当前位置:文档之家› IC datasheet pdf-TLE2024A-Q1,pdf(Excalibur High-Speed Low-Power Precision Operational Amplifiers)

IC datasheet pdf-TLE2024A-Q1,pdf(Excalibur High-Speed Low-Power Precision Operational Amplifiers)

High Unity-Gain Bandwidth ...2 MHz Typ D High Slew Rate ...0.45 V/μs Min

D

Supply-Current Change Over Full Temp Range ...10 μA Typ at V CC ±=±15 V

Low Offset Voltage ...100 μV Max D Offset Voltage Drift With Time 0.005 μV/mo Typ

D Low Input Bias Current ...50 nA Max D

Low Noise Voltage ...19 nV/√Hz Typ

description

The TLE202x and TLE202xA devices are precision, high-speed, low-power operational amplifiers using a new Texas I nstruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth.

The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices.

The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use.

This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail.

A variety of available options includes small-outline versions for high-density systems applications.

The Q-suffix devices are characterized for operation over the full automotive temperature range of ?40°C to 125°C.

PRODUCTION DATA information is current as of publication d ate.Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION ?

T A

V IO max AT 25°C PACKAGE ?

ORDERABLE

PART NUMBER TOP-SIDE MARKING 200SOIC (D)Tape and reel TLE2021AQDRQ12021AQ 40°C to 125°C

200

μV TSSOP (PW)Tape and reel TLE2021AQPWRQ1§2021AQ ?40C to 125500SOIC (D)Tape and reel TLE2021QDRQ12021Q1500 μV TSSOP (PW)Tape and reel TLE2021QPWRQ1§2021Q1300SOIC (D)Tape and reel TLE2022AQDRQ12021AQ 40°C to 125°C

300

μV TSSOP (PW)Tape and reel TLE2022AQPWRQ1§2022AQ1?40C to 125500SOIC (D)Tape and reel TLE2022QDRQ12022Q1500

μV TSSOP (PW)Tape and reel TLE2022QPWRQ1§2022Q140°C to 125°C

750 μV SOP (DW)Tape and reel TLE2024AQDWRQ12024AQ1?40C to 1251000 μV

SOP (DW)

Tape and reel

TLE2024QDWRQ1

2024Q1

?

For the most current package and ordering information, see the Package Option Addendum at the end of this document,or see the TI web site at https://www.doczj.com/doc/f07735600.html,.

?Package drawings, thermal data, and symbolization are available at https://www.doczj.com/doc/f07735600.html,/packaging.§Product preview 1234

8765

OFFSET N1

IN?IN+

V CC ?/GND

NC V CC+OUT

OFFSET N2

TLE2021

D OR PW PACKAGE

(TOP VIEW)

1234

8765

1OUT 1IN?1IN+V CC ?/GND

V CC+2OUT 2IN?2IN+

TLE2022

D OR PW PACKAGE

(TOP VIEW)

1234 5678

161514131211109

1OUT 1IN?1IN+V CC +2IN+2IN?2OUT NC

4OUT 4IN?4IN+

V CC ?/GND 3IN+3IN?3OUT NC

TLE2024DW PACKAGE (TOP VIEW)

NC ? No internal connection

equivalent schematic (each amplifier)

IN ?Q23Q25

Q1

Q2

Q3Q4

Q5

Q6Q7Q8

Q9Q10

Q11

Q12

Q13

Q14

Q15

Q16Q17Q18

Q19

Q20

Q21

Q22

Q24

Q26

Q27

Q28

Q29

Q30Q31Q32

Q33Q34

Q35

Q36Q37

Q38

Q39

Q40

D1D2

D3D4

IN +

OUT OFFSET N1(see Note A)V CC+

V CC ?/GND

C1

R1R2R3

R4R5

C2

R6

R7C4

C3OFFSET N2(see Note A)

ACTUAL DEVICE COMPONENT COUNT

COMPONENT TLE2021TLE2022TLE2024Transistors 4080160Resistors 71428Diodes 4816Capacitors

4

8

16

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)?Supply voltage, V CC+ (see Note 1) 20 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Supply voltage, V CC? (see Note 1) ?20 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Differential input voltage, V ID (see Note 2) ±0.6 V

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input voltage range, V I (any input, see Note 1) ±V CC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input current, I I (each input) ±1 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output current, I O (each output):TLE2021 ±20 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TLE2022 ±30 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TLE2024 ±40 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total current into V CC+80 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total current out of V CC?80 mA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operating free-air temperature range, T A: Q suffix ?40°C to 125°C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operating virtual junction temperature, T J150°C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Package thermal impedance, RθJA (see Notes 4 and 5):D (8 pin) 97°C/W

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DW (16 pin) 57°C/W

. . . . . . . . . . . . . . . . . . . . . . . . . .

PW (8 pin) 149°C/W

. . . . . . . . . . . . . . . . . . . . . . . . . .

PW (14 pin) 113°C/W

. . . . . . . . . . . . . . . . . . . . . . . . .

Storage temperature range, T stg ?65°C to 150°C

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lead temperature 1,6 mm (1/16 inch) from case for 3 seconds: D or PW package 300°C

. . . . . . . . . . . . . . . .

?Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1.All voltage values, except differential voltages, are with respect to the midpoint between V CC+, and V CC?.

2.Differential voltages are at IN+ with respect to IN?. Excessive current flows if a differential input voltage in excess of approximately

±600 mV is applied between the inputs unless some limiting resistance is used.

3.The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum

dissipation rating is not exceeded.

4.Maximum power dissipation is a function of T J(max), θJA, and T A. The maximum allowable power dissipation at any allowable

ambient temperature is P D = (T J(max) ? T A)/θJA. Selecting the maximum of 150°C can affect reliability.

5.The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

MIN MAX UNIT Supply voltage, V CC±2±20V

Common mode input voltage V V CC = ± 5 V0 3.2

Common-mode input voltage, V IC

V CC± = ±15 V?1513.2

V Operating free-air temperature, T A?40125°C

TLE2021 electrical characteristics at specified free-air temperature, V CC = 5 V (unless otherwise noted)

TEST CONDITIONS TLE2021-Q1TLE2021A-Q1

PARAMETER TEST CONDITIONS T A?

MIN TYP MAX MIN TYP MAX

UNIT

Input offset voltage 25°C120600100400

V IO Input offset voltage

Full range800550

μV

αVIO Temperature

coefficient of input

offset voltage

Full range22μV/°C

Input offset voltage

long-term drift

(see Note 4)

V IC = 0,R S = 50 ?25°C0.0050.005μV/mo Input offset current

25°C0.260.26

I IO Input offset current

Full range1010

nA

Input bias current 25°C25702570

I IB Input bias current

Full range9090

nA

Common-mode input

R5025°C

to

3.5

?0.3

to

4

to

3.5

?0.3

to

4

V ICR Common mode input

voltage range S

= 50 ?

Full range

to

3.2

to

3.2

V High-level output 25°C4 4.34 4.3

V OH High level output

voltage

10k?

Full range 3.8 3.8

V Low-level output

R L= 10 k

25°C0.70.80.70.8

V OL Low level output

voltage Full range0.950.95

V Large-signal

V14V to4V10k?

25°C0.3 1.50.3 1.5

A VD differential

voltage amplification O = 1.4 V to 4 V,R L= 10 k

Full range0.10.1

V/μV

Common-mode

V min5025°C8511085110

CMRR Common mode

rejection ratio

V IC = V ICR min,R S = 50 ?

Full range8080

dB Supply-voltage

rejection ratio5V to30V

25°C105120105120

k SVR rejection ratio

(?V CC±/?V IO)V CC = 5 V to 30 V

Full range100100

dB

Supply current 25°C170300170300

I CC Supply current

Full range300300

μA

?I CC Supply current

change over operating

temperature range

V O = 2.5 V,No load

Full range99μA

?Full range is ?40°C to 125°C.

NOTE 4:Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2021 electrical characteristics at specified free-air temperature, V CC= ±15 V (unless otherwise noted)

TEST CONDITIONS TLE2021-Q1TLE2021A-Q1

PARAMETER TEST CONDITIONS T A?

MIN TYP MAX MIN TYP MAX

UNIT

Input offset voltage 25°C12050080300

V IO Input offset voltage

Full range700450

μV

αVIO Temperature

coefficient of input

offset voltage

Full range22μV/°C

Input offset voltage

long-term drift

(see Note 4)

V IC = 0,R S = 50 ?25°C0.0060.006μV/mo Input offset current

25°C0.260.26

I IO Input offset current

Full range1010

nA

Input bias current 25°C25702570

I IB Input bias current

Full range9090

nA

Common-mode input

5025°C

?15

to

13.5

?15.3

to

14

?15

to

13.5

?15.3

to

14

V ICR Common mode input

voltage range

R S = 50 ?

Full range

?15

to

13.2

?15

to

13.2

V

Maximum positive

peak output voltage

25°C1414.31414.3

V OM+peak output voltage

swing

10k?Full range13.813.8

V

Maximum negative peak output voltage R L= 10 k

25°C?13.7?14.1?13.7?14.1

V OM?peak output voltage

swing Full range?13.6?13.6

V

Large-signal

differential voltage±10V10k?25°C1 6.51 6.5

A VD differential voltage

amplification V O = 10 V,R L= 10 k

Full range0.50.5

V/μV

Common-mode

V min5025°C100115100115

CMRR Common mode

rejection ratio

V IC = V ICR min,R S = 50 ?

Full range9696

dB Supply-voltage

rejection ratio V=±25V to±15V

25°C105120105120

k SVR rejection ratio

(?V CC±/?V IO)CC± = 2.5 V to 15 V

Full range100100

dB

Supply current 25°C200350200350

I CC Supply current

Full range350350

μA

?I CC Supply current

change over

operating temperature

range

V O = 0,No load

Full range1010μA

?Full range is ?40°C to 125°C.

NOTE 4:Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2022 electrical characteristics at specified free-air temperature, V CC = 5 V (unless otherwise noted)

TEST CONDITIONS TLE2022-Q1TLE2022A-Q1PARAMETER

TEST CONDITIONS

T A ?MIN

TYP

MAX MIN

TYP

MAX UNIT Input offset voltage 25°C 600400V IO Input offset voltage Full range 800550μV Temperature coefficient of Full range V/°C αVIO

input offset voltage Full range 22μInput offset voltage

05000050005V/mo long-term drift (see Note 4)

V IC = 0,

R S = 50 ?

25°C 0.0050.005μInput offset current 25°C 0.560.46I IO Input offset current Full range 1010nA Input bias current 25°C 35

7033

70I IB

Input bias current

Full range 90

90

nA

°0

?0.30?0.3Common-mode input 5025C

to 3.5to 4

to 3.5to 4

V ICR

Common mode input R S = 50

?V

voltage range

00Full range to 3.2to 3.2High level output voltage 25°C

4 4.34 4.3V OH

High-level output voltage R 10k ?

Full range 3.8

3.8

V Low level output voltage L = 10 k 25°C 0.7

0.80.7

0.8V OL Low-level output voltage Full range 0.950.95V Large-signal differential 14V to 4V 10k 25°C 0.3 1.5

0.4 1.5

A VD Large signal differential voltage amplification V O = 1.4 V to 4 V,R L = 10 k ?Full range 0.10.1V/μV Common-mode rejection V min 5025°C 8510087102CMRR Common mode rejection ratio

V IC = V

ICR min,R S = 50 ?

Full range 8082dB Supply-voltage rejection 5V to 30V 25°C 100115103118k SVR Supply voltage rejection ratio (?V CC ±/?V IO )V CC = 5 V to 30 V

Full range 95

98

dB Supply current 25°C 450

600450

600I CC Supply current

Full range 600600μA

Supply current change over operating temperature V O = 2.5 V,

No load

Full range ?I CC

operating temperature range

Full range

3737μA

?

Full range is ?40°C to 125°C.

NOTE 4:Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated

to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2022 electrical characteristics at specified free-air temperature, V CC =±15 V (unless otherwise noted)

TEST CONDITIONS TLE2022-Q1TLE2022A-Q1PARAMETER

TEST CONDITIONS

T A ?MIN

TYP MAX MIN

TYP MAX UNIT Input offset voltage 25°C 150

500120

300V IO

Input offset voltage Full range 700450μV Temperature coefficient

Full range αVIO

of input offset voltage Full range

2

2

μV/°C

Input offset voltage long term drift 05025°C 00060006long-term drift (see Note 4)

V IC = 0,

R S = 50 ?

0.0060.006μV/mo

Input offset current 25°C 0.560.46I IO Input offset current Full range 1010nA Input bias current 25°C 35

7033

70I IB

Input bias current

Full range 90

90

nA

?15?15°?15.3

?15.3Common-mode input 5025C

to 13.5to 14to 13.5to 14V ICR

Common mode input R S = 50

??15?15V

voltage range

Full range

to 13.2to 13.2Maximum positive peak

25°C 1414.3

1414.3

V OM +output voltage swing 10k Full range 13.813.8V Maximum negative peak R L = 10 k ?

25°C ?13.7?14.1?13.7?14.1V OM ?output voltage swing Full range

?13.6?13.6

V Large-signal differential ±10V 10k 25°C 0.8417A VD Large signal differential voltage amplification V O = 10 V,R L = 10 k ?Full range 0.81V/μV Common-mode rejection V min 5025°C 9510697109CMRR Common mode rejection ratio

V IC = V

ICR min,R S = 50 ?

Full range 9193dB Supply-voltage rejection ±2

5V to ±15V 25°C 100115103118k SVR Supply voltage rejection ratio (?V CC ±/?V IO )V CC ± = 2.5 V to 15 V Full range 95

98

dB Supply current 25°C 550

700550

700I CC Supply current Full range 700700μA

Supply current change over operating V O = 0,

No load

Full range ?I CC

over operating temperature range

Full range

6060μA

?

Full range is ?40°C to 125°C.

NOTE 4:Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated

to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2024 electrical characteristics at specified free-air temperature, V CC= 5 V (unless otherwise noted)

TEST CONDITIONS TLE2024-Q1TLE2024A-Q1

PARAMETER TEST CONDITIONS T A?

MIN TYP MAX MIN TYP MAX

UNIT

Input offset voltage 25°C1100850

V IO Input offset voltage

Full range13001050

μV

αVIO Temperature coefficient

of input offset voltage

Full range22μV/°C Input offset voltage

long-term drift

(see Note 4)

V IC = 0,R S = 50 ?25°C0.0050.005μV/mo

Input offset current 25°C0.660.56

I IO Input offset current

Full range1010

nA

Input bias current 25°C45704070

I IB Input bias current

Full range9090

nA

Common-mode input

5025°C

to

3.5

?0.3

to

4

to

3.5

?0.3

to

4

V ICR Common mode input

voltage range R S = 50 ?

Full range

to

3.2

to

3.2

V High level output voltage

25°C 3.9 4.2 3.9 4.2

V OH High-level output voltage

10k Full range 3.7 3.7

V

Low level output voltage R L = 10 k?

25°C0.70.80.70.8

V OL Low-level output voltage

Full range0.950.95

V

Large-signal differential

14V to4V10k 25°C0.2 1.50.3 1.5

A VD Large signal differential

voltage amplification V O = 1.4 V to 4 V,R L = 10 k?Full range0.10.1V/μV Common-mode rejection

V min50

25°C80908292

CMRR Common mode rejection

ratio V IC = V ICR min,R S = 50 ?Full range8082dB Supply-voltage rejection

±25V to±15V

25°C98112100115

k SVR Supply voltage rejection

ratio (?V CC±/?V IO)V CC± = 2.5 V to 15 V Full range9395dB Supply current

25°C80012008001200

I CC Supply current

Full range12001200

μA

?I CC Supply current change

over operating

temperature range

V O = 0,No load

Full range5050μA

?Full range is ?40°C to 125°C.

NOTE 4:Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2024 electrical characteristics at specified free-air temperature, V CC= ±15 V (unless otherwise noted)

TEST CONDITIONS TLE2024-Q1TLE2024A-Q1

PARAMETER TEST CONDITIONS T A?

MIN TYP MAX MIN TYP MAX

UNIT

Input offset voltage 25°C1000750

V IO Input offset voltage

Full range1200950

μV

αVIO Temperature coefficient

of input offset voltage

Full range22μV/°C Input offset voltage

long-term drift

(see Note 4)

V IC = 0,R S = 50 ?25°C0.0060.006μV/mo

Input offset current 25°C0.660.26

I IO Input offset current

Full range1010

nA

Input bias current 25°C50704570

I IB Input bias current

Full range9090

nA

Common-mode input

R5025°C

?15

to

13.5

?15.3

to

14

?15

to

13.5

?15.3

to

14

V ICR Common mode input

voltage range S = 50 ?

Full range

?15

to

13.2

?15

to

13.2

V Maximum positive peak25°C13.814.113.814.2

V OM+output voltage swing

10k Full range13.713.7

V

Maximum negative peak R L = 10 k?

25°C?13.7?14.1?13.7?14.1

V OM?output voltage swing

Full range?13.6?13.6

V

Large-signal differential

V±10V10k 25°C0.420.84

A VD Large signal differential

voltage amplification O = 10 V,R L = 10 k?Full range0.40.8V/μV Common-mode rejection

V V min50

25°C9210294105

CMRR Common mode rejection

ratio IC = V ICR min,R S = 50 ?Full range8890dB Supply-voltage rejection

V±25V to±15V

25°C98112100115

k SVR Supply voltage rejection

ratio (?V CC±/?V IO)CC± = 2.5 V to 15 V Full range9395dB Supply current

25°C1050140010501400

I CC Supply current

Full range14001400

μA

Supply current change over operating V O = 0,No load

Full range

?I CC over operating

temperature range

Full range8585μA

?Full range is ?40°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T A = 150°C extrapolated to T A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2021 operating characteristics, V CC = 5 V, T A = 25°C

PARAMETER

TEST CONDITIONS T A MIN

TYP MAX

UNIT SR Slew rate at unity gain V O = 1 V to 3 V,See Figure 1

25°C 0.5V/μs f = 10 Hz 25°C 21V n Equivalent input noise voltage (see Figure 2)

f = 1 kHz 25°C 17nV/Hz Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16V N(PP)Peak to peak equivalent input noise voltage

f = 0.1 to 10 Hz

25°C 0.47μV I n Equivalent input noise current 25°C 0.9pA/Hz B 1Unity-gain bandwidth See Figure 325°C 1.2MHz

φm

Phase margin at unity gain

See Figure 3

25°C

42°

TLE2021 operating characteristics at specified free-air temperature, V CC = ±15 V

PARAMETER

TEST CONDITIONS T A ?MIN TYP MAX UNIT Slew rate at unity gain V ±10V See Figure 125°C 0.450.65SR Slew rate at unity gain O = 10 V,See Figure 1

Full range 0.4

V/μs Equivalent input noise voltage

f = 10 Hz 25°C 19V n (see Figure 2)

f = 1 kHz 25°C 15nV/Hz Peak-to-peak equivalent input f = 0.1 to 1 Hz 25°C 0.16V N(PP)Peak to peak equivalent input noise voltage

f = 0.1 to 10 Hz 25°C 0.47μV I n Equivalent input noise current 25°C 0.09pA/Hz B 1Unity-gain bandwidth See Figure 325°C 2MHz

φm

Phase margin at unity gain

See Figure 3

25°C

46°

?

Full range is ?40°C to 125°C for the Q-suffix devices.

TLE2022 operating characteristics, V CC = 5 V, T A = 25°C

PARAMETER

TEST CONDITIONS MIN

TYP MAX

UNIT SR Slew rate at unity gain V O = 1 V to 3 V,See Figure 1

0.5V/μs Equivalent input noise voltage f = 10 Hz 21V n (see Figure 2)

f = 1 kHz 17nV/√Hz Peak to peak equivalent input noise voltage f = 0.1 to 1 Hz 0.16V N(PP)Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz

0.47μV I n Equivalent input noise current 0.1pA/√Hz B 1Unity-gain bandwidth See Figure 3 1.7MHz

φm

Phase margin at unity gain

See Figure 3

47°

TLE2022 operating characteristics at specified free-air temperature, V CC = ±15 V

PARAMETER

TEST CONDITIONS T A ?MIN TYP MAX UNIT Slew rate at unity gain V ±10V See Figure 125°C 0.450.65SR Slew rate at unity gain O = 10 V,See Figure 1

Full range 0.4

V/μs Equivalent input noise

f = 10 Hz 25°C 19V n voltage (see Figure 2) f = 1 kHz 25°C 15nV/√Hz Peak-to-peak equivalent f = 0.1 to 1 Hz 25°C 0.16V N(PP)Peak to peak equivalent input noise voltage

f = 0.1 to 10 Hz 25°C 0.47μV I n Equivalent input noise current 25°C 0.1pA/√Hz B 1Unity-gain bandwidth See Figure 325°C 2.8MHz

φm

Phase margin at unity gain

See Figure 3

25°C

52°

?

Full range is ?40°C to 125°C.

TLE2024 operating characteristics, V CC = 5 V, T A = 25°C

PARAMETER

TEST CONDITIONS MIN

TYP MAX

UNIT SR Slew rate at unity gain

V O = 1 V to 3 V,See Figure 1

0.5V/μs Equivalent input noise voltage (see Figure 2) f = 10 Hz 21Hz V n Equivalent input noise voltage (see Figure 2) f = 1 kHz 17nV/√Peak to peak equivalent input noise voltage f = 0.1 to 1 Hz 0.16V N(PP)Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz

0.47μV I n Equivalent input noise current 0.1pA/√Hz B 1Unity-gain bandwidth See Figure 3 1.7MHz

φm

Phase margin at unity gain

See Figure 3

47°

TLE2024 operating characteristics at specified free-air temperature, V CC = ±15 V (unless otherwise

noted)

PARAMETER

TEST CONDITIONS T A ?MIN TYP MAX UNIT Slew rate at unity gain V ±10V See Figure 125°C 0.450.7SR Slew rate at unity gain O = 10 V,See Figure 1

Full range 0.4

V/μs Equivalent input noise voltage

f = 10 Hz 25°C 19V n (see Figure 2)

f = 1 kHz 25°C 15nV/√Hz Peak to peak equivalent input noise voltage f = 0.1 to 1 Hz 25°C 0.16V N(PP)Peak-to-peak equivalent input noise voltage f = 0.1 to 10 Hz 25°C 0.47μV I n Equivalent input noise current 25°C 0.1pA/√Hz B 1Unity-gain bandwidth See Figure 325°C 2.8MHz

φm

Phase margin at unity gain

See Figure 3

25°C

52°

?

Full range is ?40°C to 125°C.

PARAMETER MEASUREMENT INFORMATION

?15 V 15 V

20 k ?V I

20 k ?

V O

20 k ?

V I

30 pF

(see Note A)

V O

5 V

20 k ??

+

?

+

(a) SINGLE SUPPLY

NOTE A: C L includes fixture capacitance.

(b) SPLIT SUPPLY

30 pF

(see Note A)

Figure 1. Slew-Rate Test Circuit

2.5 V

5 V V O

2 k ?

20 ?

20 ?

20 ?

20?

V O

?15 V 15 V

2 k ?

?

+

?

+(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

Figure 2. Noise-Voltage Test Circuit

2.5 V

?

+?

+

V O 10 k ?

15 V

?15 V

10 k ?100?

V I

V I

10 k ?

V O

100 ?10 k ?

5 V (a) SINGLE SUPPLY

NOTE A: C L includes fixture capacitance.

(b) SPLIT SUPPLY

30 pF

(see Note A)

30 pF

(see Note A)Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit

PARAMETER MEASUREMENT INFORMATION

V O V I

?

(a) SINGLE SUPPLY

(b) SPLIT SUPPLY

NOTE A: C L includes fixture capacitance.

Figure 4. Small-Signal Pulse-Response Test Circuit

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

TYPICAL CHARACTERISTICS

Table of Graphs

FIGURE V IO Input offset voltage Distribution5, 6, 7

I IB Input bias current vs Common-mode input voltage

vs Free-air temperature

8, 9, 10

11, 12, 13

I I Input current vs Differential input voltage14

V OM Maximum peak output voltage vs Output current

vs Free-air temperature

15, 16, 17

18

V OH High-level output voltage vs High-level output current

vs Free-air temperature

19, 20

21

V OL Low-level output voltage vs Low-level output current

vs Free-air temperature

22

23

V O(PP)Maximum peak-to-peak output voltage vs Frequency24, 25

A VD Large-signal differential voltage amplification vs Frequency

vs Free-air temperature

26

27, 28, 29

I OS Short-circuit output current vs Supply voltage

vs Free-air temperature

30 ? 33

34 ? 37

I CC Supply current vs Supply voltage

vs Free-air temperature

38, 39, 40

41, 42, 43

CMRR Common-mode rejection ratio vs Frequency44, 45, 46 SR Slew rate vs Free-air temperature47, 48, 49 Voltage-follower small-signal pulse response50, 51

Voltage-follower large-signal pulse response52 ? 57

V N(PP)Peak-to-peak equivalent input noise voltage 0.1 to 1 Hz

0.1 to 10 Hz

58

59

V n Equivalent input noise voltage vs Frequency60

B1Unity-gain bandwidth vs Supply voltage

vs Free-air temperature

61, 62

63, 64

φm Phase margin vs Supply voltage

vs Load capacitance

vs Free-air temperature

65, 66

67, 68

69, 70

Phase shift vs Frequency26

TYPICAL CHARACTERISTICS

Figure 516

12

8

4

3000

?3000

600

20

V IO ? Input Offset Voltage ? μV

P e r c e n t a g e o f U n i t s ? %

?600

DISTRIBUTION OF TLE2021INPUT OFFSET VOLTAGE

?450?150150450Figure 6

?600

P e r c e n t a g e o f U n i t s ? %

V IO ? Input Offset Voltage ? μV

20

2000?400

?20004

8

12

16400600

DISTRIBUTION OF TLE2022INPUT OFFSET VOLTAGE

Figure 7?1

P e r c e n t a g e o f U n i t s ? %

V IO ? Input Offset Voltage ? mV

16

1

?0.500.5

4

8

12

DISTRIBUTION OF TLE2024INPUT OFFSET VOLTAGE

Figure 8

T A = 25°C

V CC ± = ±15 V ?35?30?25?20?15?10?5

1050?5?10015

?40V IC ? Common-Mode Input Voltage ? V

I I B ? I n p u t B i a s C u r r e n t ? n A

?15

I B I TLE2021

INPUT BIAS CURRENT

vs

COMMON-MODE INPUT VOLTAGE

TYPICAL CHARACTERISTICS

Figure 9

?15

I I B ? I n p u t B i a s C u r r e n t ? n A V IC ? Common-Mode Input Voltage ? V

?50

15

?10?50510?20?25

?30

?35

?40

?45V CC ± = ±15 V T A = 25°C

I B

I TLE2022

INPUT BIAS CURRENT

vs

COMMON-MODE INPUT VOLTAGE

Figure 10

?15

I B ? I n p u t B i a s C u r r e n t ? n A

V IC ? Common-Mode Input Voltage ? V

?60

15

?20

?10?50510?30

?40

?50V CC ± = ±15 V T A = 25°C

I I B TLE2024

INPUT BIAS CURRENT

vs

COMMON-MODE INPUT VOLTAGE

Figure 11

?30?25?20?15?10?51007550250?25?50

125

?35T A ? Free-Air Temperature ? °C

I I B ? I n p u t B i a s C u r r e n t ? n A

?75I B I TLE2021

INPUT BIAS CURRENT ?

vs

FREE-AIR TEMPERATURE

V CC ± = ±15 V

V O = 0V IC = 0

Figure 12

?75

I B ? I n p u t B i a s C u r r e n t ? n A T A ? Free-Air Temperature ? °C

?50

125

?50?250255075100?20?25

?30

?35

?40

?45

V CC ± = ±15 V V O = 0V IC = 0

I

B I TLE2022

INPUT BIAS CURRENT ?

vs

FREE-AIR TEMPERATURE

?

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

Figure 13

T A ? Free-Air Temperature ? °C

?75

I B ? I n p u t B

i a s C u r r e n t ? n A ?60

?20

?50

?25

25

50

75

100

?50

?30

?40

125

I I B

TLE2024

INPUT BIAS CURRENT ?

vs

FREE-AIR TEMPERATURE

Figure 14

T A = 25°C

V IC = 0V CC ± = ±15 V

0.90.80.70.60.50.40.30.20.1

0.9

0.80.70.60.50.40.30.20.10

1

1|V ID | ? Differential Input Voltage ? V

I I ? I n p u t C u r r e n t ? m A

INPUT CURRENT

vs

DIFFERENTIAL INPUT VOLTAGE

I I Figure 15

M a x i m u m

P e a k O u t p u t V o l t a g e ? V I O ? Output Current ? mA

16

100

2

468

2

46810

12

14

TLE2021

MAXIMUM PEAK OUTPUT VOLTAGE

vs

OUTPUT CURRENT

Figure 16

0 ? M a x i m u m P e a k O u t p u t V o l t a g e ? V

|I O | ? Output Current ? mA

16

14

2

46246810

12

1481012TLE2022

MAXIMUM PEAK OUTPUT VOLTAGE

vs

OUTPUT CURRENT

?

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

Figure 17

I O ? Output Current ? mA

0V O M ? M a x i m

u m P e a k O u t p u t V o l t a g e ? V

160

2

46

246810

121481012

14

O M TLE2024

MAXIMUM PEAK OUTPUT VOLTAGE

vs

Figure 18

?75

T A ? Free-Air Temperature ? °C

15

125

12?50

?250255075

10012.5

13

13.5

14

14.5

V OM ?

V OM +

V CC ± = ±15 V

T A = 25°C R L = 10 k ?MAXIMUM PEAK OUTPUT VOLTAGE ?

vs

FREE-AIR TEMPERATURE

? M a x i m u m P e a k O u t p u t V o l t a g e ? V

Figure 190

H i g h -L e v e l O u t p u t V o l t a g e ? V

I OH ? High-Level Output Current ? mA

5

?7

?1?2?3?4?5?6

1

2

3

4

T A = 25°C

V CC = 5 V

TLE2021

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

Figure 20

I OH ? High-Level Output Current ? mA

V O H ? H i g h -L e v e l O u t p u t V o l t a g e ? V

5

?2

?4

?6

?8

1

2

3

4

T A = 25°C

V CC = 5 V V O H ?10

TLE2022 AND TLE2024

HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

?

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

Figure 21

?75

T A ? Free-Air Temperature ? °C

5

125

4?50?2502550751004.2

4.6

4.8

V O H ? H i g h -L e v e l O u t p u t V o l t a g e ? V

V CC = 5 V

R L = 10 k ?

No Load HIGH-LEVEL OUTPUT VOLTAGE ?

vs

FREE-AIR TEMPERATURE

V O H 4.4

Figure 22

V O L ? L o w -L e v e l O u t p u t V o l t a g e ? V

I OL ? Low-Level Output Current ? mA

5

3

0.51 1.52 2.51

2

3

4

V CC = 5 V T A = 25°C

LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT V O L Figure 23?75

T A ? Free-Air Temperature ? °C

1

125

?50

?2502550751000.25

0.5

0.75

I OL = 1 mA

I OL = 0

V CC ± = ±5 V LOW-LEVEL OUTPUT VOLTAGE ?

vs

FREE-AIR TEMPERATURE

V O L ? L o w -L e v e l O u t p u t V o l t a g e ? V

V O

L Figure 24

100V O P P ? M a x i m u m P e a k -t o -P e a k O u t p u t V o l t a g e ? V

f ? Frequency ? Hz

5

1 M

1

2

3

4

1 k

10 k 100 k MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs

FREQUENCY

V O (P P )?

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

相关主题
文本预览
相关文档 最新文档