当前位置:文档之家› 2013年云南省数据库入门大纲

2013年云南省数据库入门大纲

1、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].wedge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,

2、本题要求建立有序的循环链表。从头到尾扫描数组A,取出A[i](0<=iLinkedList creat(ElemType A[],int n)
//由含n个数据的数组A生成循环链表,要求链表有序并且无值重复结点
{LinkedList h;
h=(LinkedList)malloc(sizeof(LNode));//申请结点
h->next=h; //形成空循环链表
for(i=0;i{pre=h;
p=h->next;
while(p!=h && p->data{pre=p; p=p->next;} //查找A[i]的插入位置
if(p==h || p->data!=A[i]) //重复数据不再输入
{s=(LinkedList)malloc(sizeof(LNode));
s->data=A[i]; pre->next=s; s->next=p;//将结点s链入链表中
}
}//for
return(h);
}算法结束

3、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。
void Platform (int b[ ], int N)
//求具有N个元素的整型数组b中最长平台的长度。
{l=1;k=0;j=0;i=0;
while(i{while(iif(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台
i++; j=i; } //新平台起点
printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);
}// Platform

4、由二叉树的前序遍历和中序遍历序列能确定唯一

的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rposk=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}

5、设一组有序的记录关键字序列为(13,18,24,35,47,50,62,83,90),查找方法用二分查找,要求计算出查找关键字62时的比较次数并计算出查找成功时的平均查找长度。
6、已知有向图G=(V,E),其中V={V1,V2,V3,V4,V5,V6,V7},E={,,,,,,,,}
写出G的拓扑排序的结果。
G拓扑排序的结果是:V1、V2、V4、V3、V5、V6、V7


7、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

8、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
9、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除

单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

10、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。
#include
typedef int datatype;
typedef struct node
{datatype data;
struct node *next;
}listnode;
typedef listnode *linklist;
void jose(linklist head,int s,int m)
{linklist k1,pre,p;
int count=1;
pre=NULL;
k1=head; /*k1为报数的起点*/
while (count!=s) /*找初始报数起点*/
{pre=k1;
k1=k1->next;
count++;
}
while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/
{ p=k1; /*从k1开始报数*/
count=1;
while (count!=m) /*连续数m个结点*/
{ pre=p;
p=p->next;
count++;
}
pre->next=p->next; /*输出该结点,并删除该结点*/
printf("%4d",p->data);
free(p);
k1=pre->next; /*新的报数起点*/
}
printf("%4d",k1->data); /*输出最后一个结点*/
free(k1);
}
main()
{linklist head,p,r;
int n,s,m,i;
printf("n=");
scanf("%d",&n);
printf("s=");
scanf("%d",&s);
printf("m=",&m);
scanf("%d",&m);
if (n<1) printf("n<0");
else
{/*建表*/
head=(linklist)malloc(sizeof(listnode)); /*建第一个结点*/
head->data=n;
r=head;
for (i=n-1;i>0;i--) /*建立剩余n-1个结点*/
{ p=(linklist)malloc(sizeof(listnode));
p->data=i;
p->next=head;
head=p;
}
r->next=head; /*生成循环链表*/
jose(head,s,m); /*调用函数*/
}
}

11、设一棵二叉树的结点结构为 (LLINK,INFO,RLINK),ROOT为指向该二叉树根结点的指针,p和q分别为指向该二叉树中任意两个结点的指针,试编写一算法ANCESTOR(ROOT,p,q,r),该算法找到p和q的最近共同祖先结点r。
12、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题

,这里只给出判断有向图是否有根的算法。
int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。
const n=用户定义的顶点数;
AdjList g ; //用邻接表作存储结构的有向图g。
void dfs(v)
{visited [v]=1; num++; //访问的顶点数+1
if (num==n) {printf(“%d是有向图的根。\n”,v); num=0;}//if
p=g[v].firstarc;
while (p)
{if (visied[p->adjvex]==0) dfs (p->adjvex);
p=p->next;} //while
visited[v]=0; num--; //恢复顶点v
}//dfs
void JudgeRoot()
//判断有向图是否有根,有根则输出之。
{static int i ;
for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。
{num=0; visited[1..n]=0; dfs(i); }
 }// JudgeRoot
算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。



13、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
29. ① 试找出满足下列条件的二叉树
1)先序序列与后序序列相同 2)中序序列与后序序列相同
3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

14、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。
15、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

16、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下

标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

17、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。
(1).请各举一个结点个数为5的二部图和非二部图的例子。
(2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

18、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

19、设

有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
20、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。
51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

21、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}

22、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)
//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.
{i=a; j=d; flag=0; //flag是成功查到x的标志
while(i<=b && j>=c)
if(A[i][j]==x) {flag=1;break;}
else if (A[i][j]>x) j--; else i++;
if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.
else printf(“矩阵A中无%d 元素”,x);
}算法search结束。
[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x
23、对二叉树的某层上的结点进行运算,采用队列结构按层次遍历最适宜。
int LeafKlevel(BiTree bt, int k) //求二叉树bt 的第k(k>1) 层上叶子结点个数
{if(bt==null || k<1) return(0);
BiTree p=bt,Q[]; //Q是队列,元素是二叉树结点指针,容

量足够大
int front=0,rear=1,leaf=0; //front 和rear是队头和队尾指针, leaf是叶子结点数
int last=1,level=1; Q[1]=p; //last是二叉树同层最右结点的指针,level 是二叉树的层数
while(front<=rear)
{p=Q[++front];
if(level==k && !p->lchild && !p->rchild) leaf++; //叶子结点
if(p->lchild) Q[++rear]=p->lchild; //左子女入队
if(p->rchild) Q[++rear]=p->rchild; //右子女入队
if(front==last) {level++; //二叉树同层最右结点已处理,层数增1
last=rear; } //last移到指向下层最右一元素
if(level>k) return (leaf); //层数大于k 后退出运行
}//while }//结束LeafKLevel


相关主题
文本预览
相关文档 最新文档