当前位置:文档之家› 多柔性体系统振动问题分析研究

多柔性体系统振动问题分析研究

多柔性体系统振动问题分析研究
多柔性体系统振动问题分析研究

FXLMS算法用于压电柔性结构多通道振动控制_朱晓锦

FXL M S算法用于压电柔性结构多通道振动控制 朱晓锦, 高志远, 黄全振, 邵 勇 (上海大学机电工程与自动化学院 上海,200072) 摘要 以模拟太空帆板的压电机敏柔性结构为实验模型,针对结构振动响应主动控制技术需求,着重分析了多通道自适应滤波前馈控制方法及其FX LM S算法实现,以及受控通道模型参数辨识策略,并给出了详细的控制器设计结构图。针对实验模型对象设计、结构模态特性分析、压电元件优化配置、实验平台开发构建、相关软硬件测控环境、实验过程描述与结果分析验证,给出了研究思路与方法过程分析;进行了结构振动响应多通道主动控制实验并取得了良好的控制效果。结果表明,该控制器结构设计与自适应算法有效,为航天柔性结构振动响应分布式多通道控制提供了方法探索思路。 关键词 振动主动控制 自适应滤波控制 压电机敏结构 多通道FX LM S算法 实验模型与平台 中图分类号 T B535.1 T P273.2 引 言 伴随航天事业的不断发展,大型柔性结构在航天器上构成越来越多,由此带来的结构振动问题也愈加严重,如航天器太阳能帆板结构,在轨运行期间必须保证很高的运行精度。由于这类结构具有低刚度小阻尼、固有频率较低和低频模态密集的特点,同时太空环境又无外阻,因此极易受到扰动影响而发生振动。常规技术方法难以达到控制要求,由此机敏结构的研究成为解决上述问题的重要方向[1-2]。 C ra w ley[3]最早分析了梁与压电片之间的作用情况,开辟了以分布式压电陶瓷作为驱动器的结构振动主动控制研究方向,此后新的研究成果不断出现[4-7]。就控制方法与控制律设计而言,几乎涉及到现代控制理论的所有分支,诸如极点配置、最优控制、自适应控制、鲁棒控制、模糊控制、学习控制与智能控制等[8],由于自适应控制对系统参数变化具有较好的适应性,从而在研究进程中得到广泛采用[9]。 当前,自适应滤波前馈控制方法在机敏结构振动主动控制研究中获得积极关注[10],尤其用滤波-X 最小均方(filtered-X least m ean square,简称FXLM S)算法进行控制器设计,具有控制修正速率高、对非平稳响应适应能力强,并能够较快跟踪结构参数及外扰响应变化的特性,不足之处在于需要预知与外激扰信号相关的参考信号,同时多通道控制器结构设计也相对复杂。本文在简要描述压电元件工作机理的基础上,基于FXLM S算法过程,着重分析了多通道自适应滤波前馈控制方法,以及受控通道模型参数辨识策略,并给出详细的控制器设计结构图。在此基础上进行实验模型对象设计和实验环境开发,采用在线辨识方法获得实验结构受控通道模型参数,进而实现压电柔性结构振动响应的多通道自适应控制。实验结果表明了控制器结构与自适应算法的有效性和可行性,且具有快速收敛以及较低阶模型就能满足控制性能要求的优势。 1 压电元件本构方程 压电材料力学和电学行为关系,可以采用压电方程进行描述,取应力e和电场强度E为自变量,则压电方程可以表示为 Xλ=c Eλu e u+d jλE j λ,u=1,2,…,6 D i=d iu e u+_e ij E j i,j=1,2,3(1)其中:c Eλu为电场恒定时的弹性柔顺系数;d jλ为压电应变常数;_e ij为应力恒定时的介电常数。 一般在压电机敏结构振动控制中,使用的压电应变常数为d31,即沿压电驱动器极化轴3方向施加电场,通过d31的耦合在垂直于极化方向1轴,即元件长度l的方向上激发横向振动;具体驱动信号来自 第31卷第2期2011年4月 振动、测试与诊断 Jou rna l o f V ib ra tion,M easu re m en t&D iagno sis   V o.l31N o.2 A pr.2011 国家自然科学基金重大研究计划资助项目(编号:90405013,90716027);上海人才发展基金资助项目(编号:2009020);上海大学“十一五”“211”建设资助项目;上海市电站自动化技术重点实验室资助项目;上海市教委“机械电子工程”创新团队资助项目 收稿日期:2009-08-22;修改稿收到日期:2009-11-13

柔性多体系统的运动变形描述

柔性多体系统的运动变形描述 柔性多体系统运动的描述方式,按其所选取的参照系不同,可分为绝对描述和相对描述两种类型[]。绝对描述以某一个指定的惯性系为参考系,系统中每一个物体在每一个时刻的位形都在此惯性系中确定。而在相对描述中对每一个物体都按某种方式选定一个随动参考系,物体的位形是相对于自己的动参照系确定的。这些参照系通常是惯性的。这两种描述方式导致两种不同的动力学模型。相对描述的显著优点在于处理物体变形很方便。它的一个缺点是在各加速度项中出现整体刚性运动和变形之间的耦合,这种耦合导致质量阵中出现与变形坐标有关的项。这些项的存在大大增加了动力学方程数值求解的难度,并且是引起数值病态的主要原因之一。 【补充】相对描述方法特别适合于由小变形物体所组成的系统。此时可以适当地选取动参考系,使得物体相对于动参考系的运动(变形)总是小的。这样,对小变形可按通常的线性,例如进行模态展开和截断等。将描述变形的弹性坐标和描述刚性运动的参数合起来,作为系统的广义坐标,就可以按通常的离散系统分析动力学方法建立动力学方程。相对描述方法的核心问题为物体变形与整体刚性运动的相互作用。这种相互作用可以通过规范场论的方法完全确定。于是动力学方程分为互相耦合的两类,一类控制物体的整体刚性运动,另一类控制物体的相对变形。 [] 陆佑方.柔性多体系统动力学.高等教育出版社.1996 对于如何描述系统变形模式方面,大致有下列三种方法。 1 经典的瑞利-里兹(Reyliegh-Ritz)法 这个方法是对所研究的弹性体,构造一个假设位移场,该位移场必须满足相容性和完备性要求。若假设位移场用(,,)x y z Φ表示,并取12[...]n Φ=ΦΦΦ,称为里兹函数矩阵, 用以描述物体变形模式,则物体上各点的变形向量f μ可表示为 f f q μ=Φ 式中,()f f q q t =为对应的弹性变形广义坐标向量。 这是弹性连续力学近似解的最基本方法,但对于复杂形状、复杂边界和复杂载荷的情况,要构造出一个适合的位移场式非常困难的,甚至可能做不到。

工程车辆传动系统扭转振动特性研究与分析

1工程车辆扭转振动动力学模型的建立 工程车辆传动系统一端通过离合器与发动机相连,输出端通过轮胎与工程车辆平动质量相连,组成了一个多质量的弹性扭转振动系统。在计算整个系统的固有频率和振型时,通常可忽略系统的阻尼,将整个传动系统看成是由多个刚性圆盘通过弹性轴连接的无阻尼振动系统。现在某型装备四缸柴油机的中型装载机传动系统为例,其扭转振动力学模型如图1-1所示。 1.1 当量转动惯量的计算 当量转动惯量J 是指将传动系统中与发动机曲轴不同转速旋转的零部件的转动惯量换算成与曲轴同转速旋转下的转动惯量,这种换算方法的原理是能量守恒。设传动轴的转动惯量为J,实际转速为ω曲轴转速为0ω,则将传动轴换算成曲轴转速0ω的当量转动惯量为 2 2 2 0212121??? ? ??=???? ??==g d d i J J J J J ω ωωω 式中,g i 为变速器的传动比。 1.2当量扭转刚度的计算 设两圆盘之间弹性轴的当量扭转刚度为d K ,则可以根据弹性变形量守恒的原理将系统中的时间扭转刚度K 换算过来。现以后桥半轴为例,相应的当量扭转刚度为 2 01??? ? ??=i i K K g d

式中,0i 为主减速器的传动比。 2传动系统扭转动力学方程 根据图1-1所示的简化的传动系统模型,可建立系统动力学方程组为 -0-)-)()(-----111010111111101010991010343332233232221122121111=+=+-=-+-=+=+)()(()()() (。。。。。。。。 。。 θθθθθθθθθθθθθθθθθθθθθK J K K J T K K J T K K J T K J (1) 方程组(1)中,111-θθ分别为对应质量的扭转角位移;41-T T 分别为发动机1-4缸的有效输出转矩。 为了简单起见,可以将(1)改为矩阵形式的动力学方程一般式,即 T K C J =++θθθ。 。。 式中,当量转动惯量矩阵??????? ? ????? ?? ?=111021 00J J J J J 阻尼矩阵C=[0];刚度矩阵; 圆盘的角位移矩阵[]T 114321 0θθθθθθ =。 一般以发动机振动激励为系统输入矩阵,则 []T T T T T T 004 321 = 2.1扭转系统固有特性的分析 这里的固有特性是指固有频率和主振型,多自由度系统的固有频率和主振型可以根据系统的无阻尼自由振动方程得到,即 0=+θθK J 。。 (2) 假设方程的解为 t n i e ωθA = (3) 式中,A 为系统自由振动时的振幅列向量,[]T m m m m A A A A A 1132 1 =。

传动系统振动

汽车动力传动系振动分析 [ 摘要]综述了车辆动力传动系振动的研究进展从振动的角度看,车辆动力传动系可分为 弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的 研究方面,许多学者对此进行了有益探索研究,并取得了一定的进展但限于分析条件,车辆 动力传动系弯曲、扭转振动耦合的研究尚不十分完善,尤其在国内,这一研究尚处于起步阶段因此,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上,动力传动系的弯曲、扭 转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系 统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存 在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性, 而较高频段内的弹性振动将会引起车辆 的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究 起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹 簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证 试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的, 并通 过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的 5 个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应, 指出动力总成的弯 曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用, 经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4] 、张建文[5]对动力传动 系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主 要原因余龄[6] 利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9] 、俄延华[1 0 ] 在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲 振动的模态参数高云凯[1 1 ] 在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析 试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经 验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后, 建立 自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

含有故障的齿轮系统扭转振动分析

第22卷 第4期2007年12月 北京机械工业学院学报 Journa l of Be ijing Institute o fM ach i nery V o.l22N o.4 D ec.2007 文章编号:1008-1658(2007)04-0013-05 含有故障的齿轮系统扭转振动分析 朱艳芬1,陈恩利1,申永军1,王翠艳2 (1.石家庄铁道学院 机械工程分院,石家庄050043;2.石家庄铁道学院 工程训练中心,石家庄050043) 摘 要:建立了故障单自由度齿轮系统扭转振动的数学模型,采用加入脉冲的形式进行故障模拟,并利用数值方法进行对该模型进行仿真,进行定性研究。作出了系统模型的幅频响应曲线,与无故障时的曲线相比较,发现在低速时脉冲对系统的影响较大。另外,还对该模型进行了参数研究,分别比较了在不同阻尼比和不同激振力情况下的脉冲对系统幅频曲线的影响。 关 键 词:单自由度直齿轮系统;扭转振动;数值方法;幅频响应曲线;参数研究 中图分类号:TH113 文献标识码:A Analysis of torsional vibration of a spur gear system w ith faults ZHU Y an-fen1,C H E N Een-li1,SH E N Yong-jun1,WANG Cu-i yan2 (1.Schoo l ofM echan i calEng i neeri ng,Shiji az huang Rail w ay Ins tit u te,Sh iji az huang050043; 2.Eng i neeri ng Tra i n i ng C enter,Sh iji az hu ang Rail w ay I n stitute,Sh ijiazhuang050043) Abstract:The torsional v i b ration m odel o f the spur sing le-DOF gear syste m w it h fau lts is bu il,t and the for m o f the pulses is adop ted to si m u late the faults.Th i s m ode l is ca lculated by usi n g the num erica l m ethod.The response o f the m ode l is ana lyzed,and the Am p litude frequency Curves are p l o tted,and t h e greater fl u ence of the pu lse is found in the lo w frequency.The para m eters of the mode l are researched, and the Am plitude-frequency Curves under vari o us da m pi n g ratio and under vari o us exc iting-v ibration force are co m pared respectively. Key w ords:spur si n gle-DOF gear syste m;torsi o na l v ibration;num erica lm ethod;t h e Am plitude-fre-quency Curves;para m eters study 齿轮作为机械系统中的重要传动装置,在机械、化工、航天等行业的装备中起着非常关键的作用。为了满足航空、航天及机器人等技术发展的需要,采用传统的线性分析和控制理论已难以满足这一要求。由于零部件间的间隙、运动负重的摩擦及时变刚度等因素,实际的齿轮传动系统都是非线性系统,传统的线性分析和控制是对其进行的一种近似处理,只有对齿轮传动系统实施非线性分析和非线性控制才能获得精度高、振动小和噪声低等性能的齿轮传动系统。齿轮的工作状态正常与否对运动和动力的传输具有重要的影响[1]。因此,研究齿轮系统的动力学与故障诊断具有重要的理论价值和工程意义。 关于带故障的齿轮系统动力学建模及动力学分析则见于Parey的文章[2],其中的缺陷主要包括摩擦、磨损、点蚀和剥落等,介绍了带有故障的各种齿轮动力学模型等,另外,Kuang[3]等人建立了考虑齿面磨损的齿轮动力学方程,齿面磨损会影响啮合过程中的齿面轮廓,从而会影响到啮合刚度、阻尼力以及摩擦力等,这样将会使得系统的方程非常复杂。 本文从单自由度齿轮系统入手,经过模型简化,模拟了齿轮系统故障引起的刚度变化后的齿轮模型,并定性地分析了其动力学特性。 1故障单自由度齿轮系统理论模型 首先建立正常直齿轮副扭转振动的数学模型。扭转振动模型是仅考虑系统扭转振动的模型,在齿轮系统的振动分析中,若不考虑传动轴的横向和轴向弹性变形以及支承系统的弹性变形,则可将系统简化成纯扭转的振动系统,在实际工程中许多复杂 收稿日期:2007-09-04 基金项目:国家自然科学基金资助项目(10602038) 作者简介:朱艳芬(1976-),女,河北藁城人,石家庄铁道学院机械工程分院硕士研究生,主要从事机械系统动力学控制等研究。

船舶柴油机的轴系扭转振动的分析与研究

船舶柴油机的轴系扭转振动的分析与研究 【摘要】本文通过一些国内因轴系扭转振动而引起的断轴断桨的事故实例,来分析引起轴系扭转振动的主要原因,分析扭振主要特性,并提取一些减振和防振的基本控制措施。 【关键词】船舶柴油机轴系扭振危害分析措施 在现代船舶机械工程中,船舶柴油机轴系扭转振动已经成为一个很普遍的问题,它是引起船舶动力装置故障的一个很常见的原因,国内外因轴系扭转而引起的断轴断桨的事故也屡见不鲜,随着科学水平的提高和航运业的发展,人们越来越重视船舶柴油机组的轴系扭转振动,我国《长江水系钢质船舶建造规范》和《钢质海船入级与建造规范》(简称《钢规》)和也均规定了在设计和制造船舶过程中,必须要向船级社呈报柴油机组的轴系扭转振动测量和计算报告,以此来表明轴系扭转振动的有关测量特性指标均在“规范”的允许范围内。 1 船舶柴油机轴系扭转振动现象简介 凡具有弹性与惯性的物体,在外力作用下都能产生振动现象。它在机械,建筑,电工,土木等工程中非常普遍的存在着。振动是一种周期性的运动,在许多场合下以谐振的形式出现的,船舶振动按其特点和形式可分为三种,船体振动,机械设备及仪器仪表振动,和轴系振动。船舶柴油机轴系振动按其形式可分为三种:扭转振动,纵向振动,横向振动。柴油机扭转振动主要是由气缸内燃气压力周期性变化引起的,它的主要表现是轴系上各质点围绕轴系的旋转方向来回不停的扭摆,各轴段产生不相同的扭角。纵向振动主要是由螺旋桨周期性的推力所引起的。横向振动主要是由转抽的不平衡,如螺旋桨的悬重以及伴流不均匀产生的推力不均匀等的力的合成。 船舶由于振动引起的危害不但可以产生噪音,严重影响旅客和船员休息,还会造成仪器和仪表的损害,严重的时候甚至出现船体裂缝断轴断桨等海损事故,直接影响船舶的航行安全。而在船舶柴油机轴系的三种振动中,产生危害最大的便是扭转振动,因扭转振动而引起的海损事故也最多,因此对扭转振动的研究也最多。而且当柴油机轴系出现扭转振动时,一般情况下,船上不一定有振动的不适感,因此这种振动也是最容易被忽视的一种振动形式,一旦出现扭转振动被忽视,往往意味着会发生重大的事故。更应该注意的是,当发动机运转在主临界速度时,自由端的传动齿轮箱往往容易发生齿击或噪声大的现象,这时检查时会发现齿轮有点蚀或剥落等磨损现象,严重时会有断齿事故。有时在强共振的情况下,轴系中的某些位置只要数分钟运行就能自行发热,稍有疏忽,就可能造成断轴断桨的海损事故。 2 船舶柴油机因扭振而引起的断轴断桨的事故及分析 (1)广西海运局北海分局所属沿海货轮400吨桂海461、462、463,三条

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

某船舶推进轴系扭振计算分析-不错的论文(精)

第22卷 第5期(总第131期)2011年10月 船舶 SHIP&BOAT Vol.22No.5October,2011 [船舶轮机] 某船舶推进轴系扭振计算分析 金立平 (吉林省地方海事局 [关键词]船舶推进轴系;有限元;转动惯量;扭振[摘 要]提高轴系扭振计算精度,必须有精确的原始参数,以准确掌握船舶轴系扭振情况。在有限元分析软件 中,建立曲柄半拐等的三维模型,用有限元分析方法精确的确定了各质量、轴段的转动惯量、扭转刚度等精确原始参数。基于建立的实船轴系当量系统,计算出了各结自由振动的频率及对应的共振转速,自由端和飞轮输出端的振幅,分析了轴段应力和扭矩随曲轴转角及转速的变化关系。结果表明在整个转速范围内,扭转振幅小于限定值,轴段的最大扭矩和应力均小于材料许用值,本船舶轴系扭转振动状况是良好的。 [中图分类号]U664.21 [文献标志码]A [文章编号]1001-9855(2011)05-0046-04 长春130061)Torsionalvibrationcalculationandanalysisofashippropulsionshaft JINLi-ping (JiLinLocalMaritimeSafetyAdministration,Changchun130061) Keywords:marinepropulsionshafting;FEM;inertiamoment;torsionalvibration Abstract:Thepreciseoriginalparametersarecriticalforimprovingthecalculationaccuracyofshafttorsi onalvibration.Athree-dimensionalmodeofahalfcrankisestablishedinthefiniteelementanalysissoftwaretoaccurate lycalculatetheoriginalparameterssuchasthemomentofinertiaandtorsionalstiffnessofeachs haftsection.Basedontheestablishedrealshipshaftingequivalentsystem,thispapercalculatedt hefreevibrationfrequencyandthecorrespondingresonancespeed,aswellasthevibrationampl itudeofthefreeendandtheflywheeloutputend,analyzedtherelationshipofthestressandtorque ofshaftsandthecrankangleandenginespeed.Theresultsshowthatinthewholespeedrange,thet

1997 航天柔性结构振动控制的若干新进展

第27卷 第1期 力 学 进 展V o l .27 N o .11997年2月25日ADVAN CES I N M ECHAN I CS Feb .25, 1997 航天柔性结构振动控制的若干新进展33国家自然科学基金重点项目资助. 黄文虎 王心清张景绘郑钢铁哈尔滨工业大学航天学院 运载火箭技术研究院总体部西安交通大学哈尔滨工业大学哈尔滨 150001北京 100076西安 710049哈尔滨 150001 提要 围绕航天柔性结构的振动控制,从结构及材料的数学模型、材料及器件、基本理论与方法和一体化振动控制几个方面对一些研究的最新进展进行了介绍.主动控制和被动控制的一体化技术研究是当今航天柔性结构振动控制研究的重点,两种控制方法的结合不仅优点互补,而且提高了控制系统的性能.控制用材料和器件的研究在工程应用的推动下,也取得了较快的发展,并促进了振动控制技术的实用化.关键 航天结构;振动控制;主动控制;被动控制;材料;传感器;作动器 1 引 言 大型化、低刚度与柔性化是各类航天结构的一个重要发展趋势.无疑轻型结构可以增加有效载荷的重量,提高运载工具的效率.大型结构可以增加空间结构的功能,如更大的太阳能电池阵列可以为空间结构提供更加充足的能源.但这同时也给结构的设计、制造和使用带来了一系列新的问题.这类大型柔性结构的模态阻尼小,如不采取措施对其振动进行抑制,在太空中运行时,一旦受到某种激振力的作用,其大幅度的振动要延续很长时间.这不仅会影响航天结构的工作,如姿态的稳定和定向精度等问题,还将使结构产生过早的疲劳破坏,影响结构的使用寿命,或导致结构中仪器的损坏.这在实际情况中已有例证.就现在已有的航天结构,结合我国的情况,大型柔性结构的振动抑制问题仍非常突出.以大型运载火箭和其有效载荷为例,需要减振的部位很多,例如,仪器仓,由于安装有火箭的控制、遥测等各种仪器,对振动环境有严格的要求;船箭或星箭接口支架,它传递发动机点火、级间分离等引起的对飞船或卫星的冲击,减、隔振可以减少冲击对飞船或卫星的影响;飞船逃逸系统的栅格翼打开后,要使弹性、刚性运动稳定,振动抑制是重要的保证措施;将要投入使用的桁架? 5?

传动系统振动

汽车动力传动系振动分析 [摘要 ]综述了车辆动力传动系振动的研究进展从振动的角度看 ,车辆动力传动系可分为弯曲振动系统和扭转振动系统目前主要采用试验模态分析和有限元等研究方法对动力传动系弯曲振动特性进行研究 ,建立了较为理想的弯曲振动分析模型在动力传动系扭转振动的研究方面 ,许多学者对此进行了有益探索研究 ,并取得了一定的进展但限于分析条件 ,车辆动力传动系弯曲、扭转振动耦合的研究尚不十分完善 ,尤其在国内 ,这一研究尚处于起步阶段因此 ,在动力传动系弯曲、扭转振动的研究已相对成熟的基础上 ,动力传动系的弯曲、扭转振动耦合对其振动特性影响的研究将是今后一段时间的主要研究内容 车辆是一个复杂的振动系统,它是由多个具有固有振动特性的子系统组成,作为子系统之一 的动力传动系,即包括动力总成、传动轴、驱动桥总成组成的系统是车辆振动和噪声的重要激励源从振动的角度看,车辆动力传动系可分为两个振动系统:弯曲振动系统和扭转振动系统车辆动力传动系的弯曲振动系统和扭转振动系统不仅有各自的固有振动特性,而且还存在一定程度的振动耦合这些不同形式的振动及其耦合,是影响车辆行驶平顺性,乘坐舒适性及动力传动系零部件使用寿命的主要原因之一,因此对车辆动力传动系的整体振动进行深入细致的研究,显得十分必要 1 动力传动系弯曲振动研究 车辆动力传动系弯曲振动在很大的频率段内对车辆振动和噪声有着重要影响,动力传动系低频段内的刚体振动直接影响车辆的乘坐舒适性,而较高频段内的弹性振动将会引起车辆的结构共振和声学共振近年来,随着对提高乘坐舒适性、减小汽车振动要求的提高,对动力传动系弯曲振动特性的进一步研究,已显得十分迫切,国内外对动力传动系弯曲振动的研究起步较早,在理论研究方面取得一定进展,试验研究也较为成熟建立由离散的集中质量、弹簧、阻尼器组成的力学模型是对动力传动系弯曲振动特性进行研究分析的一种行之有效的方法後藤进[1 ]建立了具有 1 1个自由度的动力传动系的弯曲振动力学模型,并通过试验验证,试验结果和计算结果取得较好一致文献[2 ]也建立了动力传动系弯曲振动多自由度力学模型,指出系统的弯曲振动是由发动机运动部件往复惯性力、传动轴的不平衡等引起的,并通过实验测定有关参数值,计算系统的固有频率、振型隋军[3、4]建立包括动力总成及传动轴的5个自由度的弯曲振动力学模型,计算系统的固有振动特性和响应,指出动力总成的弯曲振动是汽车飞轮壳损坏的主要原因这种建模方法及其实用性已为大量的计算和试验分析结果所证实,并且已总结出了确定模型集中质量、弹性和阻尼的一般原则,能有效地用于分析解决车辆动力传动系弯曲振动问题日臻完善的试验模态分析技术,在动力传动系弯曲振动特性的研究中得到广泛应用试验模态分析在动力传动系弯曲振动特性研究中的应用,经历了从单个总成发展到多个总成直至整个动力传动系的过程隋军[4]、张建文[5]对动力传动系动力总成进行了试验模态分析,认为动力总成的弯曲振动是造成汽车离合器壳开裂的主要原因余龄[6]利用试验模态分析技术测定了包括动力总成及传动轴的组合系统的一阶弯曲振动频率,张金换[7]则通过模态试验分析研究动力传动系传动轴的临界转速孙方宁[8, 9]、俄延华[1 0 ]在整车条件下,对动力传动系弯曲振动进行模态试验,得到整个动力传动系弯曲振动的模态参数高云凯[1 1 ]在台架及整车条件下,对汽车动力总成弯曲振动试验模态分析中的非线性特性进行研究,结果表明这一非线性特性仅存在于整车条件下的试验模态分析试验模态分析具有快速、简便地识别结构固有特性的特点,但其精度主要取决于试验者的经验和所使用的测试仪器、分析程序模态综合法是对动力传动系弯曲振动进行分析的有效方法,其基本思想是将动力传动系分为若干个子系统,在完成对各子系统的模态分析后,建立自由模态的综合方程,再利用平衡条件和约束条件将自由度简化,最后获得一个自由度大为缩减又保持了系统特性的运动方程,即组合系统方程孙方宁[8, 9]将一大型客车动力传动系划分为五个子系统,通过试验模态分析获得各子系统的模态参数,然后利用模态综合方法建立整个系统的理论分析模型,编制计算程序,对该大型客车动力传动系弯曲振动的固有振动特性进行计算,并在激振试验台上进行整个动力传动系弯曲振动的试验模态分析,结果表明理论计算和试验结果具有很好的一致性应用模态综合方法,只需获得动力传动系各子系统的模态参数,就可以通

结构振动控制

武汉理工大学 结构振动控制 Vibration Control of Structure 课程:工程结构振动控制理论 授课老师:周强 学生姓名:吴平 学号:104972081971 班级:土木研0803

结构振动控制 吴平 (土木研0803班) 摘要:本文主要介绍了结构振动控制的概念、基本原理以及分类。重点阐述了 被动控制、主动控制、半主动控制和混合控制的不同特点。 关键字:被动控制,主动控制,半主动控制,混合控制 Vibration Control of Structure Wuping (Department of Civil Engineering,Wuhan University of Technology) Abstract:This paper introduces the conceptand basic principles and classification of structural vibration control. Highlighted the differences among passive control, active control, semi-active control and hybrid control. Key words :passive control, active control, semi-active control,hybrid control. 引言 随着社会的发展,工程结构形式日益多样化以及轻质高强材料的应用,结构 的刚度和阻尼比变小。在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求。按照传统的抗风抗震设计方法,即通过提 高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震 方法,它很不经济,也不一定安全。而且失去了轻质高强材料自身的优势,还不 能满足口益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。 传统的抗震设计方法已不能满足需要,从而使结构振动控制理论在工程结构中开 始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应 和损伤,提高结构的抗震能力和抗灾性能。结构控制通过在结构上设置控制机构,由控制机构与结构共同控制抵御地震动等动力荷载,使结构的动力反应减小。结 构控制是人的主观能动性与自然的高度结合,是结构对策新的里程碑。

轧机主传动系统扭振分析

冷连轧机主传动系统扭振分析 摘要:针对某新建的1420冷连轧机组,基于设计图纸建立了轧机主传动系统动力学模型。通过计算得到系统的固有频率和反共振频率、振型和Bode图,并进一步对系统的设计方案进行分析评价。结果表明,该冷连轧机主传动系统设计基本合理,部分设计参数还有优化的余地。 关键词:轧机主传动扭转振动固有频率 Torsional Vibration Analysis of the Tandem Cold Mill Main Drives WANG Zeji1,WANG Ruiting1,ZHANG Xiangjun2 (1 Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China 2 Tsinghua University, Beijing 100084, China) Abstract:Focused on the newly-built 1420mm tandem cold mill group of some iron & steel corporation, the dynamic models of the main driving system are established basing on the basis of design drawing. The natural frequencies and anti-resonance frequencies, vibration modes and Bode diagrams of the system are gained by calculating. Subsequently, the analysis and judgement of the main driving system are carried out. The results show that the design of the main driving system is reasonable on the whole, but some design parameters need to be optimized. Key words:rolling mill;main drive;torsional vibration;natural frequency 1 概述 旋转体在旋转方向产生的振动称为扭转振动,它是转转机械中普遍存在的问题【1,2】。在 冷轧生产线上,随着高速、大功率电机在冷连轧机上的使用,接轴和齿轮轴等传动系统由于 扭转振动引起的事故随着增加。轧机主传动系统的事故主要与扭振有关,它往往会对钢板表 面的平直度、厚度公差产生影响。由于扭振引起的最大附加应力可以超过电机驱动力矩所产 生的工作应力的几倍。轧机主传动系统扭振会产生很高的交变应力,严重时会造成减速箱齿 轮断裂、地脚螺丝松动等设备事故,使生产不能顺利进行,或大大缩短轴系零部件的疲劳寿 命,具有极大的破坏性,给企业造成重大损失【2,3】。 目前国内的轧机主传动系统扭振分析工作往往是在现场出现问题后才开展的,扭振问题 无法从根本上解决。现代的轧机设计除了要进行强度、刚度等静力学设计外,还要进行动力 学设计。某公司1420冷轧工程是国家冶金装备自主集成重大创新项目,冷连轧机主传动系 统设计好坏直接关系到工程的成败。为了保证工程顺利建成投产,在设计阶段对轧机主传动 系统进行扭振分析显得尤为重要。 2 系统建模

多体系统动力学简介20081202

多体系统动力学简介

多体系统动力学研究对象——机构 工程中的对象是由大量零部件构成的系统。在对它们进行设计优化与性态分析时可以分成两大类 一类为结构 ——正常工况下构件间没有相对运动(房屋建筑,桥梁等) ——关心的是这些结构在受到载荷时的强度、刚度与稳定 一类为机构 ——系统在运动过程中这些部件间存在相对运动(汽车,飞机起落架。机器人等)——力学模型为多个物体通过运动副连接的系统,称为多体系统 多体系统动力学俄研究的对象——机构(复杂机械系统)

不考虑系统运动起因的情况下研究各部件的位置与姿态及其变化速度和加速度的关系 典型案例:平面和空间机构的运动分析 系统各部件间通过运动副与驱动装置连接在一起 数学模型:各部件的位置与姿态坐标的非线性代数方程,以及速度与加速度的线性代数方程

当系统受到静载荷时,确定在运动副制约下的系统平衡位置以及运动副静反力 典型案例:机车或汽车中安装有大量的弹簧阻尼器,整车设计中必须考虑系统在静止状态下车身的位置与姿态,为平稳性与操纵稳定性的研究打下基础 数学模型:非线性微分代数方程组

讨论载荷和系统运动的关系 研究复杂机械系统在载荷作用下各部件的动力学响应是工程设计中的重要问题 动力学正问题——已知外力求系统运动的问题 动力学逆问题——已知系统运动确定运动副的动反力,是系统各部件强度分析的基础 动力学正逆混合问题——系统的某部分构件受控,当它们按照某已知规律运动时,讨论在外载荷作用下系统其他构件如何运动 数学模型:非线性微分代数方程组

机械系统的多体系统力学模型 在对复杂机械系统进行运动学与动力学分析前需要建立它的多体系统力学模型。对系统如下四要素进行定义: ?物体 ?铰链 ?外力(偶) ?力元 实际工程中的机械系统多体系统力学模型的定义取决于研究的目的 模型定义的要点是以能揭示系统运动学与动力学性态的最简模型为优 性态分析的求解规模与力学模型的物体与铰的个数有关

相关主题
文本预览
相关文档 最新文档