。已感染害虫的粮食应单独存放,并根据虫粮等级按规定处理。 3.入仓作业要求 入仓作业流程主要包括质检扦样、检斤称重、布设通风地上笼(横向通风无需布设)、卸粮清杂、质量抽检、输送入仓。 入仓过程中,提高机械化进仓水平,采取有效措施减少自动分级(浅圆仓、立筒仓入仓时采用布料器、减压管等)和防止测温电缆移位。做好防虫、防鼠、防雀工作,加强对全流程的除尘防尘工作,保护环境。 入满粮后,应进行平整粮堆粮面、铺设粮面走道板、布置粮情测控系统、通风均温均湿、防虫防霉、密闭压盖等作业。 粮库管理人员要对入仓全过程进行跟踪检查,保证入仓粮食符合储存要求,并在入仓粮食质量控制单上签字确认。 第二章环境巡查与鼠雀防治 4.环境巡查 应检查库区内有无残粮、垃圾、污水、杂草等,并及时清理干净;应安排人员巡更,检查仓顶、仓壁、门窗、挡水墙等是否完好,特别是

玉米储存品质判定规则标准模板

玉米储存品质判定规则 1 范围 本标准规定了玉米储存品质的术语和定义、分类、技术要求、检验方法、检验规则及判定规则。 本标准适用于评价在安全储存水分和正常储存条件下玉米的 储存品质, 指导玉米的储存和适时轮换。 2 规范性引用文件 下列文件对于本文件的应用必不可少。凡是注日期的引用文件, 仅注日期的版本适用于本文件。凡是不注日期的引用文件, 其最新版本适用于本标准。 GB/T 601 化学试剂标准滴定溶液的制备 GB/T 5490- 粮油检验一般规则 GB 5491 粮食、油料检验, 扦样、分样法 GB/T 5492 粮食、油料检验色泽、气味、口味鉴定法。 GB/T 5497 粮食、油料检验水分测定法 GB/T 5507 粮食、油料检验粉类粗细度测定法。 GB/T 6682 分析实验室用水规格和试验方法

GB/T 25069 稻谷储存品质判定规则 GB/T 29405- 粮油检验谷物及制品脂肪酸值测定仪器法 3 术语和定义 GB/T 25069界定的以及下列术语和定义适用于本标准。 3.1 色泽color 玉米在规定条件下的综合颜色和光泽。 3.2 气味odor 玉米在规定条件下的综合气味。 3.3 蒸煮品评cooking quality evaluation 将玉米制成玉米粉, 在规定条件下制作成窝头后, 对其色泽、气味、外观结构、内部性状、滋味等进行品评的试验, 结果用品尝评分值表示。 3.4 品尝评分值tasting assessment value 窝头品评试验所得的色泽、气味、外观结构、内部性状、滋味等各项评分值的总和。

4 储存品质分类 按储存品质的优劣将玉米分为宜存、轻度不宜存和重度不宜存三类。 5 储存品质指标 玉米储存品质指标见表1。 表1 玉米储存品质指标 6 检验方法 6.1 脂肪酸值检验: 按附录A执行。 6.2 色泽、气味评定: 按附录B的B.3执行。 6.3 品尝评分值检验: 按附录B执行

粮油储藏技术方案

粮油储藏技术方案 1 范围 本标准适用于我国所有开展粮油储存业务的企业。 本标准确立了粮油储藏的一般技术原理、基本储藏技术要求和有害生物控制的一般性原则。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 8946 塑料编织袋 GB 17440 粮食加工、储运系统粉尘防爆安全规程 GB50320 粮食平房仓设计规范 GB50322 粮食钢板筒仓设计规范 GB/T 4789.15 食品卫生微生物学检验霉菌和酵母计数 GB/T 4789.2 食品卫生微生物学检验菌落总数测定 GB/T 5520 粮食油料检验种子发芽试验 GB/T 18835谷物冷却机GB/T 20569 稻谷储存品质判定规则 GB/T 20570 玉米储存品质判定规则 GB/T 20571 小麦储存品质判定规则 LS 1206 粮食仓库安全操作规程 LS/T 1201 磷化氢环流熏蒸技术规程 LS/T 1202 储粮机械通风技术规程 LS/T 1203 粮情测控系统 LS/T 1204 谷物冷却机低温储粮技术规程 LS/TXXXX 储粮化学药剂管理和使用规范 3 术语和定义 下列术语和定义适用于本标准

3.1 粮油grain and oils 各种谷物、豆类、油料以及它们的加工产品(如大米、面粉、油脂等)的总称。 3.2 储粮有害生物stored grain pest 危害储藏粮油的脊椎动物(鼠类和鸟类)、无脊椎动物(储粮害虫、螨类)和微生物。 3.3 安全水分safe moisture content 储藏过程所经历的最高粮温条件下,粮堆平衡相对湿度为65%时所对应的的粮食(油料)水分。 3.4 半安全水分semi-safe moisture 储藏过程所经历的最高粮温条件下,粮堆平衡相对湿度在65%~75%时所对应的的粮食(油料)水分。 3.5 危险水分dangerous moisture 储藏过程所经历的最高粮温条件下,粮堆平衡相对湿度始终高于75%所对应的的粮食(油料)水分。 3.6 露天储藏outdoor storage 将粮食储藏于土堤仓,简易棚仓或其它经特殊处理的露天货位上的储粮方式。 3.7 房式仓warehouse 形状如普通房屋和楼房的地上粮仓,如平房仓、拱板仓、楼房仓及高大平房仓等。 3.8

粮油安全储存守则

粮油安全储存守则

附件1 粮油安全储存守则 国家粮食局 2016年10月 — 0 —

为了贯彻执行“预防为主、综合防治”的安全储粮方针,强化落实“谁储粮、谁负责,谁坏粮、谁担责”的粮油储存安全责任,规范粮库安全储粮作业与管理行为,确保粮油安全储存,依据《粮油仓储管理办法》《粮油储藏技术规范》《粮油储存安全责任暂行规定》等制度标准规范,制订本守则。 本守则是从事粮油仓储活动必须遵守的行为准则,适用于各类粮油仓储单位。 — 1 —

第一章粮食入仓与质量控制 1.入仓作业准备 粮食入仓前,仓储管理部门要检查仓房,确认仓房无破损、渗漏、返潮等现象,门窗和照明灯等能正常使用;要清洁仓房,有活虫时进行空仓杀虫,采用国家允许使用的杀虫剂进行杀虫处理,制定空仓杀虫方案,经批准后实施,做好隔离工作。空仓杀虫药剂及用量见表1。 设备管理部门要清洁和调试设备,确保作业期间输送清理和仓储工艺等设备正常运行。 表1 空仓杀虫药剂及用量 2.入仓粮食质量要求 入粮时,按批量扦取样品,检测粮食水分和杂质含量。入仓粮食水分含量宜控制在当地安全水分以下,杂质含量应严格控制在1.0%以内。对于水分、杂质含量超标的粮食,应经过干燥、清理,达到要求后,方可入仓。 入仓粮食应按种类、等级、收获年度分开储藏。已感染害虫的粮食— 2 —

应单独存放,并根据虫粮等级按规定处理。 3.入仓作业要求 入仓作业流程主要包括质检扦样、检斤称重、布设通风地上笼(横向通风无需布设)、卸粮清杂、质量抽检、输送入仓。 入仓过程中,提高机械化进仓水平,采取有效措施减少自动分级(浅圆仓、立筒仓入仓时采用布料器、减压管等)和防止测温电缆移位。做好防虫、防鼠、防雀工作,加强对全流程的除尘防尘工作,保护环境。 入满粮后,应进行平整粮堆粮面、铺设粮面走道板、布置粮情测控系统、通风均温均湿、防虫防霉、密闭压盖等作业。 粮库管理人员要对入仓全过程进行跟踪检查,保证入仓粮食符合储存要求,并在入仓粮食质量控制单上签字确认。 — 3 —

粮油质量检验员国家职业标准

粮油质量检验员国家职业标准 1.职业概况 1.1职业名称: 粮油质量检验员。 1.2职业定义 从事粮油购销、储存、运输、加工等环节质量(含卫生)检验和质量控制等相关工作的人员。 1.3职业等级 本职业共设五个等级,分别为:初级粮油质量检验员(国家职业资格五级)、中级粮油质量检验员(国家职业资格四级)、高级粮油质量检验员(国家职业资格三级)、粮油质量检验师(国家职业资格二级)、高级粮油质量检验师(国家职业资格一级)。 1.4职业环境 室内,常温,部分工作场所有毒有害、粉尘较大。 1.5职业能力特征 具有一定的学习、分析、推理、判断能力;具有一定的计算和表达能力;视觉、味觉、嗅觉、听觉正常;手指、手臂灵活,动作协调。1.6基本文化程度 1.7培训要求初中毕业。 1.7.1 培训期限 全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级不少于300标准学时;中级不少于250标准学时;高级不少

于200标准学时;粮油质量检验师不少于160标准学时;高级粮油质量检验师不少于120标准学时。 1.7.2培训教师 培训初、中、高级粮油质量检验员的教师应具有本职业粮油质量检验师以上职业资格证书或本专业中级以上专业技术职务任职资格;培训粮油质量检验师的教师应具有本职业高级粮油质量检验师职业资格证书或本专业高级专业技术职务任职资格;培训高级粮油质量检验师的教师应具有本职业高级粮油质量检验师职业资格证书2年以上或本专业高级专业技术职务任职资格。 1.7.3培训场地设备 标准教室及具备必要检验仪器设备、实验材料和工具等的实践场所。 1.8鉴定要求 1.8.1适用对象 从事或准备从事本职业的人员。 1.8.2申报条件 ——初级(具备以下条件之一者) (1)经本职业初级正规培训达规定标准学时数,并取得结业证书。(2)在本职业连续见习工作满2年。 (3)本职业学徒期满。 ——中级(具备以下条件之一者) (1)取得本职业初级职业资格证书后,连续从事本职业工作满 3年,经本职业中级正规培训达规定标准学时数,并取得结业证书。

基于单片机的室内环境监测系统设计

基于单片机的室内环境监测系统设计 发表时间:2018-08-10T16:04:40.997Z 来源:《科技中国》2018年6期作者:张策闫永纯于水闫兵张秀君[导读] 摘要:随着科学技术与信息技术的飞速发展与不断完善,超远程的实时监控越来越受到关注,尤其在工业生产以及国防建设中起着至关重要的作用。文章介绍了利用单机片、GSM网来实现对室内环境的远程监控,进一步提升人们的生活质量。 摘要:随着科学技术与信息技术的飞速发展与不断完善,超远程的实时监控越来越受到关注,尤其在工业生产以及国防建设中起着至关重要的作用。文章介绍了利用单机片、GSM网来实现对室内环境的远程监控,进一步提升人们的生活质量。 关键词:单片机室内环境监测系统设计引言:随着人们生活水平的不断提高,人们对生活质量的要求也越来越高,在使用煤取暖的过程中经常发生煤气中毒事件,给国家以及人们造成巨大的损失。因此需要进一步完善监控系统,通过GSM网络为远距离传输数据提供必要的媒介,最大程度地保证人们的生命财产安全。 一、系统工程过程与总体结构 现阶段,我们已经进入到信息化时代,在科学科学技术与信息技术迅猛发展的时代背景下,超远程的实时监控系统悄无声息的出现在人们的视野中,以其较大优势与新颖性为当前家庭起居、生活以及出门带来极大的方便与全新的理念,极大了方便了人们日常生活、工作与学习,进一步优化了生活品质。目前,我国已经建立了相对完善的GSM网络,其主要的业务就是进行语音通信,该网络以其独立的优势被广泛应用。通过GSM网络建立一个环境监测网络,每个家庭都需要一个发射机与一个传感器,并将监测到信息及时反馈到监控中心。系统是以住宅为平台,通过计算机网络技术与无线传感器网络技术等,将家电、娱乐设施以及安防系统等各个方面进行远程控制,从而形成现代智能化环境,既可以消除安全隐患,又有利于环境的改善【1】。 本系统的工作过程就是监测到现场的空气污染情况,并根据环境污染程度将这个情况传输到环境监控中心,通过计算机作出相应的分析与评估,并采取针对性措施进行有效防范。这样就建立了一个以监控室为中心和以若干个基本监测点的监测系统。从本质上将,就是将采集到的数据信息,利用现有的GSM网络,将数据信息以短消息的方式发送出去,接受模块将接收到的信息传输到PC机上,从而完成一系列的监控过程。现阶段,由于受到人们理念、生活方式以及经济发展水平等多方面的限制,本系统还无法在全国家庭中应用。从某种意义上将,GSM网络他代表着一种引领未来的趋势,以全新的理念与生活方式冲击着传统生活方式。其具备的所有功能主要是依赖于智能家居控制系统中的家庭网络控制器,将居住地与外部环境相连接,人们不需要出门就可以知外面的世界,突破了地域与实时间的限制【2】。 二、数据采集部分 GSM网络的段消息业务应用十分广泛,利用GSM手机短信模块,将现场采集到的新信息发送到监控室。本系统总共划分为数据采集模块、单机片控制模块与发射、接受以及监控模块。该部分有传感器、模数转换、单片机系统构成的,其中无线传感器主要依赖与无线传感器网络技术,无线传感器网络技术一门综合性比较强的学科,也就是说在具体应用中,无线传感器网络技术会涉及到多方面专业知识与专业技能,对技术人员与操作人员的专业能力与综合素养具有极高要求。无线传感器网络利用互联网技术,设置多个无线传感器网络实现应用功能的底层核心,无线传感器网络设计在系统集成之前需要经过准确验证,也就是说网络系统在投入使用前需要经过严格的认证与试验,以保证无线传感器网络设计符合相关功能要求与性能要求。从本质上讲传感器的主要作用就是感知CO的存在,根据CO浓度的不同输出不同的信号。此外,验证方法包括形式化验证与协调模拟,无线传感器网络设计过程包括很多环节,通过无线方式来准确采集环境中所需要的参数,接受监控中心发出的命令,从而将这些数据信息传输到处理器,这就是模数转换器的作用,将传感器输送来的模拟信号转换成数字信号,再转换成相应信号发送到单片机进行处理【3】。 三、传输部分 传输部分主要是将已经采集到的数据信息通过无线发射模块发送出去,这个过程需要解决单片机与发射模块之间的电平转换问题,还包括二者的通信问题。 单片机与发射模块之间的电平转换是GSM网络设计的关键环节,在一定程度上直接影响着远程控制模块的安全性与稳定性。不像传统设计,一旦任何系统模块出现问题都不会导致整个设计重新进行,节省了设计成本,提高设计的准确度与科学性。在远程控制设计过程中,在目标系统投入生产之前,对整个系统设计进行模拟分析,以此保证单片机与发射模块之间的电平转换设计的准确性,一旦发现任何错误可以及时修正。实现与监测系统无线联络的对接,比如升温、降温、制冷以及开机等功能。此外,对整个远程监测控制系统设计过程进行实时跟踪与监督,对串口的控制要通过对串行口控制寄存器SCON与功率控制寄存器PCON设置来实现,及时发现潜在错误,并采取相应的防范措施,从而保证远程控制系统整体运行的稳定性与安全性。 四、计算机监控 WA VEOM是我们所采用的发射装置,它内部有个GSM MODEM部件,这个发射模块可以准确地发送和接受所有短信息,主要应用在远程监控领域中。在本系统中主要是利用GSM网络资源,结合单片机控制与PC机控制,实现对室内环境的远程监控。以GSM网络为基础,可以进行全方位与多层次的信息交互操作,进而保持家庭外部信息交流通常,即使不出家门也知道外面发生的事件,并通过获取外部信息来满足自己的多样化需求。我们采用合理的编写程序来与监控界面有效衔接,主要作用就是将接受模块接受到的数据信息通过COM1或者COM2端口接入到计算机中,然后,通过相关程度的运算,将数据信息转换成我们在PC屏幕上所显示出来的画面。这里所说的接受模块数据输出接口与计算机的COM1或者COM2端口都必须要符合云通信的相应协议,也就是说在很大程度上它们不需要接口转换电路就可以实现物力连接【5】。 最后,本系统只需要整个系统输入发生变化的元件,根据元件信息进行精准计算、模拟,可以最大程度地保证结果的准确性与真实性,不像传统的设计程序,需要经过复杂的计算流程。TPS-333感稳传感器可以检测出燃烧程度以及放热造成周围环境的变化,通过简单、快捷的计算与模拟方式,大大提高系统运行效率,节省大量人力与物力,在处理速度上具有绝对优势。而且通过改造的事件,本系统可以对模块之外的信息进行适当的接收与处理,扩展处理范围与对象。这个系统会接受新的事件,并根据事件发生的先后顺序将其插入到相应的位置中。事件队列会不断的被替换、更新以及删除,整个过程是的不断发展变化的,是一个动态模拟过程。同时,门上可以安装门磁传感器,用户不在家外出时,一旦门的开关发生异常现象或者其他变化时,远程控制系统就会发出相应信号,最大程度的保护用户的生命财产安全。

国粮发(2000)143号储存判定规则

国家粮食局、国家质量技术监督局 关于印发《粮油储存品质判定规则》的通知 国粮发[2000]143号 各省、自治区、直辖市、新疆生产建设兵团粮食厅(局)、质量技术监督局,中国储备粮管理总公司、中谷粮油集团公司,各粮检机构: 为加强粮油质检工作,及时掌握粮油储存品质变化情况,准确判定陈化粮油,适时推陈储新,现将修订后的《粮油储存品质判定规则》印发给你们,望认真贯彻执行。原《粮油储存品质判定规则》(试行)(国粮[1991]148号)即行废止。 国家粮食局 国家质量技术监督局 二〇〇〇年七月二十日 《粮油储存品质判定规则》(试行) 1、范围 本规则规定了稻谷、小麦、玉米、大豆、花生油、大豆油、菜籽油、葵花籽油等粮油品种的品质判定定义、储存品质控制指标、储存品质控制指标的使用与判定、试验方法等要求。 本规则适用于中央储备粮油、定购粮油、保护价收购粮油,其它性质的粮油亦可参照执行。 2、引用标准 下面标准被修订后,则引用修订后的新标准。 GB1350—86 稻谷 GB1351—-86 小麦 GB1352—86 大豆 GB1353—86 玉米 GB1354—86 大米 GB1355—86 小麦粉

GB1534—86 花生油 GB1535—86 大豆油 GB1536—86 菜籽油 GB2716—88 食用植物油卫生标准 GB/T 5490—85 粮食、油料及植物油脂检验规则 GB5491—85 粮食、油料检验扦样、分样法 GB/T 5492—85 粮食、油料检验色泽、气味、口味鉴定法 GB/T 5511—85 粮食、油料检验粗蛋白质测定法 GB/T 5516—85 粮食粘度测定法(毛细管法) GB/T 5520—85 粮食、油料检验种子发芽试验 GB/T 5530—85 植物油脂检验酸价测定法 GB/T 5538—1995 油脂过氧化值测定 GB10464—89 葵花籽油 GB/T 14488.1—93 油料种籽含油量测定法 GB/T 14607—93 小麦粉干面筋测定法 GB/T 15682—1995 稻米蒸煮试验品质评定 GB/T 15684—1995 谷物制品脂肪酸值测定法 3、定义 3.1宜存粮油:符合判定为“宜存”规定的,可继续储存的粮油。 3.2不宜存粮油:符合判定为“不宜存”规定的,需要轮换的粮油。 3.3陈化粮油:符合判定为“陈化”规定的,不宜直接作为口粮食用的粮油。 4、储存品质控制指标 4.1稻谷、小麦、玉米和大豆(见表1、表2和表3) 表1 稻谷储存品质控制指标

粮油安全储存守则

附件1 粮油安全储存守则 国家粮食局 2016年10月 WORD ..

WORD ..

为了贯彻执行“预防为主、综合防治”的安全储粮方针,强化落实“谁储粮、谁负责,谁坏粮、谁担责”的粮油储存安全责任,规粮库安全储粮作业与管理行为,确保粮油安全储存,依据《粮油仓储管理办法》《粮油储藏技术规》《粮油储存安全责任暂行规定》等制度标准规,制订本守则。 本守则是从事粮油仓储活动必须遵守的行为准则,适用于各类粮油仓储单位。 WORD ..

第一章粮食入仓与质量控制 1.入仓作业准备 粮食入仓前,仓储管理部门要检查仓房,确认仓房无破损、渗漏、返潮等现象,门窗和照明灯等能正常使用;要清洁仓房,有活虫时进行空仓杀虫,采用国家允许使用的杀虫剂进行杀虫处理,制定空仓杀虫方案,经批准后实施,做好隔离工作。空仓杀虫药剂及用量见表1。 设备管理部门要清洁和调试设备,确保作业期间输送清理和仓储工艺 等设备正常运行。 表1 空仓杀虫药剂及用量 2.入仓粮食质量要求 入粮时,按批量扦取样品,检测粮食水分和杂质含量。入仓粮食水分含量宜控制在当地安全水分以下,杂质含量应严格控制在1.0%以。对于水分、杂质含量超标的粮食,应经过干燥、清理,达到要求后,方可入仓。 入仓粮食应按种类、等级、收获年度分开储藏。已感染害虫的粮食应单独存放,并根据虫粮等级按规定处理。 3.入仓作业要求 入仓作业流程主要包括质检扦样、检斤称重、布设通风地上笼(横向通风无需布设)、卸粮清杂、质量抽检、输送入仓。 入仓过程中,提高机械化进仓水平,采取有效措施减少自动分级(浅圆仓、立筒仓入仓时采用布料器、减压管等)和防止测温电缆移位。做好防虫、防鼠、防雀工作,加强对全流程的除尘防尘工作,保护环境。 入满粮后,应进行平整粮堆粮面、铺设粮面走道板、布置粮情测控系WORD ..

粮油品质分析详解

1.全面客观地研究与评定其品质变化的一门学科。 2.粮油品质检验的性质:①是粮食工作的基础和重要组成部分 ②是开展粮油及其加工品质量管理的主要技术手段 ③是一门专业性很强的技术 ④具有多样性,系统性,灵活性和发展性 ⑤是一项政策性,社会性很强的工作,同时又具有高度统一性 3.粮油品质检验涉及的主要环节有粮油收购,销售,调运,储藏,加工等 4.粮油收购、销售、调运环节检验的目的:①为粮油定等作价提供依据 ②为更好的贯彻优质优价的价格政策提供依据 5.粮油轮入环节检验的目的:①判定粮油是否符合储备粮油的入库质量标准 ②检查粮油的新陈程度以及储存品质指标是否适宜储存 ③为粮食分类储存提供科学依据 6.粮油储存时定期检验:①探索粮食储存指标的变化规律,指导科学储粮 ②为“推陈储新适时轮换”提供科学依据 不定期检验:探查局部粮情异常的原因。 7.粮油轮出时检验的目的:①检测粮油的综合品质 ②对储存期间曾经使用的熏蒸剂进行残留检测,看其是否符合卫 生标准,是否能投放市场 8.粮食:以收货成熟果实为目的,经去壳,碾磨等加工程序而成为人类基本粮食的一些作物。 9.粮食根据领域和作用对象的不同分为:原粮、成品粮、混合粮、贸易粮;根据化学成分的含量及用途分为:谷类、豆类、油料、薯类 10.稻谷的分类:按品种分为籼稻,粳稻;按生长期分为早稻、中稻、晚稻;按淀粉性质分为粘稻和糯稻。国家标准按其收获季节粒形,粒质分为: ⑴早籼稻:生长期较短,收获期较早,米粒腹白较大,角质部分较少 ⑵晚籼稻:生长期较长,收获期较晚,米粒腹白较小或无 ⑶籼糯稻:糙米呈长椭圆形或细长形,米粒乳白色,不透明,粘性大 ⑷粳糯稻:椭圆形,米粒乳白色,不透明,粘性大 ⑸粳稻谷:长椭圆形,粘性较大胀性较小 11.小麦的分类:按播种期分为春小麦和冬小麦;按皮色分为红皮麦和白皮麦;按硬度指数分为硬质小麦和软质小麦(不低于60为硬质,不高于45为软质)。国标按皮色硬度指数分为:⑴硬质白小麦:种皮为白色或黄色的麦粒不低于90%,硬度指数不低于60 ⑵软质白小麦:. 不高于45 ⑶硬质红小麦:种皮为深红色或红褐色的麦粒不低于90%,硬度指数不低于60 ⑷软质红小麦:不高于45 ⑸混合小麦:不符合上述规定的小麦 12.玉米的分类:按粒色分为黄玉米和白玉米;按生育期长短分为早熟,中熟和晚熟;按用途分为食用,饲用和食饲兼用。国标按种皮颜色分为: ⑴黄玉米:种皮为黄色,或略带红色的籽粒不低于95%的玉米 ⑵白玉米:种皮为白色或略带淡黄色或粉红色的籽粒不低于95%的玉米 ⑶混合玉米:不符合上述要求的玉米。 内部结构中,依据不同类型的多糖和不同性质的淀粉比例分为硬质型、马齿型、半马齿型、糯质型、爆裂型、粉质型、甜质型和有稃型。 13.大豆的分类:按籽粒大小分为大粒,中粒和小粒;国标按大豆的皮色分为 ⑴黄大豆:种皮为黄色,淡黄色,脐为黄褐,淡褐或深褐的籽粒不低于95%

智能家居环境监测系统设计与实现

智能家居环境监测系统设计与实现 智能家居是指在智能化、自动化、信息化的基础上利用传感器网络等进行数据传输,实现家居电器的智能控制,随着4G网络的快速发展,智能家居的及时出现为人们享受生活提供了一个更好的选择。 一、智能家居环境监测系统总体设计 基于ZigBee无线通信技术构建的室内环境监测系统主要实现室内温度、氧气、一氧化碳、二氧化硫、湿度、甲烷和二氧化碳含量等家居环境的检测,其次是监测生活用水、用电和用气的安全性和用量,三是监测室内各种生活家电的状态等。系统设计中,基于ZigBee的传感器节点将室内环境信息发送到无线传感器网络的汇聚节点,通过ARM微处理器实现嵌入式编程,然手通过ARM微处理器和ZigBee汇聚节点实现有效的网络串行通信。通过该系统,采集室内环境信息、输入操作命令、输出操作结果、集中控制室内环境、远程控制家用电器、联动控制室内安防系统等功能。 二、智能家居环境监测系统详细设计 2.1室内环境信息采集功能 通过部署在室内的传感器节点,实现无线传感器网络的室内环境信息采集,以便能够将室内温度、湿度、氧气、二氧化碳、一氧化碳、二氧化硫、甲烷及生活用水和生活电气等相关信息传递到系统中。信息采集和感知是室内环境系统最基本的功能,需要将传感器节点进行良好的部署和优化,以便在最小能量耗费下实现节点的全方位覆盖。 2.2 室内环境信息传输功能 传感器节点采集相关的网络信息后,通过4G网络传输到ZigBee汇聚节点,汇聚节点将多个传感器节点信息传输到室内监测系统的服务器,以便服务器进行处理。信息传输过程中,为了实现高效数据传输和分发,需要将数据进行压缩和存储,实现传感器网络的聚簇作用,同时为了降低传感器网络的通信开销、平衡节点间负载,需要对传感器网络节点和传输节点进行设计。 2.3 室内环境信息处理功能 数据传输到服务器后,环境监测装置负责处理采集到的数据信息,发现相关的信息超过用户设置的预警值,则传感器检测装置通过4G通信网络以短信或数据通信的方式通知用户,同时将收集的信息存储到服务器数据库中。逻辑业务处理将数据统计分析和预测结果发送到相关界面,以便用户查看和分析。 三、Zigbee无线传感网络系统硬件设计

粮油储存品质判定规则

粮油储存品质判定规则 1、范围 本规则规定了稻谷、小麦、玉米、大豆、花生油、大豆油、菜籽油、葵花籽油等粮油品种的品质判定定义、储存品质控制指标、储存品质控制指标的使用与判定、试验方法等要求。 本规则适用于中央储备粮油、定购粮油、保护价收购粮油,其它性质的粮油亦可参照执行。 2、引用标准 下面标准被修订后,则引用修订后的新标准。 GB1350—86 稻谷 GB1351—-86 小麦 GB1352—86 大豆 GB1353—86 玉米 GB1354—86 大米 GB1355—86 小麦粉 GB1534—86 花生油 GB1535—86 大豆油 GB1536—-86 菜籽油 GB2716—88 食用植物油卫生标准 GB/T 5490—-85 粮食、油料及植物油脂检验规则 GB5491—85 粮食、油料检验扦样、分样法 GB/T 5492—-85 粮食、油料检验色泽、气味、口味鉴定法 GB/T 5511—85 粮食、油料检验粗蛋白质测定法 GB/T 5516—85 粮食粘度测定法(毛细管法) GB/T 5520—85 粮食、油料检验种子发芽试验 GB/T 5530—85 植物油脂检验酸价测定法

GB/T 5538—1995 油脂过氧化值测定 GB10464—89 葵花籽油 GB/T 14488.1—93 油料种籽含油量测定法 GB/T 14607—93 小麦粉干面筋测定法 GB/T 15682—1995 稻米蒸煮试验品质评定 GB/T 15684—1995 谷物制品脂肪酸值测定法 3、定义 3.1宜存粮油:符合判定为“宜存”规定的,可继续储存的粮油。 3.2不宜存粮油:符合判定为“不宜存”规定的,需要轮换的粮油。 3.3陈化粮油:符合判定为“陈化”规定的,不宜直接作为口粮食用的粮油。 4、储存品质控制指标 4.1稻谷、小麦、玉米和大豆(见表1、表2和表3) 表1 稻谷储存品质控制指标

粮油质量检验员竞赛试题汇编

粮油质量检验员试题 注意事项 1、比赛时间:120分钟。 2、请按要求在试题及答题卡的密封线内填写您的考号。 3、本试题题型为不定项选择题,每题有1~5个正确选项,多选、少选均不得分,请在答题卡的相应位置写上您的答案,在其它位置书写答案不得分。 4、不得在试题和答题卡上做任何标记,否则按舞弊处理。 5、本试卷共100道试题,每题1分,共100分。 试题 1. 对标准描述不正确的是()。 A、检验方法标准大部分是推荐性标准 B、GB 1351—2008《小麦》为强制性标准 C、检验时应优先采用国际标准 D、标准附录一般分为规范性附录或资料性附录 E、销售大米包装上标明执行企业标准的,监督检验判定时应按该企业标准进行 2. 选择和制定扦样方案必须考虑()。 A、扦样过程的规范性 B、检验的目的 C、样品的代表性 D、测定方法的性质 E、整批产品的性质 3. 精密度的大小不用()表示。 A、绝对误差 B、相对误差 C、标准偏差 D、相对平均偏差 E、变异系数 4. 将1000 g 12.2%的净小麦样品调节到入磨水分为1 5.0%,需加水量是()。 A、20.0 mL B、23.5 mL C、29.4 mL D、30.2 mL E、32.9 mL 5粮食与油脂扦样时,造成所扦取样品不具有代表性的原因为()。 A、扦样器选用不当 B、粮食籽粒的成熟度不同 C、粮食运输和入库过程的自动分级 D、检验单元存在着不均匀性 E、油脂样品杂质沉降、水分分离 6.分光光度法定量分析时,影响测定结果的因素有()。 A、被测溶液的浓度太高 B、样品溶液所用溶剂不同 C、样品溶液的pH值不同 D、溶液的浑浊程度

远程手机APP综合监控系统解决设计方案

机房远程APP综合监控系统主要是对机房设备(如供配电系统、UPS电源、防雷器、空调、消防系统、保安门禁系统等)的运行状态、温湿度、烟雾、振动、红外、水浸、供电的电压、电流、频率、配电系统的开关状态、测漏系统、环境状态等进行实时监控并记录历史数据机房监控(机房动环系统)APP软件是怎样的,机房监控,机房动环系统 一、系统概述 机房远程APP综合监控系统主要是对机房设备(如供配电系统、UPS电源、防雷器、空调、消防系统、保安门禁系统等)的运行状态、温湿度、烟雾、振动、红外、水浸、供电的电压、电流、频率、配电系统的开关状态、测漏系统、环境状态等进行实时监控并记录历史数据,同时将机房设备的工作状态的进行实时的视频监控,实现对机房远程监控与管理功能,通过手机APP可对上述全部监控对象进行可靠、准确的监控与控制。使机房无线远程监控达到无人或少人值守,为机房高效的管理和安全运营提供有力的保证。 机房远程APP综合监控系统支持市面全系列安卓手机,手机终端可以通过4G/3G/GPRS/WIFI 远程进行监控与控制,是目前无人值守管理人员最不可以缺少的系统组成部分之一,从而有效提高工作效率,保证机房系统运作的安全性与稳定性。 二、系统设计原则 系统设计坚持“技术先进、使用方便、经济合理、超前考虑”的原则,系统具有先进性、实用性、规范性、可靠性、开放性,同时为了保证整个系统稳定可靠,具备良好的整体升级、扩展能力和方便维护,符合机房间远程APP综合管理控制的需要,系统设备选型在符合系统功能要求的前提下,综合的考虑了性能指标、规格统一性及性能价格比。

可靠性 保证系统的高可靠性。即不会出现因为某一个设备发生故障而造成整个监控系统无法使用的现象。 系统的接入不会影响现有通信设备和网络的正常工作。 系统将正确反映监控内容的实际情况。 系统的运行和平均故障修复时间完全符合设计要求。 实时性 保证系统能实时的反映通信设备运行情况,一到那出现异常情况是能够及时报警。 安全性 通过安全隔离、信息加密等技术保证系统安全。 实用性 系统全面分析现有条件与未来需求,充分考虑当前功能要求与整体人员技术素质,力求实现系统建设与使用的同步,使集成开发的系统充分满足统计局的需求,并且易于操作、维护。 经济性

粮油安全储存守则

附件1 粮油安全储存守则

国家粮食局 2016年10月 为了贯彻执行“预防为主、综合防治”的安全储粮方针,强化落实“谁储粮、谁负责,谁坏粮、谁担责”的粮油储存安全责任,规范粮库安全储粮作业与管理行为,确保粮油安全储存,依据《粮油仓储管理办法》《粮油储藏技术规范》《粮油储存安全责任暂行规定》等制度标准规范,制订本守则。 本守则是从事粮油仓储活动必须遵守的行为准则,适用于各类粮油仓储单位。 第一章粮食入仓与质量控制

1.入仓作业准备 粮食入仓前,仓储管理部门要检查仓房,确认仓房无破损、渗漏、返潮等现象,门窗和照明灯等能正常使用;要清洁仓房,有活虫时进行空仓杀虫,采用国家允许使用的杀虫剂进行杀虫处理,制定空仓杀虫方案,经批准后实施,做好隔离工作。空仓杀虫药剂及用量见表1。设备管理部门要清洁和调试设备,确保作业期间输送清理和仓储工艺等设备正常运行。 表1 空仓杀虫药剂及用量 2.入仓粮食质量要求 入粮时,按批量扦取样品,检测粮食水分和杂质含量。入仓粮食水分含量宜控制在当地安全水分以下,杂质含量应严格控制在1.0%以内。对于水分、杂质含量超标的粮食,应经过干燥、清理,达到要求后,方可入仓。 入仓粮食应按种类、等级、收获年度分开储藏。已感染害虫的粮食应单独存放,并根据虫粮等级按规定处理。 3.入仓作业要求 入仓作业流程主要包括质检扦样、检斤称重、布设通风地上笼(横向通风无需布设)、卸粮清杂、质量抽检、输送入仓。 入仓过程中,提高机械化进仓水平,采取有效措施减少自动分级(浅

圆仓、立筒仓入仓时采用布料器、减压管等)和防止测温电缆移位。做好防虫、防鼠、防雀工作,加强对全流程的除尘防尘工作,保护环境。 入满粮后,应进行平整粮堆粮面、铺设粮面走道板、布置粮情测控系统、通风均温均湿、防虫防霉、密闭压盖等作业。 粮库管理人员要对入仓全过程进行跟踪检查,保证入仓粮食符合储存要求,并在入仓粮食质量控制单上签字确认。 第二章环境巡查与鼠雀防治 4.环境巡查 应检查库区内有无残粮、垃圾、污水、杂草等,并及时清理干净;应安排人员巡更,检查仓顶、仓壁、门窗、挡水墙等是否完好,特别是在大风、雨雪等恶劣条件下,及时检查仓房设施、通风设备、熏蒸器具、气调系统、挡鼠板、防雀防虫网等,确保各项设施性状完好、使用正常。 5.防鼠措施 清洁并保持库区环境卫生;硬化仓库四周地坪,封堵鼠洞;密实仓库(囤基)地坪、墙角、檐口孔洞缝隙;在仓门处安装防鼠板。

初级粮油质量检验员教学教材

第二部分初级粮油质量检验员 一、选择题 1、按照用途分类,粮油样品可分为供检样品、(B)、标准样品和标本样品四类。 A、原始样品 B、保留样品 C、平均样品 D、试验样品 2、扦样时以同种类、同批次、同等级、同货位、同车船(舱)为一个检验批。一个检验批的代表数量,普通仓房扦样中、小粒粮食和油料一般不超过(C)吨。 A、50 B、100 C、200 D、250 3、扦样检验是通过对(A)样品的检验来达到检验整批产品(总体)的目的。 A、代表性 B、平均 C、实验 D、分析 4、下列粮食样品可以采用四分法分样的是(C)。 A、大豆 B、油菜籽 C、小麦 D、豌豆 5、下列粮食样品不适合用分样器分样的是(A)。 A、玉米 B、油菜籽 C、小麦 D、无芒稻谷 6、分样器的使用不正确的是(D )。 A、应用与分样器进料口宽度相等的铁铲进料 B、缩分后的物料可进一步破碎缩分 C、利用分样器缩分物料比四分法速度快 D、物料经分样器分样后,质量和组分含量都会减小 7、下列玻璃器具中可在烘箱内烘烤的是( D )。 A、比色管B、容量瓶C、移液管D、碘量瓶 8、下列玻璃仪器中不属于量器类的为( B ) A、容量瓶 B、称量瓶 C、吸量管 D、移液管 9、十分之一天平的分度值为( A)。 A、 0.1 g B、 0.01 g C、0.001 g D、 1.0 g 10、定量分析天平称取试样常用的方法有直接称量法、(A )、指定质量称样法。 A、减量称量法 B、间接称量法 C、三次称量法 D、多次称量法 11、使用分析天平时,加减砝码和取放物体必须休止天平,这是为了( B )。 A、防止天平盘的摆动 B、减少玛瑙刀口的磨损 C、增加天平的稳定性 D、加快称量速度 12、天平的零点相差较小时,可调节(B )。

推荐-ARM11的嵌入式远程无线环境监测系统的设计 精品

毕业(设计) 题目:基于ARM11的嵌入式远程无线环境监测系统的设计

基于ARM11的嵌入式远程无线环境监测系统的设计 摘要:温湿度采集传感技术和GPRS无线传输技术应用广泛,已经应用到了工业,农业等各个领域。随着我国经济的发展,环境问题日益突出,环境保护应以预防为主治理为辅,我们应把计算机技术与环境保护相结合,根据环境监测数据提出相应的治理方案。本系统使用分为监测主机和监测从机,主机使用ARM11处理器和Linux系统,从机使用Cortex-M3核的微控制器。从机采集数据后通过GPRS 回传到主机进行显示。 主机是一台基于S3C6410处理器的单板,除处理器外还有内存、FLASH以及网卡芯片,主机运行Linux操作系统,使用Qt Creator编写程序,然后使用交叉编译工具arm-linux-gcc编译成ARM版本的可执行文件,然后拷贝到单板上运行,主机的数据存储使用的是轻量级数据库SQLITE,可供查看以往的记录信息,主机使用以太网接收从机传来的温湿度信息。从机是以LPC1768微控制器为主控的专用温湿度采集系统,传感器是DHT22,DHT22是一款集成采集温度度功能于一体的传感器,传感器采集完温湿度后通过GPRS通道传给上位机,GPRS 芯片使用的是SIM900,这是一款工业级的手机模块芯片。 本文首先给出了设计的原理和设计思路,然后根据软硬件分章介绍各自的设计原理以及实现过程,从而设计一个高稳定性的环境监测系统,实现环境温湿度的在线实时监测。 关键字:微控制器;微处理器;GPRS;Linux;ARM11;ARM Cortex-M3

Design of Embeded Wireless and Remote Environment Moni toring System Based on ARM11 Abstract: Temperature and humidity sensor technology capture a wide range of technology applications, and so does GPRS wireless transmission. The accordingly technologies have been applied to various fields of industry, agriculture and so on. As China's economic development, environmental issues have bee increasingly prominent, environmental governance should be based on prevention supplement, we should bine puter technology and environmental protection, propose appropriate governance program based on environmental monitoring data. The system is divided into monitoring the use and monitoring from the host machine, the host uses ARM11 processor and Linux systems, the slave using Cortex-M3 microcontroller core. Data collected from the machine back to the host via GPRS display. Host-based S3C6410 processor is a single-board, in addition to the processor but also have memory, FLASH and chip card, the host uses the Linux operating system, using Qt Creator programming on Linux systems, and then use cross-pilation tools piled into ARM version executable file, then copy it to run a single board, the master data store using a lightweight database SQLITE, available for viewing previous record information, the host uses Ethernet receive information from the machine temperature and humidity ing. Slave is based on the special temperature and humidity acquisition system LPC1768 microcontroller, sensors using DHT22, DHT22 is an integrated collection of functions in one degree of temperature sensors, temperature and humidity after the pletion of the acquisition sensor to the host puter via GPRS channel, GPRS chip using SIM900, which is an industrial-grade mobile phone module chip. This paper first gives the design principles and design ideas, and then present their design and implementation process in accordance with the principles of the hardware and software sub-chapter to design a high stability of the environmental monitoring system, online real-time monitoring of temperature and humidity. Keywords:Microcontroller;Microprocessor;GPRS;Linux;ARM11;ARM Cortex-M3

相关主题
文本预览
相关文档 最新文档