当前位置:文档之家› 开关磁阻电机小波神经网络无位置传感器控制_夏长亮

开关磁阻电机小波神经网络无位置传感器控制_夏长亮

开关磁阻电机小波神经网络无位置传感器控制_夏长亮
开关磁阻电机小波神经网络无位置传感器控制_夏长亮

2008年7月电工技术学报Vol.23 No. 7 第23卷第7期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Jul. 2008

开关磁阻电机小波神经网络

无位置传感器控制

夏长亮谢细明史婷娜田洋

(天津大学电气与自动化工程学院天津 300072)

摘要提出了一种基于小波神经网络的开关磁阻电机无位置传感器控制新方法。该方法采用两个不同的小波神经网络分别获取相绕组换相逻辑的开通信号和关断信号,经过综合处理得到单相绕组的开关信号。神经网络以相绕组的电流和磁链为输入,以各相的开关信号为输出,从而建立起电流、磁链和开关信号的非线性映射。采用电机在有位置传感器运行条件下的样本对小波神经网络进行训练,训练完成后,用神经网络输出结果取代位置传感器换相信号,实现电机无位置传感器运行。仿真和实验结果表明,由神经网络获得的开关信号和由位置传感器获得的开关信号相比误差小,电机能够准确换相,且输出转矩波动小,转速曲线平滑,电机在无位置传感器下运行良好。

关键词:小波神经网络开关磁阻电机无位置传感器控制梯度下降法小波函数

中图分类号:TM352

Position Sensorless Control of Switched Reluctance Motor Using

Wavelet Neural Networks

Xia Changliang Xie Ximing Shi Tingna Tian Yang

(Tianjin University Tianjin 300072 China)

Abstract This paper presents a new approach to the position sensorless control of the switched reluctance motor(SRM) based on wavelet neural networks(WNNs). The basic premise of the approach is that two wavelet neural networks with different parameters are constructed to switch on and turn off each phase respectively. The WNNs form a very efficient nonlinear mapping structure from phase current, flux linkage to communication signal with current, flux linkage as input and switching signal as output, therefore the communication signals can be obtained by manipulation of the WNNs' outputs.

After trained by the data acquired from the system with position sensor, the WNNs replace the position sensor and make the SRM switch to position sensorless operation. The simulation and experimental results show that there is tiny error of switching signals between estimation and reality. The SRM can operate with little torque fluctuation and slight speed vibration.

Keywords:Wavelet neural network,switched reluctance motor,position sensorless control,gradient descent method, wavelet function

1引言

开关磁阻电动机调速系统(Switched Reluctance Drive,SRD)是自20世纪80年代中期发展起来的新型交流调速系统。自问世起,就因其结构简单、工作可靠、效率高、成本低及能在较宽的调速范围内稳定运行而广受关注,并且在牵引运输、航空工业、采矿纺织、家用电器等领域得到了应用[1]。在传统控制系统中,必须使用位置传感器直接检测转子位置信号,实现电机自同步运行。位置传感器的

天津市应用基础研究计划资助项目(06YFJMJC 01900)。收稿日期 2007-04-03 改稿日期 2007-06-28

34

电 工 技 术 学 报 2008年7月

存在使得系统结构复杂、成本增加、可靠性降低,削弱了SRD 控制系统的优点。因此,SRD 的无位置传感器控制策略越来越多地受到了人们的关注。文献[2]讨论了基于定子电感的位置检测策略,而SRD 非线性位置检测法如状态观测器法[3]

、查表 法[4]、人工智能法[5]也得到了广泛的研究。

由于开关磁阻电机(Switched Reluctance Motor ,SRM )的双凸极结构,电机常常运行于高饱和状态,使得电磁关系呈强非线性,转子位置估计困难,人工神经网络的发展为解决这一问题提供了新的思路[6]。

人工神经网络属于非线性动态系统,具有很强的自学习、自适应和泛化能力[7-8]。文献[9]利用BP 网络实现电流、磁链到转子位置的映射,并利用DSP 实现SRM 神经网络控制,效果良好。文献[10]提出了一种基于自适应RBF 神经网络的转子位置辨识方法,建立以各相电流、磁链作为输入,转子位置信号作为输出的神经网络来实现电机电流、磁链和转子位置间的非线性映射,估算转子位置角度,从而有效地消去位置传感器。尽管RBF 神经网络全局收敛,但是其隐层节点的数目、隐层节点的中心和标准化参数难于确定[11]。用小波函数取代神经元激励函数构成的小波神经网络[12],可结合小波变换良好的时频局域化性质及传统神经网络的自学习功能,具有广泛的应用前景[13-14]。

本文提出了一种基于小波神经网络的开关磁阻电机无位置传感器控制策略。所采用的小波神经网以电机各相的电流、磁链作为输入,以功率器件开关信号作为输出,通过离线训练建立网络结构、确定网络参数。文中利用Matlab/Simulink 进行仿真,并利用DSP 芯片TMS320F2812设计了开关磁阻电机控制系统。仿真和实验结果表明,该方法能够准确地给出开关磁阻电机的换相信号,从而实现电机的无位置传感器运行。

2 小波神经网络

2.1 小波神经网络

小波神经网络是以小波函数为基函数的一种连接型前馈网络,它将常规神经网络的隐层函数用小波函数代替,相应的输入层到隐层的权值及隐层阀值

分别由小波函数的伸缩系数和平移参数代替[12,14]

可以认为是RBF 神经网络的推广

[11]

,在神经网络研

究领域中具有巨大的潜力。图1为小波神经网络的拓扑结构图。与RBF 神经网络相似,小波神经网络分为三层:第一层为输入层;第二层为隐含层,采

用小波函数作为激励函数;第三层为线性输出层。其数学模型为

11()p h

i i ij j jk k j j k y f x w a x t ψ==??

==?????

??

(1)

式中,输入矢量X = x 1, x 2, …, x p ;输出矢量Y = y 1, y 2, …, y q ;

w ij 为输出节点i 与隐层节点j 的连接权值;ψj 为隐层节点j 的小波函数;a jk 、t j 分别为小波函数的伸缩系数和平移参数;h 为隐层节点个数;p 、q 分别为输入、输出节点数。

图1 小波神经网络拓扑结构图

Fig.1 The structure of wavelet neural networks

本文中使用Mexican hat 小波函数作为隐层节点神经元激励函数。如下式:

2

2/2

()(1)e t

t t ψ?=? (2)

2.2 训练算法

确定小波神经网络的结构后,以式(3)所示的误差均方能量函数作为目标函数,优化神经元伸缩系数a jk 、平移参数t j 和网络连接权值w ij 。

2

21

11

out

out 1

1

()()

2

2

q

m

m l i

l l i l

l l i J S y ====

?=

?∑∑∑S Y (3)

式中 out l

S ——第l 组输出矢量样本

Y l ——第l 组输入样本对应的输出 m ——训练样本个数

out 12, ,,l

l

l

l

l

l

e e =?=E S Y E …,l

q e

小波神经网络有三种常用的训练算法,分别为梯度下降法、正交最小二乘法(OLS 算法)和递推正交最小二乘法(ROLS 算法)。本文采用梯度下降法[12,14]进行训练。其训练步骤为:

(1)网络参数初始化:将神经元的伸缩系数a jk 、平移参数t j 赋予在[0,1]之间的随机初始值,置网络连接权值w ij 为0。

(2)利用输入学习样本S in 和当前网络参数,按照式(1)计算网络的输出Y 。

(3)利用输出学习样本S out 和式(3)得到经

第23卷第7期

夏长亮等 开关磁阻电机小波神经网络无位置传感器控制 35

过 (n ?1) 次参数调整后的目标能量函数J (n ),若J (n )≤ε(ε 为预先设定的一个误差容许参数),则算法结束,否则,至步骤(4)。

(4)网络参数调整:根据梯度下降法,可得网络连接权值和神经元参数的调整公式如下:

()(1)()()()ij ij ij ij ij J n w n w n w n w n w η?+=?=??? (4) ()(1)()()()jk jk jk jk jk J n a n a n a n a n a η

?+=?=??? (5) ()

(1)()()()j j j j j

J n t n t n t n t n t η

?+=?=??? (6)

式中,η为梯度下降搜索的步长,也称为收敛算子,0<η≤1。η 越大,调整越快。

为了确定ij

J w ??、

jk

J a ??和

j

J t ??,根据误差反向传递

算法,可得

11m

ij l p l

l

i j

jk k

j k J e w a x t ψ?==?=?

??????????

(7) 111q

m

l i ij jk jk

l i p l

l

j k j k k J e w x a a x t ψ?===?′=?????????

??

∑∑∑

(8)

11

1q

m l

i ij j j

l i p l

jk k j k J e w t a x t ψ?

===?′=

?????

?????

∑∑

(9) (5)令n =n +1,返回第(2)步。

3 基于神经网络的SRM 无位置传感器控

制策略

基于神经网络的SRM 无位置传感器控制,就是选取合适的神经网络,依据直接检测得到的电流、磁链等参数,建立一个对应开关磁阻电机位置信号的非线性映射,估计转子位置角度或者功率驱动器件的开关信号,从而取代位置传感器,实现电机的无位置传感器运行,如图2所示。

图2 SRM 神经网络无位置传感器控制图

Fig.2 Position sensorless control of SRM based on ANN

在开关磁阻电机的神经网络无位置传感器控制中,常见的方法是以各相相绕组的电流、磁链和转

子角度为样本,建立一个从电流、磁链到转子位置角的神经网络,只要训练样本的数量和质量足够好,由此建立的非线性映射就能辨识出转子位置角 度[10]。文中从这种思想出发,采用一种新的神经网络结构。在已知电机旋转方向的情况下,根据导通顺序,利用导通相的电流和磁链,建立一个神经网络获得下一相的开通信号。同时,利用该相的电流和磁链,构造另一个神经网络获得该相的关断信号。通过这两个神经网络,可以获取开关磁阻电机各相的开关信号,实现换相逻辑,从而消去位置传感器,实现开关磁阻电机的无位置传感器运行。

4 仿真结果

为了验证文中的方法,以一台四相8/6极开关磁阻电机为样机,在Matlab/Simulink 中进行了仿真分析,所用样机的具体参数如下:额定功率P =500W ,额定转速n =1

500r/min ,额定电压U =220V ,转动惯量

J =0.008kg ·m 2,粘滞摩擦系数D =0.05N ·m ·s/rad 。

电机采用CCC 控制方式,给定转速为500r/min ,在空载下以自同步方式起动,在t =0.5s 时,用参数和结构经过离线训练确定的神经网络获取功率器件开关信号,控制电机换相,实现开关磁阻电机的无位置传感器运行。

图3为小波神经网络辨识所得的开关信号和实际开关信号的比较。图3a 为由位置传感器获得的开关信号;图3b 为综合开通网络和关断网络输出而得

到的相绕组开关信号;图3c 为相应的辨识误差。

图3 小波神经网络估计所得的开关信号和

实际开关信号的比较

Fig.3 The comparison of on-off signals between the

measured and estimation results of WNNs

36

电 工 技 术 学 报 2008年7月

由图中可以看出,电机在无位置传感器运行下,小波神经网络估计所得的开关信号误差较小。

图4为电机无位置传感器运行下转矩曲线。开关磁阻电机在进入无位置传感器运行后,转矩脉动

略有减小,输出转矩曲线比较平滑。

图4 电机转矩曲线

Fig.4 The torque curve of SRM

图5为电机无位置传感器运行的转速曲线。在

小波神经网络估计的换相信号控制下,电机能够平稳的运行于给定转速。

图5 电机转速曲线

Fig.5 The speed curve of SRM

在t =0.7s 时,增加负载转矩T L =0.5N ·m ,以验证开关磁阻电机无位置传感器控制系统的负载波动承受能力、电机的转速响应速度和系统的鲁棒性。结果分别如图6和图7所示。

图6 t =0.7s ,突加负载0.5N ·m 的电机转矩曲线

Fig.6 The torque curve with 0.5N ·m since t =0.7s

结果表明,在突加负载扰动下,电机能够稳定运行于给定转速,输出转矩能迅速增加且脉动保持

在较低水平,系统在无位置传感器下运行良好。

图7 t =0.7s ,突加负载0.5N ·m 的电机转速曲线 Fig.7 The speed curve with 0.5N ·m since t =0.7s

为了验证SRM 无位置传感器控制系统的调速

性能及速度响应能力,在t =0.7s ,将速度给定设为450r/min ;在t =1s ,将速度给定设为550r/min 。速度响应曲线如图

8所示。

图8 电机转速响应曲线

Fig.8 The speed response curve of SRM

由图8可以看出,在给定转速发生变化时,电

机能够及时跟踪给定速度,速度响应较快,静态误差小。

5 实验结果

为了验证文中方法,设计了基于TI 公司DSP 芯片TMS320F2812的开关磁阻电机控制系统,如图9

所示。

图9 开关磁阻电机控制系统

Fig.9 The configuration of SRM control system

控制系统中以TI 公司DSP 芯片TMS320F2812为主控制器,该芯片时钟周期高达150MHz ,适用

第23卷第7期夏长亮等开关磁阻电机小波神经网络无位置传感器控制 37

于复杂控制算法的实现,其在控制系统的作用主要有:电机电压、电流采样和模数转换,磁链估算,电机控制算法实现,小波神经网络运算,换相逻辑的确定,PWM信号输出,功率驱动保护,速度给定和显示等;功率变换器采用不对称半桥电路,主开关器件选用功率MOSFET;电流和电压信号经过放大隔离后,送至DSP的ADC单元;位置信号由霍尔位置传感器获得,送至DSP的CAP单元作为训练小波神经网络的开关信号样本。电机运行曲线如图10所示。

图10 SRM运行曲线

Fig.10 The operation curves of SRM

图10中,a、b为霍尔位置传感器输出信号曲线,c为单相绕组的开关信号,d和e分别为对应相绕组电流和电压波形。在图中所示运行条件下,利用DSP的ADC单元和SCI模块进行电流电压样本采集并传送至上位机,从而在Matlab中离线训练小波神经网络。实验中所用样本总数为4 850。

图11为经过标幺化处理的部分训练样本。图中a为单相绕组开关信号,图11b为相电流值,图11c 为磁链值。

离线训练完成后,将小波神经网络用于开关磁阻电机的换相信号在线估计,为了提高精度,小波神经网络的参数将进行在线调整。

图12为由机械位置传感器获得的单相绕组开关信号和小波神经网络在线估计的相绕组开关信号对比。图中a为由位置传感器获得的单相绕组导通信号,b为由小波神经网络在线辨识所得的对应相绕组开关信号。

实验结果表明,由离线训练在线调整的小波神经网络得到的相绕组开关信号和实际开关信号之间误差小,电机能够准确换相。

6结论

小波神经网络以小波函数作为神经网络的神经元,结合了小波变换的时频局部特性、变焦特性和神经网络的自学习、自适应和鲁棒性,具有很强的非线性逼近能力。本文利用小波神经网络建立电流、磁链和相绕组开关信号的非线性映射,从而实现开关磁阻电机的无位置传感器控制。实验结果表明,该方法所用神经网络结构简单、计算量小、在线运算时间短、易于实现,并且该控制系统具有较好的动态响应能力和鲁棒性,在负载波动时仍能稳定运行。

图11 小波神经网络训练样本

Fig.11 Training sample of

wavelet neural networks

图12 实际开关信号和小波神经网络在线估计所得的

开关信号的比较

Fig.12 The comparison of on-off signals between the reality and online estimation result by WNNs

参考文献

[1] 夏长亮,王明超.基于RBF神经网络的开关磁阻电

机单神经元PID控制[J].中国电机工程学报,2005,25(15):162-165.

Xia Changliang,Wang Mingchao.Single neuron PID

38 电工技术学报 2008年7月

control for switched reluctance motors based on RBF

neural network[J].Proceedings of the CSEE,2005,

25(15):162-165.

[2] Suresh G,Fahimi B,Rahman K M, et al.Inductance

based position encoding for sensorless SRM drives[C].

30th Annual IEEE Power Electronics Specialists

Conference,Charleston,SC,USA,1999:832-837.

[3] Elmas C H,Zelaya De La Parra. Position sensorless

operation of a switched reluctance drive based on

observer[C].Fifth European Conference on Power

Electronics and Applications,Brithton,UK,1993:

82-87.

[4] Ray W F,Al Bahadly I H.Sensorless methods for

determining the rotor position of switched reluctance

motors[C].Fifth European Conference on Power

Electronics and Applications,Brithton,UK,1993:

7-13.

[5] Paramasivam S,Arumugam R,Umamaheswari B, et

al.Accurate rotor position estimation for switched

reluctance motor using ANFIS[C].IEEE TENCON

2003/Conference on Convergent Technologies for the

Asia-Pacific Region,Bangalore,India,2003:

1493-1497.

[6] 夏长亮,文德,范娟,等.基于RBF神经网络的无

刷直流电机无位置传感器控制[J].电工技术学报,

2002,17(3):26-29.

Xia Changliang,Wen De,Fan Juan, et al.Based on

RBF neural network position sensorless control for

brushless DC motors[J].Transactions of China

Electrotechnical Society,2002,17(3):26-29.

[7] 夏长亮,文德,王娟.基于自适应人工神经网络的

无刷直流电机换相转矩波动抑制新方法[J].中国电

机工程学报,2002,22(1):54-58.

Xia Changliang,Wen De,Wang Juan.A new approach

of minimizing commutation torque ripple for brushless DC motor based on adaptive ANN[J].

Proceedings of the CSEE,2002,22(1):54-58. [8] 夏长亮,祈温雅,杨荣,等.基于混合递阶遗传算

法和RBF神经网络的超声波电动机自适应速度控

制[J]. 电工技术学报,2004,19(9):18-22.

Xia Changliang, Qi Wenya, Yang Rong, et al.

Adaptive speed control for ultrasonic motor based on

hybrid hierarchical genetic algorithm and RBF neural

network[J]. Transactions of China Electrotechnical

Society,2004,19(9):18-22.

[9] Mese E,Torrey D A.An approach for sensorless

position estimation for switched reluctance motors

using artificial neural networks[J].IEEE Transactions

on Power Electronics,2002,17(1):66-75.

[10] 夏长亮,王明超,史婷娜,等.基于神经网络的开

关磁阻电机无位置传感器控制[J].中国电机工程学

报,2005,25(13):123-128.

Xia Changliang,Wang Mingchao,Shi Tingna, et al.

Position sensorless control for switched reluctance

motors using neural network[J].Proceedings of the

CSEE,2005,25(13):123-128.

[11] 夏长亮,祁温雅,杨荣,等.基于RBF神经网络的

超声波电机参数辨识与模型参考自适应控制[J].中

国电机工程学报,2004,24(7):117-121.

Xia Changliang, Qi Wenya, Yang Rong, et al. Identif-

ication and model reference adaptive control for ultrasonic motor based on RBF neural network[J].

Proceedings of the CSEE,2004,24(7):117-121. [12] Wai Rongjong,Duan Rouyong,Lee Jengdao, et

al.Wavelet neural network control for induction

motor drive using sliding-mode design technique[J].

IEEE Transactions on Industrial Electronics,2003,

50(4):733-748.

[13] Chih Cheng Hung,Youngsup Kim, Tommy L

Coleman. A comparative study of radial basis function neural networks and wavelet neural networks

in classification of remotely sensed data[C]. ISSCI

2002 and IFMIP 2002,Orlando,FL,USA,2002:

455-461.

[14] 吕伟杰,刘鲁源.小波网络在直接转矩控制定子电

阻辨识中的应用[J].中国电机工程学报,2004,

24(4):116-119.

Lü Weijie,Liu Luyuan.Stator resistor identification

of induction motor in DTC system using wavelet

networks[J].Proceedings of the CSEE,2004,24(4):

116-119.

作者简介

夏长亮男,1968年生,博士,教授,博士生导师,研究方向为

电机系统及其控制。

谢细明男,1982年生,硕士研究生,研究方向为开关磁阻电机

及其控制。

开关磁阻电机速度控制

Journal of Electrical Engineering 电气工程, 2016, 4(1), 55-62 Published Online March 2016 in Hans. https://www.doczj.com/doc/f78629749.html,/journal/jee https://www.doczj.com/doc/f78629749.html,/10.12677/jee.2016.41008 Speed Control Strategy of Switched Reluctance Motor Zhou Du1,2, Dingxiang Wu2,3, Lijun Tang1,2 1School of Physics and Electronic Sciences, Changsha University of Science & Technology, Changsha Hunan 2Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Eletromagnetic Environments, Changsha Hunan 3Billion Set Electronic Technology Co, Ltd., Changsha Hunan Received: Mar. 1st, 2016; accepted: Mar. 19th, 2016; published: Mar. 24th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/f78629749.html,/licenses/by/4.0/ Abstract Aimed at research on starting mode and speed control of switched reluctance motor speed control system, a two-phase starting is adopted to start the electric, in order to increase the torque and reduce the torque ripple. A fuzzy adaptive PID control algorithm is proposed, and a switched re-luctance motor speed control system with STM32 + FPGA as the main controller is designed, ap-plying current chopping in low speed and angle position control mode in high speed, which has a certain effect on solving the problems of high overshoot, slow dynamic response and low accuracy. The experimental results show that the precision of the system speed is within 10 r/min, and the maximum overshoot is 15 r/min. Keywords Switched Reluctance Motor, Torque Ripple, Fuzzy Adaptive Tuning PID 开关磁阻电机速度控制 杜舟1,2,吴定祥2,3,唐立军1,2 1长沙理工大学物理与电子科学学院,湖南长沙 2近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南长沙 3长沙亿旭机电科技有限公司,湖南长沙

开关磁阻电机工作原理及其驱动系统

开关磁阻电机工作原理及其驱动系统 开关磁阻电机 Switched Reluctance Drivesystem, SRD 开关磁阻电机驱动系统(Switched Reluctance Drive system, SRD)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,起动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率范围内都具有高输出和高效率而且有很好的容错能力。这使得SR电机驱动系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能——电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能——发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。 开关磁阻电机的发展概况和发展趋势 “开关磁阻电机(Switched reluctance motor)”一词源见于美国学者 S.A.Nasarl969年所撰论文,它描述了这种电机的两个基本特征:①开关性——电机必须工作在一种连续的开关模式,这是为什么在各种新型功率半导体器件可以获得后这种电机才得以发展的主要原因;②磁阻性——它是真正的磁阻电机,定、转子具有可变磁阻磁路,更确切地说,是一种双凸极电机。开关磁阻电机的概念实际非常久远,可以追溯到19世纪称为“电磁发动机”的发明,这也是现代步进电机的先驱。在美国,这种电机常常被称为“可变磁阻电机(variable reluctance motor, VR电机)”一词, 但是VR电机也是步进电机的一种形式,容易引起混淆。有时人们也用“无刷磁阻电机(Brushless reluctance motor)”一词,以强调这种电机的无刷性。“电子换向磁阻电机(Electronically commutated reluctance motor)”一词也曾采用,从工作原理来看,甚至比“开关磁阻”的说法更准确—些,但也容易与电子换向的水磁直流电机相混淆。毫无疑问,正是由于英国 P.J.Lawrenson教授及其同事们的杰出贡献,赋予了现代SR电机新的意义,开关磁阻电机一词也因此逐渐为人们所接受和采用。 从电机结构和运行原理上看,SR电机与大步距角的反应式步进电机十分相似,因此有人将SR电机看成是一种高速大步距角的步进电机。但事实上,两者是有本质差别的,这种差别体现在电机设计、控制方法、性能特性和应用场合等方面,见表11-1。

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的

控制电机:开关磁阻电机

题目:开关磁阻电机

开关磁阻电机 学习《特种电机及其控制》这门课程,这要介绍了无刷直流电机及其控制、开关磁阻电机及其控制系统、步进电机及其控制,其中我最感兴趣的开关磁阻电机。下面我将对我所了解的开关磁阻电机做一总结。 一、发展背景 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的猛烈发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出优点,成为直流电机调速系统、交流电机调速系统和无刷直流电机调速系统强有力的竞争者,引起各国学者和企业界的广泛关注,目前开关磁阻电机已开始应用于工业、航空业和家用电器等各个领域。 开关磁阻电机的基本概念可追溯到19世纪40年代,1842年,英国的Aberdeen和Dafidson用两个U型电磁铁制造了由蓄电池供电的机车电动机。20世纪60年代,大功率晶闸管的出现为SR电机的研究发展提供了重要的物质条件。1967年,英国的Leeds大学开始对SR电机进行深入研究;直到1970年左右,研究结果表明:SR电机可以在单相电流下四象限运行,功率变换器无论是用晶体管还是用普通晶闸管,所需开关数都是最少的;电动机成本也明显低于同容量的感应电动机。20年代70年代初,美国福特公司研制出最早开关磁阻电机的调速系统,其结构为轴向气隙电动机,具有电动机和发电机运行状态和较宽范围调速的能力,适合于蓄电池供电的电动车辆的转动。1980年Leeds大学的Lawrenson教授及其同事总结出了自己的研究成果,发表了题为“Variable--Speed Switched Reluctance Motors”的论文,系统阐述了开关磁阻电机的基本原理与设计特点,并得出了新型磁阻电机的单位出力可以与交流感应电机相媲美甚至还略占优势的结论。1983年英国TASC公司推出了Oulton系列通用SRD调速产品,问世不久便受到了各国电气传动界的广泛重视。从1984年开始,我国许多单位先后开展了SRD研究,在借鉴国外经验的基础上,我国SR电机的研究发展很快。2000年,国内100KW以上的SR电机已应用于煤矿的采煤机,目前已将180KW的SR电机应用于地铁机车的牵引,应形成一些SRD系列商品,最

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

步进电机与开关磁阻电机

开关磁阻电机: 开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。 开关磁阻电机具有再生的能力,系统效率高: 对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点: (1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。 (2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。 (3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。 (4)功率变换器不会出现直通故障,可靠性高。 (5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。 (6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。 (7)在宽广的转速和功率范围内都具有高效率 (8)能四象限运行,具有较强的再生制动能力。 (9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。 开关磁阻电机的应用: 近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用 开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。 SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面: (1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。 (2)开关磁阻电机很容易通过采用适当的控制策略和系统设计满足电动车四象限运行的要求,并且还能在高速运行区域保持强有力的制动能力。 (3)开关磁阻电机有很好的散热特性,从而能以小的体积取得较大的输出功率,减小电机体积和重量。 (4)通过调整开通角和关断角,开关磁阻电机完全可以达到它激直流电机驱动系统良好的控制特性,而且这是一种纯逻辑的控制方式,很容易智能化,从而能通过重新编程或替换电路元件,方便地满足不同运行特性的要求。 (5)开关磁阻电机无论电机还是功率变换器都十分坚固可靠,无需或很少

开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

开关磁阻电动机原理

开关磁阻电动机原理 Switched Reluctance Motor 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引

力拉动转子旋转。 三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A 相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。

开关磁阻电机调速系统

开关磁阻电机调速系统 开关磁阻电机调速系统(Switched Reluctance Driver,简称SRD)是以现代电力电子与微机控制技术为基础的机电—体化产品。除了具有显著的节能效果外,开关磁阻电机的理论研究和实践证明,它与常用的三相异步电动机相比还有以下优点: 1.电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境; 2.起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象; 3.调速范围宽,控制灵活,易于实现各种特殊要求的转矩;λ λ 4.在宽广的转速和功率范围内都具有高效率; 5.损耗主要产生在定子,电机易于冷却,转子无永磁体,无高温退磁现象;λλ 6.转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本; 7.功率变换器不会出现直通故障,可靠性高;λ λ 8.能四象限运作,具有较强的再生制动能力; 开关磁阻电机调速系统(SRD) 开关磁阻电机调速系统(SRD)是当今世界最新、性能价格比最高的调速系统。它是一种基于改变供电电源频率的调速方式——交流变频调速系统应运而生。而开关磁阻电机调速系统(又称开关磁阻电机驱动系统)简称SRD系统,是它们中崭新的一种系统,并且已经是智能化和模块化,不仅调速性优越,而且各种保护功能也很完善,已在很多方面大量使用。这项技术一经问世,便以其宽广的调速范围,良好的机械特性,卓越的启动制动性能,节能,易维护等一系列突出优点而引起电气及其他行业的关注。SRD系统是磁阻电动机和电力电子技术相结合而产生的一种机电一体化装置,主要由SRM开关磁阻电动机、功率变换器、单片机(或DSP 芯片)、电流及位置检测器等五大部分组成。其组成与特点: 1.1开关磁阻电动机(Switched Reluctance Motor,简称SRM) 是系统中实现能量转换的部件, 它与传统的磁阻电动机相比,具有本质的区别。在结构上,SRM采用双凸极形式,即定子、转子均为凸极式构造;定子线圈采用集中式而不是分布式绕组;加在定子绕组上的电压为不连续的矩形波而非连续的正弦波。转子仅由硅钢片叠压而成,既无绕组也无永磁体,定子各极上绕有集中绕组。图2所示为8/6极(定子八极、转子六极)四相SRM剖面图. SRM有两种独特的运行方式:低速时采用电流斩波方式;高速时采用单脉冲角度控制方式。在电流斩波方式中,系统是通过调节相绕组电流的大小来控制转矩,因此能准确知道绕组中实际电流的大小,对电流进行反馈是很必要的;在角度位置控制方式中,系统通过调节触发角和关断角来实现对转矩的控制,此时电流己不再作为控制量,但为了防止系统过载或故障则要进行过流保护,所以系统中需要进行电流检测。 1.11开关磁阻电动机(SRM)工作原理遵循“磁阻最小原理”,通电后,磁路有向磁阻最小路径变或化的趋势。当转子凸极与电子凸极错位时,气隙大、磁阻大:一旦定子磁极绕组通

开关磁阻电机控制系统软件设计

开关磁阻电机控制系统软件设计 开关磁阻电机SRM(Switched Reluctance Motor)是随着电力电子、微电脑和控制技术的迅猛发展而出现的一种新型调速系统,具有结构简单、运行可靠及效率高等突出优点,成为交流、直流和无刷直流电动机调速系统强有力的竞争者,引起各国学者和企业的广泛关注。 1 基本控制策略 开关磁阻电机基本控制策略主要包括电流斩波控制(CCC)、电压PWM 控制、角度位置控制(APC)三种控制策略。 电流斩波控制的优点是可限制电流峰值的增长,保护开关器件的安全,并起到良好有效的调节效果,因此适用于低速调速系统。当相电流超过约定的上限电流值时,则主开关关断,当相电流低于约定的下限电流值时,则组合开关开通,从而实现电流斩波控制效果。 电压PWM控制是通过调整占空比,来调节相绕组的平均电压,以改变相绕组电流的大小,从而实现转速和转矩的调节,电压PWM控制的特点是通过调节相绕组电压的平均值,进而能间接地限制和调节相电流,因此既能用于高速调速系统,又能用于低速调速系统,而且控制也较简单。 角度位置控制是指对开通角和关断角的控制。它的实质就在于输入电压保持不变而通过改变主开关的开通角和关断角来调节电流,以达到调节电机转矩的目的。角度控制的优点是转矩调节范围较大,可允许多相同时通电,以增加电机输出转矩,可实现效率最有控制和转矩

最优控制。 为了实现开关磁阻电机良好的调速性能,该软件设计采用以下组合控制策略,即电机基速以下运行时,采用电流斩波控制方式;在中低速下,采用电压PWM控制方式;而在高速运行时,采用角度位置控制方式。 2 软件设计 软件采用前后台系统作为软件框架,分为主程序和中断程序两部分,相较于现有控制系统软件设计中的多中断程序,该软件设计仅采用了一个定时中断,是程序更简洁,增加了程序的可读性及可移植性,同时也有利于程序的进一步扩充与完善。现有控制系统软件中多数使用多中断设计,其中包括计算电机转速使用的捕获中断,获取电机位置使用一路或两路外部中断,电流采样时使用的DMA中断,以及一至两个定时中断,这些中断不仅增加了程序的复杂性,同时也降低了软件的可靠性。 在软件设计中,重点和难点就是如何获得较好的斩波效果,而软件设计的好坏直接影响了斩波效果的好坏。在现有的软件设计中,一般是将各相电流通过ADC采样,再经DMA通道传输,同时产生一个DMA 中断,然后在一个定时中断(定时中断时间一般为50us至100us)中实现电流斩波。而这种设计会产生两个问题。其一,因为要实现其他功能,定时中断时间不能进一步缩短,而这对电流斩波而言,时间间隔又太长,以50us为例,电流可能会在50us的时间中上升40A。其二,DMA中断优先级要高于定时中断,这可能会导致定时中断的执

开关磁阻电机特性的最优控制

开关磁阻电机特性的最优控制 摘要:本文介绍开关磁阻电机的特性,为获得电机或电机模拟转换的最大效率和电磁转矩的最小波动。控制曲线的变量—开通角和关断角(或是导通角),以及每一项的电压都可以通过一个简单的数学模型估算来获得。集中参数测量的模型需要考虑电机的磁路饱和,并且功率变换器参数的选择要确保系统的低功耗。共调查研究了两种典型开关磁阻电机,定转子齿数比分别为Ns/Nr=8/6 和6/4,310电源整流供电。时间曲线可以从数学模型和电机特性的最优估算得出,而且可以通过某种特殊的测试平台来验证其有效性。 关键字:磁阻电动机,模型,控制 绪论 对电力电子元件和设备的不断改进和其高速发展使得人们增强了对开关磁阻电机应用研究的兴趣。开关磁阻电机具有直流系列典型电机的特点,这使得它可以用于车辆的驱动部分。角速度的宽范围高效率调速使得它可以应用于大功率驱动和直流驱动。转子上无需供电并具有简单稳固的结构使得电机适用于超高速驱动。开关磁阻电机另一可取的特点是当电机停转时可直接控制电机的转子位置,也可以对开关磁阻电机进行转矩控制[2,6,7,10]。开关磁阻电机也有缺点,就是其在高速运行时会出现转矩脉动和振动[1]。 如图4所示,开关磁阻电机的一般功率变换结构都是一个不对称的半桥电路。电磁转矩的产生和电机定子绕组的电流方向无关,而且电机可实施()e T ,ω平面的四象限运行。对导通相通电的顺序可以改变电机的转向,相导通角的位置,是在提前与极轴还是落后与极轴决定着电机的启动/制动模式。角度控制和扭矩控制依赖于一下三个变量:开通角(on α),关断角(off α),或是导通角z α =on α-off α,相电压的控制方式是脉宽调制(PWM)模式。通过控制这三个变量,对他们不同的组合都可以在达到() T ,ω平面上的同一电机特性,但这会导致不同的电流,效率和转矩脉动[4, 5, 9, 10]。所以选择开关磁阻电机驱动系统的必备参数来找到最佳的控制特性是至关重要的。 在此论文中,研究用一种准最优控制方式控制开关磁阻电动机驱动来找到控制特性的最大效率和最小转矩脉动。实现这个目标需要用精确的原始的数学模型,在众多重复估算中具有简单、有效的特点,必须在动态过程中需找这个最佳控制特性。此集中参数测量模式要考虑到磁路的饱和,功率变换元器件的损耗以及因此对电机效率的影响。

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容 1 开关磁阻电机的基本原理以及结构 开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。SRM 的定转子极数必须满足如下约束关系: s r s N =2km N = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。 SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。在该过程中电机吸收电能。关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。以此类推,顺次给A→B→C→D相循环励磁,在惯性和轴向力的作用下,转子将一直逆着励磁顺序旋转,从而完成自同步运行。同理若改变励磁顺序为C→B→A→D,则转子沿顺时针方向转动。由此可以看出, SRM与直流电机不同,其运行方向与相电流方向无关,而仅与相绕组通电顺序有关。 图1-2开关磁阻电机调速系统构成

机电控制作业开关磁阻电机及matlab仿真

开关磁阻电机 一、概述 开关磁阻电动机结构简单、可靠性高、恒转矩、恒功率而且调速性能好(覆盖功率范围10W~5MW的各种高、低速驱动调速系统)、价格便宜、鲁棒性好等优点引起了各国电气传动界的广泛重视,由其构成的调速系统兼有直流传动和普通交流传动的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无级调速系统。这种新型调速系统使开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用。 开关磁组电机调速系统之所以能在现代调速系统中异军突起,主要是因为它卓越的系统性能,主要表现在: (1) 电动机结构简单、成本低、可用于高速运转。 (2)功率电路简单可靠。 (3)系统可靠性高。 (4)起动转矩大,起动电流低。典型产品的数据是:起动电流为额定电流的15%时, 获得起动转矩为100%的额定转矩;起动电流为额定电流的30%时,起动转矩叮 达其额定转矩的250%。 (5)适用于频繁起停及正反向转换运行。 (6)可控参数多,调速性能好。控制开关磁阻电动机的主要运行参数和常用方法至少 有四种:相导通角、相关断角、相电流幅值、相绕组电压。 (7)效率高,损耗小。以3kw SRD为例,其系统效率在很宽范围内都是在87% 以上,这是其它一些调速系统不容易达到的。 (8)可通过机和电的统一协调设计满足各种特殊使用要求。 二、开关磁阻电动机的结构 图1-1开关磁阻电机结构图

典型的三相开关磁阻电动机的结构如图1-1所示。其定子和转子均为凸极结构,图示电机的定子有8个极,转子有6个极。定子极上套有集中线圈,两个空间位置相对的极 上的线圈顺向串联构成一相绕组,图2-1中只画出了A相绕组;转子由硅钢片叠压而成,转子上无绕组。该电机则称三相8/6极开关磁阻电动机。在结构形式及工作原理上,开关磁阻电动机与大步距反应式步进电机并无差别;但在控制方式上步进电机应归属于他控式变频,而开关磁阻电动机则归属于自控式变频;在应用上步进电机都用作“控制电机”而开关磁阻电机则是拖动用电机,因此电机设计时所追求的目标不同而使电机的设计参数不同。 与反应式步进电动机相似,开关磁阻电动机是双凸极可变磁阻电动机。图1-1给出了以8/6极开关磁阻电机为例的结构原理图,图中仅给出了一相的绕组及外围功率开关电路,从这个结构原理图中可以清晰的看到,开关磁阻电动机是双凸极结构,其转子上没有任何形式的绕组,也无永磁体,而定子上只有简单的集中绕组,其中径向相对的两个绕组构成一相。电动机每一相中流过的电流是由外围功率开关电路中的开关根据转子位置的变化,进行相应的通断而获得的。 图1-1中给出的开关磁阻电动机是四相的,通常情况下开关磁阻电动机可以设计成多种不同相数的结构,如两相、三相、四相或更多相,当相数增加时其结构将变得更复杂,相应的外围电路所使用的器件也相应增加。开关磁阻电动机极数的设计也有多种形式,但是定、转子极数和相数要遵循一定的关系。即定子极数应为相数的2倍或2的整数倍; 而转子极数应不等于定子极数且一般转子极数少于定子极数但都是偶数极[2]。由于开关磁阻电动机相数与极数的设计,低于三相的电动机没有自起动能力,对于有自启动、四象限运行要求的驱动场合,应选用表1-1所对应的定、转子极数组合方案。 表2-1 开关磁阻电动机各种方案

开关磁阻电机原理动画演示_说明

开关磁阻电动机原理 资料来源:https://www.doczj.com/doc/f78629749.html,/zindex01.html 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引力拉动转子旋转。

三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。 磁阻电机工作原理示意图-1 为了使转子继续转动,在转子转到30度前已切断A相电源在30度时接通B相电源,磁通从最近的转子齿极通过转子铁芯,见下左图,于是转子继续转动。中间图是转子转到40度的图,右面图是转到50度的图,磁力一直牵引转子转到60度为止。 磁阻电机工作原理示意图-2

开关磁阻电机的电磁设计方法

2010 年5 月 摘要 开关型磁阻电动机驱动系统(Switched Reluctance Drive,简称SRD电动机)。是20世纪80年代迅猛发展起来的一种新型调速电机驱动系统。它是由功率变换电路、双凸极磁阻电机、控制器及位置检测器构成。它的结构极其简单,调速范围宽,调速性能优异,而且在整个调速范围内都具有较高的效率,系统可靠性高,是各国研究和开发的热点之一。 本文介绍了开关磁阻电机的发展历史,应用领域以及它的优点;对三相6/4结构的开关磁阻电机与四相8/6结构的开关磁阻电机进行了比较;对开关磁阻电机的电磁设计与参数优化进行了分析与研究,简单介绍了ANSYS软件在开关磁阻电机电磁分析中的应用;提出8/6结构开关磁阻电机的一种设计方案;并对开关磁阻电机的磁通波形和电机损耗进行了分析。 关键词: 开关磁阻电机,磁场,电磁设计,参数优化

ABSTRACT The switched reluctance drive (SRD) is a new-type drived-electromotor system which develops rapidly since 1980, and consists of power converter circuits、the doubly-salient reluctance motor、the controller and the examination of position. The structure of the SRD is simple. It has a wide range and excellent performance in speed. It also has a high efficiency and high reliability. So the SRD is one of the hot spots which is studied and designed all over the world. This thesie introduced the SRD development history, the application domain as well as its merit; comparison to the three-phase 6/4 structure SRD with four-phase 8/6 structure SRD overall performance. also analysis and research SRD electromagnetism design and parameter optimization, and introduced ANSYS software in SRD electromagnetism analysis application; Proposes 8/6 structure SRD one kind of design proposal; And analysis to the switched reluctance drive magnetic flux profile and the loss of machine. Keywords:switched reluctance motor, magnetic field, electromagn- etism design, parameter optimization

开关磁阻电机原理和应用

开关磁阻电机 开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。 其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。 特征 开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 优点 ◆其结构简单,价格便宜,电机的转子没有绕组和磁铁。 ◆电机转子无永磁体,允许较高的温升。由于绕组均在定子上,电机容易冷却。效率高,损耗小。 ◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。 ◆转子上没有电刷结构坚固,适用于高速驱动。 ◆转子的转动惯量小,有较高转矩惯量比。 ◆调速范围宽,控制灵活,易于实现各种再生制动能力。 ◆并具频繁启动(1000次/小时),正向反向运转的特殊场合使用。 ◆且启动电流小,启动转矩大,低速时更为突出。 ◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。 ◆可通过机和电的统一协调设计满足各种特殊使用要求。 缺点 其工作原理决定了,如果需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。 因其要使用位置传感器,增加了结构复杂性,降低了可靠性。 对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会体现的更加明显。 如果单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要加入更加复杂的算法。 另外,运行时噪音和振动较大、非线形性强也是开关磁阻电机需要解决的问题。 目前国内实用的磁阻电机属于初级阶段,部分产品控制相对粗放,电机的响应速度慢、低速下的脉动大,难以实现较高的控制精度。 结构原理 双凸极结构

开关磁阻电机控制策略分析

开关磁阻电机控制策略研究 摘要:开关磁阻电机驱动系统(SRD)是近20年得到迅速发展的一种交流调速系统。其结构简单、工作可靠、效率高和成本较低等优点而具有相当的竞争力。本文首先介绍了开关磁阻电机控制策略的研究现状和趋势,推导了开关磁阻电机的数学模型,然后详细介绍了两步换相控制、基于转矩分配函数的转矩控制、智能控制、直接瞬时转矩控制等控制策略。又基于Matlab/Simulink仿真验证了开通角、关断角对电机电流转矩的影响,最后得出以转矩为控制对象的新型控制策略仍将进一步发展。 关键词:开关磁阻电机;转矩分配函数;直接瞬时转矩控制; Control Method of Switch Reluctant Motor ‘ Abstract: Switched reluctance motor drive system (SRD) is a kind of ac speed regulating system with nearly 20 years rapid development .Its simple structure, reliable operation, high efficiency and low cost advantages are quite competitive.This dissertation first introduces the research status and the control strategy of the switched reluctance motor trend, the mathematical model of the switch magneto is deduced, and then introduced the two-step commutation control, based on the torque distribution function of torque control, intelligent control, direct instantaneous torque control and so on.And based on the Matlab/Simulink , the influence of the opening Angle, shut off the Angle to the motor torque were verified, finally concluded that the new control strategy will continue to develop further with the torque as the object. Key words: switched reluctant motor; torque share function ; direct instantaneous torque control(DITC)

相关主题
文本预览
相关文档 最新文档