当前位置:文档之家› 图像处理课程课件

图像处理课程课件

数字图像处理教学大纲(2014新版)

数字图像处理 课程编码:3073009223 课程名称:数字图像处理 总学分: 2 总学时:32 (讲课28,实验4) 课程英文名称:Digital Image Processing 先修课程:概率论与数理统计、线性代数、C++程序设计 适用专业:自动化专业等 一、课程性质、地位和任务 数字图像处理课程是自动化专业的专业选修课。本课程着重于培养学生解决智能化检测与控制中应用问题的初步能力,为在计算机视觉、模式识别等领域从事研究与开发打下坚实的理论基础。主要任务是学习数字图像处理的基本概念、基本原理、实现方法和实用技术,并能应用这些基本方法开发数字图像处理系统,为学习图像处理新方法奠定理论基础。 二、教学目标及要求 1.了解图像处理的概念及图像处理系统组成。 2.掌握数字图像处理中的灰度变换和空间滤波的各种方法。 3.了解图像变换,主要是离散和快速傅里叶变换等的原理及性质。 4.理解图像复原与重建技术中空间域和频域滤波的各种方法。 5. 理解解彩色图像的基础概念、模型和处理方法。 6. 了解形态学图像处理技术。 7. 了解图像分割的基本概念和方法。 三、教学内容及安排 第一章:绪论(2学时) 教学目标:了解数字图像处理的基本概念,发展历史,应用领域和研究内容。通过大量的实例讲解数字图像处理的应用领域;了解数字图像处理的基本步骤;了解图像处理系统的组成。 重点难点:数字图像处理基本步骤和图像处理系统的各组成部分构成。 1.1 什么是数字图像处理 1.2 数字图像处理的起源

1.3.1 伽马射线成像 1.3.2 X射线成像 1.3.3 紫外波段成像 1.3.4 可见光及红外波段成像 1.3.5 微波波段成像 1.3.6 无线电波成像 1.3.7 使用其他成像方式的例子 1.4 数字图像处理的基本步骤 1.5 图像处理系统的组成 第二章:数字图像基础(4学时) 教学目标:了解视觉感知要素;了解几种常用的图像获取方法;掌握图像的数字化过程及其图像分辨率之间的关系;掌握像素间的联系的概念;了解数字图像处理中的常用数学工具。 重点难点:要求重点掌握图像数字化过程及图像中像素的联系。 2.1 视觉感知要素(1学时) 2.1.1 人眼的构造 2.1.2 眼镜中图像的形成 2.1.3 亮度适应和辨别 2.2 光和电磁波谱 2.3 图像感知和获取(1学时) 2.3.1 用单个传感器获取图像 2.3.2 用条带传感器获取图像 2.3.3 用传感器阵列获取图像 2.3.4 简单的图像形成模型 2.4 图像取样和量化(1学时) 2.4.1 取样和量化的基本概念 2.4.2 数字图像表示 2.4.3 空间和灰度级分辨率 2.4.4 图像内插 2.5 像素间的一些基本关系(1学时) 2.5.1 相邻像素 2.5.2 临接性、连通性、区域和边界 2.5.3 距离度量 2.6 数字图像处理中所用数学工具的介绍 2.6.1 阵列与矩阵操作

《数字图像处理》课程学习心得

《数字图像处理》课程学习心得 导读:本文《数字图像处理》课程学习心得,仅供参考,如果能帮助到您,欢迎点评和分享。 《数字图像处理》课程学习心得(一) 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它

却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1、数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或

(完整版)学习数字图像处理心得

学习数字图像处理心得 姓名:黄冬芬学号:070212051 班级:12级通信工程1班数字图像是我们生活中接触最多的图像种类,他伴随人们的生活、学习、工作,并在军事、工业和医学方面发挥着极大地作用,可谓随处可见,尤其在生活方面作为学生的我们,会在外出旅游,生活和工作中拆下许多数字照片,现在已进入信息化时代,图片作为信息的重要载体,在信息传输方面有着不可替代的作用,并且近年来图像处理领域,数字图像处理技术取得了飞速的发展,作为计算机类专业的大学生更加有必要对数字图像处理技术有一定的掌握,而大多数人对于数字图像的知识也很模糊,比如各类繁多的各种图像格式之间的特点,不同的情况该用何种图像格式,还有关于图像的一些基本术语也不甚了解。尤为重要的是一些由于拍摄问题导致的令人不甚满意的照片该如何处理,或者如何对一些照片进行处理实现特殊的表现效果。所以对于数字图像处理这门课大家有着极大地兴趣。我们班有的同学学过Photoshop软件,因此对于数字图像处理有了一些基础,更加想利用这门课的学习加深自己数字图像处理的理解并提高在数字图像处理方面的能力。 通过这8周的学习,我们虽然还没有完全掌握数字图像处理技术,但是收获不少,对于数字图像方面的知识有了更深的了解。更加理解了数字图像处理的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关的术语有了明确的认识,比如,常见的像素(衡量图像的大小)、分辨率(衡

量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口但都很模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图片的边缘等细节。而平滑处理的目的是消除噪声、模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常见的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了坚实的基础。更重要的是学习到了数字图像处理的思想。通过学习也是对C++编程应用的很好的实践和复习。 当然通过8周的学习还远远不够,也有许多同学收获甚微,我总结了下大家后期学习的态度与前期学习的热情相差很大的原因。刚开始大家是有很高的热情去学习这门课,可随着这门课的更深入的学习,大家渐渐发现课程讲授内容与自己起初想学的实用图像处理技术是有很大的差别的,大家更着眼于如何利用软件、技术去处理图像而得到满意的效果,或者进行一些图像的创意设计,可是课程的内容更偏向于如何通过编程实现如何多图像进行一些类似锐化、边缘提取、模糊、去除噪声等基础功能的实现,这其中涉及很多算法、函数,需要扎实的数学基础和编程基础,并且需要利用大量时间在课下编写代码,并用visual c++软件实现并进行调试,然而大部分人的C++实践能力和编程能力还有待提高,尤其是对于矩阵进行操作的编程尤为是个考验。 在老师授课方面的建议是可以再课上多进行一些具体操作,这

数字图像处理学习报告

数字图像处理学习报告 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1. 数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要 求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易 分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的 退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。

数字图像处理知识点总结

数字图像处理知识点总结 第一章导论 1.图像:对客观对象的一种相似性的生动性的描述或写真。 2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段), 按空间坐标和亮度的连续性(模拟和数字)。 3.图像处理:对图像进行一系列操作,以到达预期目的的技术。 4.图像处理三个层次:狭义图像处理、图像分析和图像理解。 5.图像处理五个模块:采集、显示、存储、通信、处理和分析。 第二章数字图像处理的基本概念 6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0

数字图像处理学习笔记

1. 图片的打开 2. 图片的显示 3. 图片的大小 4. 图片的保存 5. 数据类间的转换 6. 灰度变换函数 6.1 imadjust 6.2 对数和对比度拉伸变换 7. 生成并绘制图像的直方图 8.直方图均衡化 9. 直方图匹配法(规定化) 10. 加法运算--给图像加高斯噪声后用求平均的方法除噪 11. 减法运算 12. 乘法运算 13. 除法运算 14. 逻辑运算 15. 线性空间滤波 16. 非线性空间滤波 17. 可视化二位DFT 18. 填充滤波 19. 从空间滤波器获得频域滤波器 20. 低通频域滤波器 21. 线框图与表面图 22. 基本高通滤波器 23. 高通滤波器的使用 24. 高频强调滤波 25. 选择感兴趣的部分 26. 空间噪声滤波器(椒盐噪声) 27. 自适应中值滤波 28. 模糊噪声图像的建模 29. Lucy-Richardson非线性复原 30. 计算一阶熵估计 31. 计算两幅图像的比率imratio() 32. 霍夫曼编码及解码 33. 计算均方误差的平均值的平方根compare() 34. 使用函数vistformfwd()的直观仿射变换 35. 对图像应用空间变换 36. 彩色图像处理(一) 37. 小波变换wave2gray()显示变换系数 38. 小波的方向性和边缘检测 39. 基于小波的图像平滑或模糊 40. 渐进重构

41. 像素间的冗余--无损编码预测 42. 心理视觉冗余--利用无损预测和霍夫曼编码的混合IGS量化 43. JPEG压缩 44. JPEG2000压缩 45. 膨胀的简单应用 46. 腐蚀的简单应用 47. 开运算、闭运算与imopen()、imclose() 48. 开运算、闭运算与imopen()、imclose()----2 49. 击中或击不中运算 50. endpoints()函数的使用 51. 图像的细化处理--bwmorph()函数 52. 图像的骨骼化 53. 计算和显示连接分量的质心--bwlabel()函数 54. 由重构做开运算imreconstruct()函数 55. 填充孔洞imfill()函数 56. 清除边界对象--imclearborder()函数 57. 膨胀和腐蚀 58. 使用开运算和闭运算做形态平滑 59. 使用顶帽变换 60. 颗粒分析 61. 使用重构删除复杂图像的背景 62. 检测点 63. 检测指定方向的线 64. 使用Sobel检测器提取边缘 65. sobel,canny,log边缘检测器的比较 66. Hough变换的简单说明 67. Hough变换做线检测和连接 68. 计算全局阈值 69. 标记符控制的分水岭分割 70. 使用梯度和分水岭变换分割灰度图像 1.图片的读取 I=imread('Lena512.bmp');%读取图像,如果图像位于工作空间内,可以直接写5.jpg 2.图片的显示 imshow(I);%显示图像

浅谈学习数字图像处理技术地认识

数字图像处理结课论文 :X.X.X 学号:0.0.0.0.0.0.0.0专业:通信工程

浅谈学习数字图像处理技术的认识 摘要 数字图像处理技术是一门将图像信号转换成数字信号并利用计算机对其进行 处理的技术。图像信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的,而人眼获得的都是图像信息。i通过数字图像处理技术对获得的图像信息进行处理来满足或者实现人们的各种需要。从某些方面来说,对图像信息的处理甚至比图像信息本身更重要,尤其是在这个科技迅猛发展的21世纪。 Abstract Digital image processing technology is a keeper image signals into digital signals and processed by computer technology. Images are a major source of human access to outside information, because some 70% of information was obtained through human eyes, are the image information obtained by the human eye. By means of digital image processing technology to obtain image information processing to meet or achieve people's various needs.In some ways, image information processing even more important than the image itself, especially in the rapid development of science and technology of the 21st century. 关键词 数字图像、处理、应用 引言 经过一个学期的学习,我对数字图像处理技术有了一个更加深刻的了解,做了几次MATLAB数字信号处理实验,知道了如何利用MATLAB编程来实现数字图像处理技术的一些基本方法,以及如何使用PHOTOSHOP软件来做一些简单的图像处理。 本文主要研究数字图像处理的特点,数字图像处理的分类, 数字图像处理的容,数字图像处理的实例,数字图像处理的具体实验举例,以及数字图像处理技术在日常生活中的一点应用 一、数字图像处理的特点 1.0处理精度高 按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。试想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。

数字图像处理学习心得

经过这几周地学习,我从一个什么都不了解地小白,变成了一个明白这门课程地意义地初学者,觉得学到了不少有用同时又很有趣地知识,也对数字图象处理有了新地理解.老师从数字图像处理地意义讲起,中间介绍了许多目前仍在应用地相关技术,让我明白了图像处理在我们生活中地重要性,下面我来谈谈我自己地学习成果和感受. 图像处理是指对图像信息进行加工,从而满足人类地心理、视觉或者应用地需求地一种行为.图像处理方法一般有数字法和光学法两种,其中数字法地优势很明显,已经被应用到了很多领域中,相信随着科学技术地发展,其应用空间将会更加广泛.数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理地过程.数字图像处理是从世纪年代以来随着计算机技术和地发展而产生、发展和不断成熟起来地一个新兴技术领域.数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到地电信号进行相应地数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像地实用性.其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理地数据量一般很大,因此处理速度有待提高.目前,随着计算机技术地不断发展,计算机地运算速度得到了很大程度地提高.在短短地历史中,它却广泛应用于几乎所有与成像有关地领域,在理论上和实际应用上都取得了巨大地成就.个人收集整理勿做商业用途 从定义上来说,图像处理是指按照一定地目标,用一系列地操作,来“改造”图像地方法. 我觉得字面上地意思就是,对图像进行处理,得到自己想要地效果.图象处理地内容有很多种:几何处理,算术处理、图像增强、图像复原、图像重建、图像识别、图像压缩.而目前进行图像处理就是指用计算机对图像进行空域法和变换域法.资料上介绍说,数字图象处理起源于世纪年代,那时第一次通过海底电缆传输图像;年人们用电报打印机采用特殊字符在编码纸带中产生图像;年在信号两次穿越大西洋后,从穿孔纸带得到数字图像;年从伦敦到纽约用级色调设备传送照片.到了世纪年代早期,计算机发展,有了第一台可执行有意义地图像处理任务地大型计算机,美国利用航天器传送了第一张月球照片.从世纪年代末到年代初,开始用于医学图像、地球遥感、天文学等领域,如图像和射线图像.至今,数字图象处理仍旧广泛应用于工业、医学、地理学、考古学、物理学、天文学等多个领域.比如,太空技术中地航天技术、空间防御、天文学;生物科学地生物学和医学;刑事(物证)上地指纹、人脸分析;国防方面地军事探测,导弹目标识别;工业应用中地产品检测还有日常生活中地照片编辑、影视制作.个人收集整理勿做商业用途 从概念上来说,数字图像用(,)表示一幅图像,,,为有限、离散值.图像处理涉及到图像地分析和计算机视觉,其中分为低级处理、中级处理、高级处理.低级处理是指输入输出均为图像(如图像缩放、图像平滑);中级处理是输入图像,然后输出提取地特征(如区域分割、边界检测);高级处理则是理解识别地图像(如无人机驾驶,自动机器人).个人收集整理勿做商业用途 数字图像处理地几个基本目地是: 图像输入>图像处理(增强、复原、编码和压缩)>图像输出.以人为最终地信息接收者,其主要目地是改善图像地质量.个人收集整理勿做商业用途 图像输入>图像预处理(增强、复原)>图像分割>特征提取>图像分类>图像输出.另一类图像处理以机器为对象,目地是使机器或计算机能自动识别目标,称为图像识别.个人收集整理勿做商业用途 图像输入>图像预处理>图像描述>图像分析和理解>图像解释.利用计算机系统解释图像,实现类似人类视觉系统理解外部知识,被称为图像理解或计算机视觉.其正确地理解要有知识地引导,与人工智能等学科有密切联系.当前理论上有不小进展,但仍是一个有待进一步探索地领域.个人收集整理勿做商业用途

数字图像处理学(第二版)答案

第四章答案 1.图像增强的目的是什么? 其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更适用。2.什么是直方图? 直方图就是反映一副图像中的灰度级与出现这种灰度的概率之间关系的图形。 3.直方图修改的技术基础是什么? 通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改变图像的灰度层次。 4.在直方图修改技术中采用的变换函数的基本要求是什么? (1)在0≤r≤1区间内,T(r)单值单调增加; (2)对于0≤r≤1,有0≤T(r)≤1。 5.直方图均衡化处理采用何种变换函数? 累计分布函数 6.直方图均衡化处理的结果是什么? 扩展了原始图像的灰度范围 7.假定有64×64大小的图像,灰度为16级,概率分布如下表,试用直方图均衡

00.10.20.30.40.50.60.70.80.91 原图像直方图 S0=0.195 S1=0.335 S2=0.502 S3=0.608 S4=0.681 S5=0.737 S6=0.786 S7=0.827 S8=0.864 S9=0.895 S10=0.922 S11=0.945 S12=0.964 S13=0.981 S14=0.993 S15=1 00.10.20.30.40.50.60.70.80.91 变

换之后 s0≈3/15 s1≈5/15 s2≈8/15 s3≈9/15s4≈10/15 s5≈11/15 s6≈12/15 s7≈12/15 s8≈13/15 s9≈13/15 s10≈14/15 s11≈14/15 s12≈1 s13≈1 s14≈1 s15≈1 00.10.20.30.40.50.60.70.80.91 最后的新直方图 8.(略) 9.直方图均衡化处理的主要步骤是什么? (1)对给定的待处理图像统计其直方图,求出Pr(R); (2)根据统计出的直方图采用累积分布函数做变换 Sk=T(Rk) 求变换后的新灰度; (3)用新灰度代替旧灰度,求出Ps(s),这一步是近似过程,应根据处理目的尽量做到合理,同时把灰度值相等活近似地合并到一起。 10.什么是“简并”现象?如何克服? 变换后的灰度级减少了,这种现象称为简并。 克服:(1)增加像素的比特数; (2)采用灰度间隔放大理论。 11.直方图规定化处理的技术难点是什么?如何解决? 主要困难在于如何构成有意义的直方图。 解决方法:(1)给定一个规定的概率密度函数,如高斯、瑞利等函数; (2)规定一个任意可控制的直方图,其形状可由一些直线组成,得到希望的形状后,将这个函数数字化。 12.试写一段直方图均衡化处理的程序。

数字图像处理学习的心得

数字图像处理学习心得 数字图像是我们生活中接触最多的图像各类,它伴随人们的生活、学习、工作,并在军事、医学、和工业方面发挥着极大的作用,可谓随处可见,尤其在生活方面作为学生的我们会在外出旅游、生活、工作中拆下许多数字相片,现在已进入信息化时代,图像作为信息的重要载体在信息传输方面有着声音、文字等信息载体不可替代的作用,并且近年来图像处理领域,数字图像处理技术取得了飞速发展,作为计算机类专业的大学生更加有必要对数字图像处理技术有一定的掌握,而大多人对于数字图像的知识却不全面,甚至一些基础知识也很模糊,比如各类繁多的各种图像格式之间的特点,不同的情况该用何种图像格式,还有关于图像的一些基本术语也不甚了解,尤为重要的是对于一些由于拍摄问题导致的令人不甚满意的照片该如何处理,或者如何对一些照片进行处理实现特殊的表现效果。所以对于数字图像处理这门课大家有着极大兴趣,在选课时几乎所有人都选了这门课。其中有的同学由于简单的学习过PHOTOSHOP软件,因此对于数字图像处理已经有了一些基础,更加想利用这门课的学习加深自己数字图像处理的理解并提高在数字图像处理方面的能力。 通过一学期的课程学习我们虽说还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像方面的知识有了深入的了解,更加理解了数字图像的本质,即是一些数字矩

阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用PHOTOSHOP等图像处理软件对图像进行处理打下了坚实的基础。更重要的是学习到了数字图像处理的思想。通过学习也是对C++编程应用的很好的实践与复习。 当然通过30学时的课程学习还是远远不够的,也有许多同学收获甚微,我总结了下大家后期的学习态度与前期的学习热情相差很大的原因。刚开始大家是有很高的热情学习这门课的,可是随着课程的逐渐深入学习,大家渐渐发现课程讲授内容与自己起初想学的实用图像处理技术是有很大的差别的,大家更着眼于如何利用一些软件、技术去处理图像而得到满意的效果,或者进行一些图像的创意设计,可是课程的内容更偏重于如何通过编程实现实现如何对图像进行一些类似于锐化、边缘提取、模糊、去除噪声等基础功能的实现,这其中涉及很多算法、函数,需要扎实的数学基础和编程基础,并且需要利用大量时间在课下编写代码,并用VISUALC++软件实现并进行调试,然而大部分人的C++实践能力

数字图像处理课件整理

第一章 ?课程性质和任务 通过本课程的学习,系统地了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法。着重掌握数字图像的增强、复原、压缩和分割的技术方法,为今后能够从事有关数字图像处理的研究和技术方法应用等工作掌握必备的基础知识。 数字图像处理的概念 1. 什么是图像 ?图像可定义为一个二维函数f (x, y) ?(x,y)——空间坐标 ?幅度值f (x, y)——图像该点的灰度(或强度) ?数字图像:坐标x、y和幅度f(x,y)均是有限的离散数值 ?数字图像中每个由坐标(x,y)指定的点称为像素(pixel)。 ?数字图像可看作是由像素组成的二维矩阵。 灰度图像 ?对于单色即灰度图像而言,每个像素的亮度用一个数值来表示,通常数值范围在0到255之间。 0表示黑、255表示白,而其它表示灰度级别。

2.什么是数字图像处理 数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 3. 数字图像的表示方法 空间上:图像抽样 对连续图像f(x,y)进行数字化 幅度上:灰度级量化 x方向,抽样M行 y方向,每行抽样N点 整个图像共抽样M×N个像素点 一般取M=N=2n=64,128,256,512,1024,2048…… 四、数字图像处理的三个层次 ?从计算机处理的角度可以由低到高将数字图像处理分为三个层次。这三个层次覆盖了图像处理的 所有应用领域 1. 图像处理: 对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换; 图像处理是一个从图像到图像的过程。 2. 图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息(特点或性质),建立对图像的描述; ?以观察者为中心研究客观世界; ?图像分析是一个从图像到数据的过程。 3. 图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释; ?以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)。 五、数字图像处理的主要研究内容 1.图像变换 2.图像压缩编码 3.图像的增强和复原 4.图像分割 5.图像描述 6.图像识别

武汉大学数字图像处理考试复习重点

第一章 基本概念:“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。 模拟图像 数字图像:由被称作象素的小块区域组成的二维矩阵。 数字图像处理:数字图像处理就是利用计算机系统对数字图像进行各种目的的处理。 数字图像处理框架: 图像变换图像编码压缩图像增强图像恢复重建图像分割图像理解识别计算机视觉 图像的表示:图像的数学描述f(x,y,z,λ,t) 简化的二维函数f(x,y) 二维矩阵A[m,n] 分类:按研究对象:二值图像灰度图像彩色及多光谱图像图像序列分析双目图象分析 按应用方式分:图像压缩与编码图像增强图像恢复图像重建边缘检测与分割图像测量与分析图像识别与理解 数字图像处理系统:

数字图像处理特点:精度高再现性好通用性灵活性高 第二章 视觉的动态范围:1. 将真实世界场景中较高的动态范围映射到显示或输出设备较低的动态范围区间,要求能够保持场景的亮度序列和整体视觉效果; 2. 模拟感知特性,获得和真实场景一致的局部对比的视觉响应。 亮度适应能力:明亮->较暗逐渐能够看清物体暗光适应(20~30s) 较暗->明亮逐渐能够看清物体亮光适应(1~2s) 连续图象数学表达式:g=f(x,y,t) 彩色图像的一般表达: 静止单色图象的数学表示:I=f(x,y)=i(x,y)?r(x,y) 其中,i(x,y)表示照射分量,0≤i(x,y)<∞; r(x,y)表示反射分量,0≤r(x,y)≤1。 连续图像(离散化)数字图像 图像数字化:将一幅连续的画面转化成离散的点集的过程。 图像的数字化包括采样和量化两个过程 采样:图像在空间上的离散化称为采样。 采样间隔采样孔径采样方式采样保持 量化:量化是将各个像素所含的明暗信息离散化后,用数字来表示。

数字图像处理(1)

数字图像处理的理论基础及发展方向 一、数字图像处理的起源及发展 数字图像处理(Digital Image Processing) 将图像信号转换成数字信号并利用计算机对其进行处理,起源于20 世纪20年代,目前已广泛地应用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,已成为一门引人注目、前景远大的新型学科,发挥着越来越大的作用。数字图像处理作为一门学科形成于20 世纪60 年代初期,早期的图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的,首次获得实际成功应用的是美国喷气推进实验室(J PL)并对航天探测器徘徊者7 号在1964 年发回的几千张月球照片使用了图像处理技术,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,随后又对探测飞船发回的近十万张照片进行了更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。数字图像处理取得的另一个巨大成就是在医学上获得的成果,1972 年英国EMI 公司工程师Ho usfield 发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph) 。1975 年EMI 公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像。1979 年这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。随着图像处理技术的深入

发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70 年代末MIT 的Ma rr 提出的视觉计算理论,这个理论成为计算机视觉领域其后多年的主导思想。图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。正因为如此,图像处理理论和技术受到各界的广泛重视,当前图像处理面临的主要任务是研究新的处理方法,构造新的处理系统,开拓更广泛的应用领域。 二、数字图像处理的研究内容 数字图象处理,就是采用计算机对图象进行信息加工。图象处理的主要内容有:图像的采集、增强、复原、变换、编码、重建、分割、配准、嵌拼、融合、特征提取、模式识别和图象理解。 对图像进行处理(或加工、分析)的主要目的有三个方面: 1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。 2)提取图像中所包含的某些特征或特殊信息,这些被提取的特征 或信息往往为计算机分析图像提供便利。提取特征或信息的过程是模式识别或计算机视觉的预处理。提取的特征可以包括很多方面,如频

最新数字图像处理课件整理精品版

2020年数字图像处理课件整理精品版

第一章 ?课程性质和任务 通过本课程的学习,系统地了解数字图像的基本概念、数字图像形成的原理,掌握数字图像处理的理论基础和技术方法。着重掌握数字图像的增强、复原、压缩和分割的技术方法,为今后能够从事有关数字图像处理的研究和技术方法应用等工作掌握必备的基础知识。 数字图像处理的概念 1. 什么是图像 ?图像可定义为一个二维函数f (x, y) ?(x,y)——空间坐标 ?幅度值f (x, y)——图像该点的灰度(或强度) ?数字图像:坐标x、y和幅度f(x,y)均是有限的离散数值 ?数字图像中每个由坐标(x,y)指定的点称为像素(pixel)。 ?数字图像可看作是由像素组成的二维矩阵。 灰度图像

对于单色即灰度图像而言,每个像素的亮度用一个数值来表示,通常数值范围在0到255之间。 0表示黑、255表示白,而其它表示灰度级别。 通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该像素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。 2.什么是数字图像处理 数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 3. 数字图像的表示方法 空间上:图像抽样 对连续图像f(x,y)进行数字化 幅度上:灰度级量化

x方向,抽样M行 y方向,每行抽样N点 整个图像共抽样M×N个像素点 一般取M=N=2n=64,128,256,512,1024,2048…… 四、数字图像处理的三个层次 ?从计算机处理的角度可以由低到高将数字图像处理分为三个层次。这三个层次覆盖了 图像处理的所有应用领域 1. 图像处理: 对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换; 图像处理是一个从图像到图像的过程。 2. 图像分析:对图像中感兴趣的目标进行提取和分割,获得目标的客观信息(特点或性质),建立对图像的描述; ?以观察者为中心研究客观世界; ?图像分析是一个从图像到数据的过程。

数字图像处理学习总结

数字图像处理学习总结 这个学期学习了数字图像处理这门课程,主要学习了图像的点运算、几何变换、空间域图像增强、频率域图像增强、形态学图像处理、图像分割(边缘检测)、纹理方向等方面的知识。 (1) 图像的点运算。 ○ 1灰度直方图 灰度直方图描述了一幅图像的灰度级统计信息,一般用于图像分割和图像灰度变换等的处理过程中。 从数学角度来说,图像直方图描述图像各个灰度级的统计特征,它是图像灰度级的函数,统计一幅图像中各个灰度级出现的次数或频率。 从图形上来说,灰度直方图是一个二维图,横坐标为图像中各个像素的灰度级别,纵坐标表示具有各个灰度级别的像素在图像中出现的次数或频率。 ○ 2直方图的均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。因此将原图像直方图通过T(r)调整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。 因为归一化假定 ()1()()r P s d s p r dr == 两边积分得 ()()r r s T r p r dr ==? 上式表明,当变换函数为r 的累积直方图函数时,能达到直方图均衡化的目的。 对于离散的数字图像,用频率来代替概率,则变换函数T (rk)的离散形式可表示为: 直方图均衡化的步骤: (1)求原直方图。 ()H s [0,255s ∈ (2)求累加值(原直方图) ()F s (3)将累加值乘以255 (4)变换 (,)((,) () I i j F I i j r T r →→

数字图像处理考试简答题经典30道题

1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。 ②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。 ③图像的几何变换:改变图像的大小或形状。 ④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。 ⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 什么是图像识别与理解? 图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。 3. 简述数字图像处理的至少3种主要研究内容。 ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。 ②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。 ③图像的几何变换:改变图像的大小或形状。 ④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。 4. 简述图像几何变换与图像变换的区别。 ①图像的几何变换:改变图像的大小或形状。比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。 ②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。比如傅里叶变换、小波变换等。 5. 图像的数字化包含哪些步骤?简述这些步骤。 图像的数字化主要包含采样、量化两个过程。采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。经过采样之后得到的二维离散信号的最小单位是像素。量化就是把采样点上表示亮暗信息的连续量离散化后,用数值表示出来,是对亮度大小的离散化。经过采样和量化后,数字图像可以用整数阵列的形式来描述。 6. 图像量化时,如果量化级比较小会出现什么现象?为什么? 如果量化级数过小,会出现伪轮廓现象。量化过程是将连续变化的颜色划分到有限个级别中,必然会导致颜色信息损失。当量化级别达到一定数量时,人眼感觉不到颜色信息的丢失。当量化级数过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过度就会变得突然,可能会导致伪轮廓现象。 7 . 简述二值图像与彩色图像的区别。 二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量小的特点。 彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。 8. 简述二值图像与灰度图像的区别。 二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。这种图像又称为黑白图像。二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量小的特点。 灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不包含彩色信息。标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。 9. 简述灰度图像与彩色图像的区别。 灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不 包含彩色信息。标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。 彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。红、绿、蓝这三种基色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。 10. 均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。 均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。将模板中的全体像素的均值来替代原来的像素值的方法。均值滤波器对高斯噪声的滤波结果较好。 原因:高斯噪声是幅值近似正态分布,但分布在每点像素上。因为正态分布的均值为0,所以均值滤波可以消除噪声。 11. 简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。 均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。将模板中的全体像素的均值

相关主题
文本预览
相关文档 最新文档